
SERIES
32000

INSTRUCTION
SET

MANUAL
15. March 2021

 CONTENTS

Chapter Page

 1 INTRODUCTION ... 1-1

 2 PROGRAMMING MODEL .. 2-1

 2.1 GENERAL REGISTERS ... 2-2
 2.2 DEDICATED REGISTERS ... 2-2
 2.3 CONFIGURATION REGISTER (CFG) 2-10
 2.4 FLOATING-POINT REGISTERS 2-11
 2.4.1 Floating-Point Data Registers 2-11
 2.4.2 Floating-Point Status Register (FSR) 2-12
 2.5 MEMORY MANAGEMENT REGISTERS 2-15
 2.6 DEBUG REGISTERS ... 2-16
 2.7 MEMORY ORGANIZATION ... 2-17
 2.7.1 Addressing ... 2-17
 2.7.2 Memory Operand Formats 2-17
 2.7.3 Data Alignment 2-19
 2.8 DEDICATED MEMORY AREAS 2-19
 2.8.1 User and Interrupt Stacks 2-20
 2.8.2 Module Table 2-21
 2.8.3 Link Tables .. 2-23
 2.8.4 Interrupt Dispatch Table and Cascade Table 2-24
 2.8.5 Input and Output 2-24
 2.9 PRIVILEGE STATES AND PROTECTION 2-25

 3 INSTRUCTIONS AND DATA TYPES .. 3-1

 3.1 INTEGER INSTRUCTIONS .. 3-2
 3.2 PACKED DECIMAL INSTRUCTIONS 3-7
 3.3 FLOATING-POINT INSTRUCTIONS 3-9
 3.3.1 Floating-Point Operand Formats 3-10
 3.3.2 Normalized Numbers 3-11
 3.3.3 Zero ... 3-12
 3.3.4 Reserved Operands 3-13
 3.3.5 Integers ... 3-13
 3.3.6 Memory Representations 3-13
 3.3.7 Floating-Point Traps 3-14
 3.4 LOGICAL INSTRUCTIONS .. 3-16
 3.5 BIT INSTRUCTIONS .. 3-18
 3.6 BIT FIELD INSTRUCTIONS 3-21
 3.7 STRING INSTRUCTIONS ... 3-24
 3.8 BLOCK INSTRUCTIONS .. 3-29
 3.9 ARRAY INSTRUCTIONS .. 3-31
 3.10 PROCESSOR CONTROL INSTRUCTIONS 3-33
 3.11 PROCESSOR SERVICE INSTRUCTIONS 3-35
 3.12 MEMORY MANAGEMENT INSTRUCTIONS 3-37
 3.13 CUSTOM INSTRUCTIONS ... 3-38

 4 INSTRUCTION OPTIONS AND CONSTRUCTION 4-1

 4.1 SYNTAX PRESENTATION ... 4-2
 4.2 OPERAND ATTRIBUTES .. 4-3

 ii

 CONTENTS (Cont.)

Chapter Page

 4.2.1 Access Classes 4-4
 4.2.2 Length Attributes 4-6
 4.2.2.1 Integer Length Attributes 4-7
 4.2.2.2 Floating-Point Length Attributes 4-8
 4.2.3 Implied Operand Attributes 4-9
 4.3 BINARY INSTRUCTION FORMAT 4-10
 4.3.1 Basic Instruction 4-12
 4.3.1.1 Operation Code Fields 4-12
 4.3.1.2 Operation Length Fields: i and f 4-12
 4.3.1.3 General Addressing Mode Fields: gen 4-12
 4.3.1.4 Implied Operand Fields: reg,quick,short .. 4-13
 4.3.2 Extension Fields 4-13
 4.3.2.1 Index Bytes 4-13
 4.3.2.2 Addressing Extensions 4-13
 4.3.2.3 Implied Operand Extensions: imm, disp 4-14
 4.4 NS32000 ADDRESSING MODES 4-15
 4.4.1 Register Modes 4-17
 4.4.2 Register Relative Modes 4-19
 4.4.3 Memory Relative Modes 4-20
 4.4.4 Immediate Mode 4-21
 4.4.5 Absolute Mode 4-22
 4.4.6 External Mode 4-23
 4.4.7 Top of Stack Mode 4-24
 4.4.8 Memory Space Modes 4-25
 4.4.9 Scaled Indexing 4-26
 4.5 CONSTRUCTING COMPLETE BINARY INSTRUCTIONS: SOME EXAMPLES ... 4-28

 5 SERIES 32000 INSTRUCTION SET 5-1

 5.1 INSTRUCTION EXAMPLES .. 5-3
 5.1.1 Coding Examples 5-3
 5.1.2 Action Examples 5-3
 5.1.3 Operand Presentation Format 5-5
 5.2 INSTRUCTION DEFINITIONS 5-7

Appendix

 A INSTRUCTION SET LISTED BY FUNCTIONAL GROUPS A-1

 iii

 ILLUSTRATIONS

Figure Page

 2-1 Series 32000 Register Set .. 2-3
 2-2 Processor Status Register .. 2-6
 2-3 Floating-Point Status Register 2-12
 2-4 Module Descripter Format ... 2-21
 2-5 Sample Link Table .. 2-23
 3-1 Floating-Point Operand Formats 3-10
 4-1 General Format ... 4-11
 5-1 Typical Instruction Definition 5-2
 5-2 Typical Instruction Example .. 5-4

 TABLES

Table Page

 2-1 PRIVILEGED INSTRUCTIONS .. 2-26
 3-1 SAMPLE F FIELDS .. 3-10
 3-2 SAMPLE E FIELDS .. 3-11
 3-3 NORMALIZED FLOATING-POINT RANGES 3-12
 3-4 EXECUTION SEQUENCES .. 3-28
 3-5 ROW MAJOR ORDERING ... 3-32
 3-6 COLUMN MAJOR ORDERING .. 3-32
 4-1 ADDRESSING MODE ACTIONS VS. ACCESS CLASS 4-5
 4-2 SERIES 32000 ADDRESSING MODES 4-16

 iv

 Chapter 1

 INTRODUCTION

This document is a revised definition of the Series 32000 instruction set. It
provides more specific information on architectural details, and also incor-
porates further information on compatibility issues.

This is not a full architectural description, and is intended to supplement and
update other documentation already in print. Specific areas not included here
are:

 * Material which is primarily tutorial in nature.

 * Details of memory management and exception processing.

The term "undefined" is used frequently as the outcome of an illegal instruction
form. An outcome which is architecturally undefined is not guaranteed to remain
the same under all conditions, in all component revisions, or in future expanded
implementations of this architecture. Many of these illegal options may "work"
in the current implementation, but they are nevertheless considered undefined by
NSC, and should always be avoided. Illegal instruction forms, when executed in
User mode, are guaranteed not to bypass any of the protection mechanisms imple-
mented in the Series 32000 family.

The manual is divided as follows:

 1. INTRODUCTION

 2. PROGRAMMING MODEL
 Definitions of the Series 32000 register set and other resources
 visible to the programmer.

 3. INSTRUCTIONS AND DATA TYPES
 A discussion of the instruction set by functional groups, including
 definitions of associated data types and exceptional conditions.

 4. INSTRUCTION OPTIONS AND CONSTRUCTION
 Definitions of the Series 32000 addressing modes and the construction
 of instructions in assembly language and binary.

 5. INSTRUCTION SET
 Individual definitions of the Series 32000 instructions, organized
 alphabetically by mnemonic.

 1-1

Appendices:

 A. LIST OF INSTRUCTIONS BY FUNCTIONAL GROUP

 1-2

 Chapter 2

 PROGRAMMING MODEL

This chapter defines the programming model (resources visible to the programmer)
presented by the Series 32000 architecture. More specifically, this chapter
presents the Series 32000 register set, memory organization, and the functions of
dedicated memory areas used by Series 32000 hardware. Also presented here is the
mechanism used to protect privileged portions of the programming model.

This chapter is organized as follows:

 Topic Section

 General Registers 2.1

 Dedicated Registers 2.2

 Configuration Register 2.3

 Floating-Point Registers 2.4

 Memory Management Registers 2.5

 Debug Registers 2.6

 Memory Organization 2.7

 Dedicated Memory Areas 2.8

 Privilege States and Protection 2.9

 2-1

2.1 General Registers

There are eight 32-bit General-Purpose registers, named R0 through R7 (see
Figure 2-1). The contents of any General-Purpose register can be used as:

 1. Data, using the Register addressing modes (Section 4.4.1).

 2. A base pointer, using the Register Relative addressing modes
 (Section 4.4.2).

 3. An index value, using the Scaled Indexing modifier in an addressing
 mode (Section 4.4.9).

Data held within a General-Purpose register may be treated as an 8-bit, 16-bit,
or 32-bit value. When an instruction operates on data of less than 32 bits, the
value used is the low-order portion of the register. The remaining portion of
the register is neither used nor affected.

For extended arithmetic (the MEIi and DEIi instructions), the General-Purpose
registers are combined to form even/odd register pairs: R0/R1, R2/R3, R4/R5, and
R6/R7. See Section 4.4.1 for details of this use.

2.2 Dedicated Registers

The Dedicated registers store memory addresses and general status information
(see Figure 2-1). The nine Dedicated registers are:

 * Program Counter (PC)
 * Static Base Register (SB)
 * User Stack Pointer (SP1)
 * Interrupt Stack Pointer (SP0)
 * Frame Pointer (FP)
 * Interrupt Base Register (INTBASE)
 * Module Register (MOD)
 * Processor Status Register (PSR)
 * Configuration Register (CFG)

The PC, SB, SP1, SP0, FP, and INTBASE registers each hold 32-bit memory addres-
ses. The MOD and PSR registers are each 16 bits long. The MOD register contains
a memory address, and the PSR register contains status information. The addres-
ses contained in these registers are interpreted as virtual in memory-managed
systems. The CFG register is 32 bits long.

 2-2

 DEDICATED GENERAL

 32 32

 Program Counter PC R0

 Static Base SB R1

 Frame Pointer FP R2

 User Stack Pointer SP1 R3

 Interrupt Stack Pointer SP0 R4

 Interrupt Base INTBASE R5

 Configuration CFG R6

 Module MOD R7

 Status PSR

 16

 MEMORY MANAGEMENT FLOATING-POINT

 32 64

 Page Table Base 0 PTB0 F0:L F1:F F0:F

 Page Table Base 1 PTB1 F1:L

 Invalidate Address 0 IVAR0 F2:L F3:F F2:F

 Invalidate Address 1 IVAR1 F3:L

 Translation Exception TEAR F4:L F5:F F4:F

 Control MCR F5:L

 Status MSR F6:L F7:F F6:F

 F7:L
 DEBUG

 32 32

 Control DCR FSR Floating-Point Status

 Status DSR

 Compare Address CAR

 Breakpoint PC BPC

 Figure 2-1 Series 32000 Register Set
 2-3

A description of each Dedicated register follows.

 PC The Program Counter is available as a Base register (using the
 Program Memory addressing mode, Section 4.4.8). It contains the
 memory address of the first byte of the instruction currently being
 executed. The PC is incremented (to point to the next instruction)
 only when the current instruction is completed. On occurrence of a
 Reset, the PC is set to zero, and the first instruction is fetched
 from this address.

 SP1 The User Stack Pointer points to the top of the User Stack
 (Section 2.8.1). The SP1 register is selected for all stack
 operations while the S bit in the Processor Status Register is set
 to 1.

 SP0 The Interrupt Stack Pointer points to the top of the Interrupt
 Stack (Section 2.8.1). The Interrupt Stack is selected for all
 stack operations while the S bit in the PSR is set to 0. It is
 also automatically selected whenever an interrupt or trap occurs.
 In memory-managed systems, SP0 must always contain a valid
 Supervisor-Mode virtual address (see Section 2.8.1).

 NOTE: The SP1 and SP0 registers are never referenced directly by
 a program. Instead, the symbol "SP" is used, meaning the
 Stack Pointer which is currently selected. This SP register
 is available as a base pointer using the Stack Memory and
 Stack Memory Relative addressing modes (Sections 4.4.8
 and 4.4.3). The Top of Stack addressing mode uses the SP
 register in performing "push" and "pop" references to the
 top of the stack (Section 4.4.7).

 FP The Frame Pointer points to a dynamically-allocated data area
 created at the beginning of a procedure (by the ENTER instruction).
 This area is generally called the "activation record" for the
 procedure, and contains its parameters, local variables, saved
 registers, and return address. The FP register is available as a
 base pointer using the Frame Memory and Frame Memory Relative
 addressing modes (Sections 4.4.8 and 4.4.3).

 INTBASE The Interrupt Base register contains the base address of the
 Interrupt Dispatch Table. This is a vector table which contains
 the descriptors of the trap and interrupt service procedures. In
 memory-managed systems, INTBASE must always contain a valid
 Supervisor-Mode virtual address (see Section 2.8.4).

 2-4

MOD The Module register points to the current module's Module Table
 entry. The Module Table entry is a 16-byte block of memory
 containing three pointers for the current module:

 * SB (Static Base, a pointer to its static data area)

 * LB (Link Base, a pointer to its Link Table)

 * PB (Program Base, a pointer to the beginning of its code)

 See Section 2.8.2.

SB The Static Base register contains the base address of data which
 has been statically allocated (i.e. allocated once, before program
 execution) to the current module. This address is a copy of the
 SB pointer in the current Module Table entry. It is available for
 use in the Static Memory and Static Memory Relative addressing
 modes (Sections 4.4.8 and 4.4.3). The Static Base register is
 automatically updated whenever control is transferred from one
 module to another.

 2-5

 ! Supervisor Flags ! User Flags !
 +-------------------------------+-------------------------------+
 ! x x x x ! I ! P ! S ! U ! N ! Z ! F ! V ! x ! L ! T ! C !
 !---+---+---+---+---+---+---+---!---+---+---+---+---+---+---+---!
 15 8 7 0

 x = reserved

 Figure 2-2 Processor Status Register

PSR, The Processor Status Register (Figure 2-2) contains 16 mode and
UPSR status flag bits, of which 11 bits are currently implemented. All
 implemented PSR flags are readable and writable. The bit positions
 marked "x" in Figure 2-2 are reserved for future use. They are not
 currently implemented, and do not retain information written to
 them. For upward compatibility reasons, no program should attempt
 to change these bits, nor should any program assume that they are
 always zero (even though they appear to be permanently zero in the
 current implementation).

 The least-significant byte of the PSR contains flags which are
 always accessible. This byte is also called the UPSR, for
 "User PSR".

 The most-significant byte of the PSR contains the Supervisor flags.
 Supervisor flags are accessible only by a program running in
 Supervisor mode (see the discussion of the U bit which follows).
 Any attempt by a User Mode program to load, store or modify this
 byte causes the Illegal Operation trap, Trap (ILL), instead. See
 Section 2.8 for further details of protection features.

 Upon occurrence of an interrupt or trap, the PSR is pushed onto the
 Interrupt Stack. Certain PSR bits are then automatically cleared
 (as stated in their descriptions) to establish the proper modes of
 operation for interrupt service.

 NOTE: The PSR P bit is sometimes cleared before the PSR is pushed
 onto the Interrupt Stack. For further details see the data-
 sheet of the NS32532 CPU.

 All implemented PSR flags are cleared to zero on occurrence of a
 Reset.

 2-6

User PSR Flags

 C is the Carry flag. The Carry flag signals a carry
 condition during execution of an addition instruction or
 a borrow condition during a subtraction instruction. If
 a carry or borrow has occurred, the C bit is set to 1.
 If no carry or borrow has occurred, the C bit is set to
 0. See Section 3.1 for definitions of carry and borrow
 conditions.

 T is the Trace flag. This flag places a program in Trace
 mode, allowing step-by-step inspection of the effects of
 each instruction. While the T bit is set, the Trace
 trap, Trap (TRC), occurs at the completion of each
 instruction. The T bit interacts with the P bit to
 ensure correct operation of Trace Mode regardless of any
 interrupts or other traps which may also be occurring.
 It is cleared on occurrence of any trap or interrupt.

 L is the Low flag. The Low flag signals the result of an
 unsigned comparison between two integers. (All integer
 comparison instructions perform both signed and unsigned
 comparisons.) If the second operand of a comparison
 instruction is less than the first, the L bit is set to
 1. If the second operand is greater than or equal to
 the first, the L bit is set to 0. The L flag is always
 cleared by the floating-point comparison instruction
 (CMPf).

 V is the Overflow Trap Enable flag. It allows generation
 of a trap (OVF) when an integer arithmetic operation
 overflows.

 2-7

 F is the F Flag. The F flag is a general condition flag,
 used by various instructions to signal exceptional
 conditions (e.g. integer overflow from addition or
 subtraction), or to distinguish among outcomes (e.g.
 what condition has caused a String instruction to
 terminate).

 Z is the Zero flag. The Zero flag indicates the result of
 comparing two integers or two floating-point values. If
 they are equal, the Z bit is set to 1. If they are not
 equal, the Z bit is set to 0.

 N is the Negative flag. The Negative flag indicates the
 result of a signed comparison between two integers or
 two floating-point values.

 NOTE: The integer comparison instructions, CMPi and
 CMPQi, perform both signed and unsigned com-
 parisons.

 If the second operand is less than the first, the N bit
 is set to 1. If the second operand is greater than or
 equal to the first, the N bit is set to 0.

The N, Z, F, L and C bits constitute a "condition" which may be
used by the Conditional Branch (Bcond) and Save Condition Code
(Scondi) instructions. In addition, the F bit may be used to cause
a trap (by the FLAG instruction).

Supervisor PSR Flags

 U is the User Mode flag. If the U bit is 1, the current
 program is running in User mode, and may not use privi-
 leged instructions or reference protected registers. If
 the U bit is 0, the current program is running in Super-
 visor mode, and is not restricted. In memory-managed
 systems, address translation and memory protection
 features may also be affected by the state of this bit.
 The U bit is automatically cleared on occurrence of any
 interrupt or trap. See Section 2.8 for further details
 of protection features.

 S is the Stack flag. The S bit selects which of the two
 stack pointers is to be used for stack operations. If
 the S bit is 1, the User Stack Pointer (SP1) is
 selected. If the S bit is 0, the Interrupt Stack
 Pointer (SP0) is selected. The S bit is automatically
 cleared on occurrence of a trap or interrupt.

 2-8

 P is the Trace Trap Pending flag. The P bit interacts
 with the T bit to ensure correct trace results in
 programs which are being interrupted or trapped. It is
 automatically cleared on occurrence of any trap or
 interrupt. The P bit in the PSR image which is pushed
 on occurrence of an interrupt or trap may also be
 cleared, depending on the trap or interrupt.

 I is the Interrupt Enable flag. If the I bit is 1, both
 Maskable and Non-Maskable interrupts are accepted. If
 the I bit is 0, only Non-Maskable interrupts are
 accepted. The I bit is automatically cleared on occur-
 rence of an interrupt or the Abort trap, Trap (ABT). No
 other traps affect this bit, and this bit does not dis-
 able traps when clear.

 2-9

2.3 Configuration Register (CFG)

The Configuration register is used to enable or disable certain Series 32000
features which are currently optional. With the SETCFG instruction only the four
LSBs are loaded. The remaining bits are set to zero except the bits 4 to 7 which
are always set to 1. With the LPR instruction all implemented bits can be set.

The CFG register is 32 bits wide, of which ten bits are implemented.

 +-----...----+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 ! (reserved) !PF !LIC!IC !LDC!DC !DE ! 1 ! 1 ! 1 ! 1 ! C ! M ! F ! I !
 +-----...----+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 31 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The bits correspond to features as given below.

 I Interrupt vectoring. This bit declares whether hardware support is
 available for direct vectoring of maskable interrupts. If the I bit is
 set, service of a maskable interrupt includes reading an 8-bit value
 which selects an Interrupt Dispatch Table entry to use in locating the
 interrupt service procedure (see Section 2.8.4). This 8-bit value is
 supplied by an NS32202 Interrupt Control Unit. If the I bit is not
 set, maskable interrupts are not vectored, and use by default the first
 entry (NVI) of the Interrupt Dispatch Table, requiring no hardware
 support.

 F Floating-Point instruction set. If this bit is set, the Floating-Point
 instruction set (Section 3.3) is enabled, and an attached NS32381
 Floating-Point Unit will be used to execute these instructions. If the
 F bit is not set, all Floating-Point instructions generate Trap (UND)
 instead. (The trap mechanism employed by the Series 32000 architecture
 allows software to intercept this trap and fully emulate the functions
 of the NS32381.)

 M Memory Management instruction set. If this bit is set, the LMR, SMR,
 RDVAL and WRVAL instructions (Section 3.12) are enabled, and the
 integrated NS32532 Memory Management Unit will be used to execute them.
 If the M bit is not set, these instructions generate Trap (UND)
 instead. (Note: the Memory Management instructions MOVSUi and MOVUSi
 are not affected by this bit, and are always available.)

 C Custom instruction set. If this bit is set, the Custom instruction set
 (Section 3.13) is enabled, and will use attached custom hardware
 (unique to a given system). If it is not set, all Custom instructions
 generate Trap (UND) instead.

 DE Direct-Exception mode enable. This bit enables the Direct-Exception
 mode for processing exceptions. When this mode is selected, the CPU
 response time to interrupts and other exceptions is significantly im-
 proved.

 DC Data Cache enable. This bit enables the on-chip Data Cache to be acc-
 essed for data reads and writes.

 LDC Lock Data Cache. This bit controls whether the contents of the on-chip
 Data Cache are locked to fixed memory locations (LDC = 1), or updated
 when a data read is missing from the cache (LDC = 0).

 2-10

 IC Instruction Cache enable. This bit enables the on-chip Instruction
 Cache to be accessed for instruction fetches.

 IDC Lock Instruction Cache. This bit controls whether the contents of the
 on-chip Instruction Cache are locked to fixed memory locations (LIC=1),
 or updated when an instruction fetch is missing from the cache (LIC=0).

 PF Pipelined Floating-Point execution. This bit indicates whether the
 Floating-Point unit uses the pipelined slave protocol. When PF is 1 the
 pipelined protocol is selected. PF is ignored if the F bit is 0. The
 NS32381 FPU does not support the pipelined slave protocol.

2.4 Floating-Point Registers

Floating-Point registers are present in systems supporting the Floating-Point
instruction set (either by using the NS32381 Floating-Point Unit or by software
emulation). See Figure 2-1. There are eight Floating-Point Data registers
(F0-F7) and one Floating-Point Status register (FSR).

2.4.1 Floating-Point Data Registers

The Floating-Point Data registers provide a high-speed workspace for
floating-point operations. These registers are named F0 through F7, and are 64
bits in length. They are referenced whenever the Register addressing mode
(Section 4.4.1) is used in a floating-point instruction to specify the location
of a floating-point operand. Floating-Point operands are located in memory or in
Floating-Point Data registers, and integer operands are located in memory or in
General-Purpose registers.

The even double-precision floating-point register contains the respective even
and the next following odd single-precision floating-point registers. The odd
single-precision floating-point register is held in the high-order half of the
double-precision floating-point register, the even register is held in the low-
order half. See Figure 2-1.

 2-11

2.4.2 Floating-Point Status Register (FSR)

The Floating-Point Status register (FSR) selects operating modes and records any
exceptional conditions encountered during execution of a floating-point instruc-
tion. Figure 2-3 shows the format of the FSR.

 ! 15 ! 1 ! 7 ! 2 ! 1 ! 1 ! 1 ! 1 ! 3 !
 +-----...-----+---+-------------------+-------+---+---+---+---+-----------+
 ! (reserved) !RMB! SWF ! R M !IF !IBN!UF !UEN! T T !
 !-----...-----!---!-------------------!-------!---!---!---!---!-----------!
 31 17 16 15 9 8 7 6 5 4 3 2 1 0

 Figure 2-3 Floating-Point Status Register

Bits 17 through 31 of the FSR are reserved. The SWF field (bits 9 through 15) is
currently reserved for NSC software use (floating-point extension software).
Information written to this field is retained, but does not affect any hardware
operations. The remaining bits (17 through 31) are not implemented, and do not
retain information written to them. For upward compatibility reasons, no program
should attempt to change either reserved field, nor should any program assume
that their contents are always zero (even though bits 17-31 appear to be
permanently zero in the current implementation). To change the contents of the
FSR, the following procedure should always be followed:

 1. Use the SFSR instruction to store the FSR in a temporary location.

 2. Change the desired fields in this temporary copy.

 3. Use the LFSR instruction to load the temporary copy into the FSR.

 2-12

FSR Mode Fields

The FSR mode fields are set by the programmer to establish modes of operation for
floating-point instructions. The mode fields are encoded as follows.

RM Rounding Mode: bits 7 and 8. This field selects the rounding method to be
 used whenever a floating-point result cannot be exactly represented in the
 format of the destination operand. The rounding modes are:

 00 Round to nearest value. The value which is nearest to the exact result
 is selected. If the result is exactly halfway between the two nearest
 values, the even value (LSB = 0) is delivered to the destination.

 01 Round toward zero. The nearest value whose absolute value is less
 than, or equal to, the exact result is delivered to the destination.

 10 Round toward positive infinity. The nearest value which is greater
 than, or equal to, the exact result is delivered to the destination.

 11 Round toward negative infinity. The nearest value which is less than,
 or equal to, the exact result is delivered to the destination.

UEN Underflow Trap Enable: bit 3. If this bit is set, Trap (FPU) occurs
 whenever an underflow condition is encountered. See Section 3.3.7 for the
 definition of floating-point underflow. If it is not set, any underflow
 condition returns a result of positive zero (Section 3.3.3), and no trap
 occurs.

IEN Inexact Result Trap Enable: bit 5. If this bit is set, Trap (FPU) occurs
 whenever the result of a floating-point instruction is not exact. If it is
 not set, the result is rounded according to the selected rounding mode, and
 no trap occurs.

 2-13

FSR Status Fields

The FSR status fields record exceptional conditions encountered during the
execution of a floating-point instruction. The meanings of the FSR status bits
are as follows:

TT Trap Type: bits 0-2. This 3-bit field records any exceptional condition
 detected by a floating-point instruction. These conditions are defined in
 Section 3.3.7. They are reported as:

 000 No exceptional condition occurred.
 001 Underflow
 010 Overflow
 011 Division by Zero
 100 Illegal Instruction
 101 Invalid Operation
 110 Inexact Result
 111 (Reserved for future use.)

 The TT field is loaded with zero whenever any floating-point instruction
 except LFSR or SFSR completes without encountering an exceptional condition.
 It is also set to zero by a Reset or by writing zero into it with the Load
 FSR (LFSR) instruction. Underflow and Inexact Result are always reported in
 the TT field, regardless of the settings of the UEN and IEN bits.

UF Underflow Flag: bit 4. This bit is set whenever an underflow condition is
 detected. See Section 3.3.7 for the definition of floating-point underflow.
 The function of the UF bit is not affected by the state of the UEN bit. The
 UF bit is cleared only by writing a zero into it with the LFSR instruction
 or by a Reset.

IF Inexact Result Flag: Bit 6. This bit is set whenever an Inexact Result
 condition is detected, and no other errors have occurred. See Section 3.3.7
 for the definition of this condition. It is cleared only by writing a zero
 into it with the LFSR instruction or by a Reset.

RMB Register Modify Bit: Bit 16. This bit is set whenever writing to a floating-
 point data register. It is cleared only by writing a zero into it with the
 LFSR instruction or by a Reset. This bit can be used in context switching
 to determine whether the FPU registers should be saved.

 2-14

2.5 Memory Management Registers

Memory Management registers are present in systems incorporating the Series
32000 memory management option. These registers are currently implemented in the
NS32532 CPU and are made available by setting the M bit in the CFG register
(Section 2.3). There are seven 32-bit Memory Management registers (Figure 2-1):

 PTB0, PTB1 Page Table Base Registers
 IVAR0, IVAR1 Invalidate Virtual Address Registers
 TEAR Translation Exception Address Register
 MCR Memory Management Control Register
 MSR Memory Management Status Register

The Memory Management registers are each 32 bits in length. The following
describes briefly the function of each register. Further informations can be
found in the data sheet of the NS32532 CPU.

 PTB0 and PTB1 support virtual memory and address translation. These
 registers contain the base addresses of the Level 1 Page
 Tables.

 IVAR0 and IVAR1 the Invalidate Virtual Address registers are write-only
 registers. When a virtual address is written to IVAR0 or
 IVAR1 using the LMR instruction, the translation for that
 virtual address is purged, if present, from the TLB.

 TEAR the TEAR register is loaded by the MMU when a translation
 exception occurs. It contains the 32-bit virtual address
 that caused the translation exception.

 MCR contains the memory management control flags.

 MSR contains the memory management status flags.

 2-15

2.6 Debug Registers

The Debug registers are each 32 bits in lenth. They can be accessed by the LPR
and SPR instructions. The following describes briefly the function of each
register. Further informations can be found in the data sheet of the NS32532 CPU.

 DCR contains the debug control flags.

 DSR contains the debug status flags.

 CAR the CAR Register contains the address that is compared to
 operand reference addresses to detect an address-compare
 condition.

 BPC the BPC Register contains the address that is compared
 with the PC contents to detect a PC-match condition.

 2-16

2.7 Memory Organization

The Series 32000 architecture supports a memory addressing space of four
gigabytes (corresponding to a 32-bit address).

2.7.1 Addressing

A memory address is a 32-bit unsigned integer. It uniquely identifies an 8-bit
location (a byte) within the memory space. In decimal, the addressing range is
0 through 4,294,967,295.

NOTE: Except where otherwise indicated, all addresses and memory spaces
 given in this manual are virtual in memory-managed systems, and can
 be mapped to any "physical" (or "real") memory page.

2.7.2 Memory Operand Formats

The basic storage unit is the byte. A byte holds eight bits of data and has the
following form:

 ! A !
 +---------------+
 ! !
 !-+-+-+-+-+-+-+-!
 7 0

 Byte at Address A

Bit positions are numbered from 0 to 7. Bit 0 is the least-significant bit;
bit 7 is the most-significant bit.

 2-17

A 16-bit value is called a word. It is held in memory as a pair of contiguous
bytes.

 ! A+1 ! A !
 +---------------+---------------+
 ! ! !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

 Word at Address A

The byte at the lower address is the least-significant byte; the byte at the
higher address is the most-significant byte. A word has the same address as its
least-significant byte and may start at any address.

A 32-bit value is called a double-word. It is held in memory as four contiguous
bytes. A double-word can hold either a 32-bit integer or a single-precision
floating-point value.

 ! A+3 ! A+2 ! A+1 ! A !
 +---------------+---------------+---------------+---------------+
 ! ! ! ! !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 31 24 23 16 15 8 7 0

 Double-word at Address A

The least-significant byte of a double-word is stored at the lowest address. A
double-word has the same address as its least-significant byte and may start at
any address.

 2-18

A 64-bit value is called a quad-word. It is held in memory as eight contiguous
bytes. A quad-word can hold a 64-bit integer or a double-precision floating-
point value.

 ! A+7 ! A+6 ! A+5 ! A+4 ! A+3 ! A+2 ! A+1 ! A !
 +--------+--------+--------+--------+--------+--------+--------+--------+
 ! ! ! ! ! ! ! ! !
 !--------!--------!--------!--------!--------!--------!--------!--------!
 63 0

 Quad-word at Address A

The least-significant byte of a quad-word is stored at the lowest address. A
quad-word has the same memory address as its least-significant byte and may start
at any address.

2.7.3 Data Alignment

With the sole exception of the Page Tables used for memory management, there are
no alignment restrictions in the Series 32000 architecture. Operands of any
length may start at any byte address.

For optimal throughput, however, it is usually desirable to align data. A method
for alignment which applies well to all memory bus size implementations (8, 16 or
32 bits) is to align operands on "integral" boundaries. By this method, words
are stored at even addresses, double-words at multiples of four, and quad-words
at multiples of eight.

2.8 Dedicated Memory Areas

A Series 32000-based system will make use of certain designated memory areas for
the following purposes:

 * User and Interrupt Stacks
 * Module Table
 * Link Tables
 * Interrupt Dispatch Table and Cascade Table
 * Input and Output

 2-19

2.8.1 User and Interrupt Stacks

A stack is a block of memory used as a last-in/first-out (LIFO) buffer. The
contents of a Stack Pointer register specify an address within the block, and the
value at this address is considered to be at the top of the stack.

There are two stacks: a User Stack and an Interrupt Stack. The User Stack
Pointer (SP1) specifies the address of the top of the User Stack, and the Inter-
rupt Stack Pointer (SP0) specifies the address of the top of the Interrupt Stack.
At any time, one of these stacks is selected for stack operations (by the PSR S
bit, Section 2.2). The User stack is generally assigned to User-Mode programs,
although programs running in Supervisor Mode may also select it. The Interrupt
stack is identical in function to the User stack, except that it is always
selected on a trap or interrupt to receive the return information (return
address, MOD and PSR). An interrupt or trap service routine may continue to use
the Interrupt Stack, or it may re-select the User stack.

Stacks grow downward in memory: i.e., toward lower addresses. To pop a value,
the current Stack Pointer is incremented by the value's length in bytes after
reading it ("post-increment"). To push a value, the current Stack Pointer is
decremented by the value's length in bytes before writing it ("pre-decrement").
In either case, the Stack Pointer indicates the new top of the stack.

Data may be read from, or written to, the currently-selected stack at any time,
using the Top of Stack addressing mode (Section 4.4.7), which performs an auto-
matic push or pop, as appropriate. In addition, the current Stack Pointer may be
used as a base pointer in the Stack Memory and Stack Memory Relative addressing
modes (Sections 4.4.8 and 4.4.3).

The current stack also receives return addresses and other context information
saved in the process of invoking a procedure. Examples of this use are the BSR
(Branch to Subroutine) instruction and the ENTER (Enter Procedure Context)
instruction. Instructions of this type always modify the Stack Pointer in multi-
ples of four, so that the stack may always be kept aligned on 32-bit boundaries
if desired for optimal throughput.

NOTES: 1. Information popped from a stack should never be considered still
 available in its original memory location after the popping instruc-
 tion terminates, nor should any program ever store information in a
 memory area which is available for stack expansion but is not within
 the stack. These requirements are made for reasons of upward com-
 patibility and compatibility between systems.

 2. In memory-managed systems, the Interrupt stack must always be avail-
 able in physical memory. On occurrence of an interrupt or trap, the
 contents of the Interrupt Stack pointer are treated as a Supervisor-
 Mode virtual address.

 2-20

2.8.2 Module Table

The Series 32000 architecture supports software modules and modular programs
through a Module Table. This table contains one 16-byte entry (a module descrip-
tor) for each module in the program. The MOD Register (Section 2.2) holds the
address of the Module Table entry for the currently-running module.

All Module Table entries need not be held in a single contiguous memory space,
but they must all be contained within the first 64K bytes of memory, due to the
fact that the MOD register holds only a 16-bit address. A Series 32000-based
system, therefore, can hold up to 4096 modules at a time (4096 modules per user,
in memory-managed systems).

A module descriptor contains four 32-bit pointers, of which the first three are
used in the current implementation. These pointers are found relative to the
contents of the MOD register as shown in Figure 2-4.

 Address
 !31 0!
 +--+
 MOD: ! Static Base !
 +--+
 MOD + 4: ! Link Base !
 +--+
 MOD + 8: ! Program Base !
 +--+
 MOD + 12: ! (Reserved for future use) !
 +--+

 Figure 2-4 Module Descriptor Format

The Static Base pointer contains the address of a memory area allocated to this
module for static data; i.e., data which is allocated only once, before execu-
tion. This pointer is loaded into the Static Base register whenever control is
transferred from one module to another.

The Link Base pointer contains the address of the Link Table assigned to this
module. See Section 2.8.3.

The Program Base pointer contains the address of the first byte of the code
section of this module. It is used by other modules (through their Link Tables)
to transfer control to specific procedures within this module.

 2-21

NOTES: 1. All Module Table entries must be entirely contained within the first
 64K bytes of memory. This means that MOD register values of FFF1
 through FFFF (Hex) are reserved.

 2. In memory-managed systems, all module descriptors for interrupt or
 trap service routines must always be in physical memory. The
 contents of the three pointers are interpreted as Supervisor-Mode
 virtual addresses.

 2-22

2.8.3 Link Tables

One Link Table is allocated to each module of a program. The Link Base pointer
of the current Module Table entry (Section 2.8.2) points to the Link Table for
the currently running module.

Each Link Table provides information which is used for:

 1. Sharing variables between modules. Such variables are available to
 other modules via the External addressing mode (Section 4.4.6).

 2. Transferring control from one module to another. This is done directly
 from the current Link Table via the CXP instruction.

A module's Link Table is constructed by a linker program based on requests made
by the module for external items. After allocating all of the modules comprising
a program, the linker then fills each Link Table with the information necessary
for communication between modules.

The format of a Link Table is given in Figure 2-5. A Link Table entry for an
external variable contains the 32-bit address of that variable. An entry for an
external procedure contains a 32-bit procedure descriptor consisting of two
16-bit fields: Module and Offset. The Module field holds the new MOD register
contents for the module containing the external procedure. The Offset field is
an unsigned value giving the position of the external procedure's entry point
relative to its module's Program Base pointer (Section 2.8.2).

 Entry Type
 !31 16!15 0!
 +---+
 0 Variable ! Absolute Address !
 +---+
 1 Variable ! Absolute Address !
 +---+
 2 Procedure ! Offset ! Module !
 +---+

 Figure 2-5 Sample Link Table

 2-23

2.8.4 Interrupt Dispatch Table and Cascade Table

The Series 32000 architecture supports handling of exceptions (traps and inter-
rupts) through the Interrupt Dispatch Table. This table contains procedure
descriptors (Section 2.8.3) for locating the service procedures assigned to each
exception. The Interrupt Dispatch Table location is given by the INTBASE
register.

The Interrupt Dispatch Table contains one 32-bit descriptor for each exception.
A Series 32000-based system can process up to 256 exceptions, depending on the
system configuration. A Cascade Table may also exist, appended before the
Dispatch Table.

For further details of interrupt and trap service, see the NS32532 data sheet.

NOTE: In memory-managed systems, the Interrupt Dispatch Table (and Cascade
 Table, if present) must always reside in physical memory. The INTBASE
 register contents are interpreted as a Supervisor-Mode virtual address.
 The Module portion of each procedure descriptor is also interpreted as a
 Supervisor-Mode virtual address.

2.8.5 Input and Output

Input and output ports are memory-mapped in Series 32000-based systems. That is,
all I/O devices are addressed as memory locations, and I/O operations are per-
formed by reading from, or writing to, an I/O device as if it were a byte, word,
or double-word of memory. There are no specific input and output instructions.

The hardware design of each individual system defines the number and type of I/O
devices as well as the addresses at which they are located. This is not defined
by the Series 32000 architecture. However, the current implementation encourages
two I/O assignments for interrupt handling, described below.

When a maskable interrupt occurs, an 8-bit vector number is read from address
FFFFFE00 (Hex). In memory-managed systems, this is a Supervisor-Mode virtual
address, and must always have a valid mapping. Depending on the interrupt con-
figuration mode (Vectored or Non-Vectored, Section 2.3), the vector value may not
actually be used, but the read operation always occurs.

When a Non-Maskable Interrupt (NMI) occurs, the processor reads one byte from
address FFFFFF00 (Hex). In memory-managed systems, this again is a Supervisor-
Mode virtual address, and must always have a valid mapping. The processor does
not use the data which was read.

Care should be taken in the system design to ensure that these read operations do
not trigger side-effects.

For further details of interrupt service, see the NS32532 data sheet.

 2-24

2.9 Privilege States and Protection

The Series 32000 family implements two privilege states: User Mode and Super-
visor Mode.

The U flag in the PSR determines the privilege state. When the U flag is 1, the
system is in User Mode, otherwise it is in Supervisor Mode.

A program running in User Mode is prevented from accessing privileged registers.
These registers are:

 * The most-significant byte of the Processor Status Register (PSR).

 * The INTBASE register.

 * The CFG register.

 * The USP register.

 * All Debug registers.

 * All Memory Management registers.

The Interrupt Stack Pointer (SP0) is also implicitly protected by the fact that a
User-Mode program cannot access the PSR S bit to select it for use.

User-Mode restrictions are enforced by the Illegal Operation trap, Trap (ILL),
which occurs whenever a User-Mode program attempts to access a privileged
register. Instructions which cause, or may cause, Trap (ILL) are listed in
Table 2-1.

Programs running in Supervisor Mode have none of the above restrictions, as they
are assumed to be trusted portions of an operating system.

In addition to the above restrictions, memory-managed systems can restrict access
to memory pages based on the privilege state. Violations of such access restric-
tions cause the Abort trap, Trap (ABT). Since I/O devices are mapped as memory,
they may also be protected by this mechanism as required.

 2-25

 Table 2-1 Privileged Instructions

 Instruction Mnemonic

 Load Processor Register (if INTBASE,PSR,USP,CFG,Debug) LPRi
 Store Processor Register (if INTBASE,PSR,USP,CFG,Debug) SPRi
 Bit Clear in PSR (if Word length) BICPSRW
 Bit Set in PSR (if Word length) BISPSRW
 Set Configuration SETCFG
 Return from Trap RETT
 Return from Interrupt RETI
 Load Memory Management Register LMR
 Store Memory Management Register SMR
 Move Value from Supervisor to User Space MOVSUi
 Move Value from User to Supervisor Space MOVUSi
 Validate Address for Reading RDVAL
 Validate Address for Writing WRVAL
 Cache Invalidate CINV

 2-26

 Chapter 3

 INSTRUCTIONS AND DATA TYPES

This chapter presents an overview of the Series 32000 instruction set by func-
tional groups and describes the data types and structures on which they act.

The groups by which this chapter is organized are:

 Group Section

 Integer Instructions 3.1

 Packed Decimal (BCD) Instructions 3.2

 Floating-Point Instructions 3.3

 Logical Instructions 3.4

 Bit Instructions 3.5

 Bit Field Instructions 3.6

 String Instructions 3.7

 Block Instructions 3.8

 Array Instructions 3.9

 Processor Control Instructions 3.10

 Processor Service Instructions 3.11

 Memory Management Instructions 3.12

 Custom Instructions 3.13

Instructions in each group are listed in three columns.

 Instruction: A brief instruction name.

 Mnemonic Forms: A list of all forms that the instruction mnemonic may
 take in assembly language.

 Index: The general mnemonic form of the instruction. Chapter 5
 (Instruction Set) is organized alphabetically by this
 index.

 3-1

3.1 Integer Instructions

Integer instructions operate on byte, word, and double-word integer operands.
The following is a list of the Integer instructions:

 Instruction Mnemonic Forms Index

 Arithmetic

 Add ADDB, ADDW, ADDD ADDi
 Add Quick ADDQB, ADDQW, ADDQD ADDQi
 Add with Carry ADDCB, ADDCW, ADDCD ADDCi

 Subtract SUBB, SUBW, SUBD SUBi
 Subtract with Carry [Borrow] SUBCB, SUBCW, SUBCD SUBCi

 Negate NEGB, NEGW, NEGD NEGi
 Absolute Value ABSB, ABSW, ABSD ABSi

 Multiply MULB, MULW, MULD MULi
 Multiply Extended Integer MEIB, MEIW, MEID MEIi

 Divide DIVB, DIVW, DIVD DIVi
 Modulus MODB, MODW, MODD MODi
 Quotient QUOB, QUOW, QUOD QUOi
 Remainder REMB, REMW, REMD REMi
 Divide Extended Integer DEIB, DEIW, DEID DEIi

 Movement and Conversion

 Move MOVB, MOVW, MOVD MOVi
 Move Quick MOVQB, MOVQW, MOVQD MOVQi
 Move with Sign-Extension MOVXBD,MOVXWD,MOVXBW MOVXii
 Move with Zero-Extension MOVZBD,MOVZWD,MOVZBW MOVZii

 Comparison

 Compare CMPB, CMPW, CMPD CMPi
 Compare Quick CMPQB, CMPQW, CMPQD CMPQi

 3-2

Integer operands are binary numbers. An integer operand may be a byte (8 bits),
word (16 bits), or double-word (32 bits) in length. Its contents are interpreted
as either signed or unsigned.

Unsigned integers range from 0 to 255 (byte), 0 to 65535 (word), and 0 to
4,294,967,295 (double-word). Each bit in an unsigned integer is a value bit,
i.e., contributes to the integer's magnitude.

Signed integers are represented in two's-complement form. They range in value
from -128 to 127 (byte), -32768 to 32767 (word), and -2,147,483,648 to
2,147,483,647 (double-word) and have the following form:

 +-+-------------+
 !s! !
 !-+-+-+-+-+-+-+-!
 7 0

 +-+-------------+---------------+
 !s! !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

+-+-------------+---------------+---------------+---------------+
!s! !
!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 31 24 23 16 15 8 7 0

The most significant bit in a signed integer indicates the sign of the number. A
sign bit of zero specifies a positive value in which the remaining bits of the
operand are in true binary form. A sign bit of one specifies a negative value,
in which the remaining bits hold the two's complement of the absolute value of
the operand. The sign bit does not contribute to the integer's magnitude.

The following illustrates a byte, word, and double-word integer and gives the
signed and unsigned decimal interpretations for each.

 Signed Unsigned
 Binary (Decimal) (Decimal)
 10011100 -100 156
 1111111011101010 -278 65258
 00000000000000000001001000110100 4660 4660

Addition and subtraction operations yield the correct result regardless of
whether the operands are interpreted as signed or unsigned. In the Quick
instructions, however, one should note that the Quick immediate operand is
sign-extended internally before use, and should therefore only be considered
signed.

The other integer instructions treat integers as either signed or unsigned, as
stated in their individual descriptions in Chapter 5.

 3-3

Integer Arithmetic

Integer arithmetic is performed to the length specified by the operation length
appended to the instruction mnemonic by the programmer. This length may be byte,
word or double-word (Section 4.1). Except where noted, the operands of these
instructions are both general, meaning that general addressing mode expressions
may be used independently to specify the location of each operand.

Addition instructions consist of ADDi, which adds two general operands, and ADDQi
(Add Quick), which adds a small value (range -8 to +7) to a single general
operand. Extended addition to any length can be performed using the ADDCi
instruction, which adds also the contents of the PSR C bit (indicating a carry
from a previous addition).

Subtraction (the SUBi instruction) may be modelled as adding together the second
operand (the minuend), the one's complement of the first operand (the
subtrahend), and the value 1. This definition, using the one's complement, is
required to correctly define the overflow and borrow conditions (see "Exceptional
Conditions" below). The result is placed in the location of the second operand.
Extended subtraction to any length can be performed using the SUBCi instruction,
which also subtracts the contents of the PSR C bit (indicating a borrow from a
previous subtraction).

Negation (NEGi) and Absolute Value (ABSi) functions are provided. These instruc-
tions read a general (source) operand, convert it, and store the result in a
second general operand location. Negation is performed by subtracting the source
value from zero.

Multiplication is performed according to the standard rules of algebra. The
length of the result may be selected as either the same length as the original
operands (using the MULi instruction) or double that length (using the MEIi
instruction). The MEIi instruction interprets its operands as unsigned integers,
making it usable for multiplication to arbitrary length. The distinction between
signed and unsigned operands is not relevant to the MULi instruction.

Division is performed according to three separate algorithms. The DIVi instruc-
tion divides the second operand by the first, producing as its result the nearest
integer which is less than, or equal to, the exact quotient. The QUOi instruc-
tion produces the nearest integer whose absolute value is less than, or equal to,
the exact quotient. These both interpret their operands as signed values. Note
that they differ when the quotient is negative. The DEIi instruction divides a
double-length integer (64, 32 or 16 bits) by a single-length divisor, and
produces both a quotient and a remainder. It interprets its operands as unsigned
for performing extended division; the distinction between the DIVi and QUOi
algorithms is therefore irrelevant to this instruction. Remainder instructions
are provided for both the DIVi and QUOi algorithms. The MODi (Modulus)
instruction performs division according to the DIVi algorithm and produces the
remainder as its result. The REMi (Remainder) instruction performs division as
per the QUOi instruction and produces the corresponding remainder.

 3-4

Movement and Conversion

The MOVi instruction moves the first general operand to the second. A variation
of this is the MOVQi instruction, which moves a small immediate value
(range -8 to +7) into a general operand location.

An integer value can be converted to any greater length while being moved. The
conversion for signed integers is provided by the MOVXii instructions, which
perform sign-extension, and the conversion for unsigned integers is provided by
the MOVZii instructions, which perform zero-extension.

Comparison

Integer comparison instructions compare two operands and set the PSR Z, N and L
bits to form a condition code. This condition code can be tested by subsequent
instructions for program control or saved to generate operands for Boolean
computations.

The CMPi instruction compares two general operands. The CMPQi instruction
compares a general operand to a small immediate value (range -8 to +7).

The contents of the PSR Z and N bits indicate the result of comparing the
operands as signed integers. The Z bit indicates equality when set. The N bit,
when set, indicates that the first operand is greater than the second.

The contents of the PSR Z and L bits indicate the result of comparing the
operands as unsigned integers. The Z bit indicates equality when set. The L
bit, when set, indicates that the first operand is greater than the second.

 3-5

Exceptional Conditions

Three exceptional conditions may occur in integer operations. These are a carry
(or borrow), an overflow, or attempted division by zero.

Carry and borrow events are signaled in the Processor Status register C bit
(Section 2.2). When an addition instruction is executed, the occurrence of a
carry out of the most significant bit position (bit 7, 15, or 31, depending on
the selected operation length, Section 4.1) constitutes a "Carry" condition, and
is indicated by setting the PSR C bit. If no carry occurs, the PSR C bit is
cleared. When a subtraction instruction is executed, the lack of a carry out of
the most significant bit position constitutes a "Borrow" condition, and the PSR C
bit is set to indicate this exceptional condition. If a carry does occur, the
PSR C bit is cleared. The result delivered follows the standard rules of binary
two's-complement arithmetic, regardless of the occurrence of a carry or borrow
condition.

Overflow events from addition and subtraction are signaled in the Processor
Status Register F bit (Section 2.2). If the carry into the sign bit position and
the carry out of the sign bit position do not agree, this constitutes an
"overflow" condition, indicating that the correct result would be too great in
magnitude to represent as a signed integer in the number of bits selected as the
operation length (Section 4.1). If an overflow occurs in executing an addition
or subtraction instruction, the PSR F bit is set, otherwise it is cleared. The
result delivered follows the standard rules of binary two's-complement arithmetic
(including alteration of the sign bit), regardless of the occurrence of an
overflow.

Attempted division by zero always causes a trap, Trap(DVZ). This trap can occur
in the DIVi, MODi, QUOi, REMi and DEIi instructions. A trapped instruction
delivers no result, neither to the destination operand location nor to the PSR.

 3-6

3.2 Packed Decimal Instructions

Packed Decimal instructions add and subtract packed decimal operands. There are
two Packed Decimal instructions:

 Instruction Mnemonic Forms Index

 Add Packed Decimal ADDPB, ADDPW, ADDPD ADDPi

 Subtract Packed Decimal SUBPB, SUBPW, SUBPD SUBPi

A packed decimal operand consists of two, four, or eight binary-coded decimal
(BCD) digits stored in a byte, word, or double-word, respectively. A BCD digit
is a 4-bit field whose value is within the range 0 to 9, encoded as binary 0000
to 1001, respectively. Each byte contains two BCD digits as illustrated below.
Digit d0 is the least-significant digit.

 +-------+-------+
 ! d1 ! d0 1
 !-+-+-+-+-+-+-+-!
 7 0

 +-------+-------+-------+-------+
 ! d3 ! d2 ! d1 ! d0 !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

 +-------+-------+-------+-------+-------+-------+-------+-------+
 ! d7 ! d6 ! d5 ! d4 ! d3 ! d2 ! d1 ! d0 !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 31 24 23 16 15 8 7 0

Packed Decimal instructions operate on two general operands. Both operands are
interpreted as unsigned numbers. The ADDPi instruction places the sum of the two
operands, plus the contents of the PSR C bit, into the second operand location.
The SUBPi instruction subtracts the first operand from the second, subtracting
also the contents of the PSR C bit, and places the result into the second operand
location. Incorporation of the PSR C bit into the result facilitates use of
these instructions in performing packed decimal calculations to arbitrary length.

Decimal subtraction can be modeled as adding the ten's complement of the subtra-
hend to the minuend.

Both operands must contain only legal BCD digits. If either operand contains
digits which are not legal, the result value is undefined, and the setting of the
PSR C bit is undefined.

 3-7

Exceptional Conditions

A decimal carry or borrow condition can occur from Packed Decimal instructions.
Decimal carry and borrow events are signaled in the Processor Status register C
bit (Section 2.2).

When the ADDPi instruction is executed, the occurrence of a carry out of the
most-significant digit position constitutes a "carry" condition, and is indicated
by the CPU by setting the PSR C bit. This indicates that the sum is too large to
be held as a Packed Decimal number in the length of the original operands. The
result produced is the least-significant portion of the entire result.

If no carry occurs, the PSR C bit is cleared.

When the SUBPi instruction is executed, the lack of a carry out of the most
significant digit position constitutes a "borrow" condition, and the PSR C bit is
set to indicate this. A borrow condition indicates that a high-order "1" digit
has been assumed to the left of the most-significant minuend digit in order to
produce a positive result.

If a carry does occur from subtraction, the PSR C bit is cleared.

 3-8

3.3 Floating-Point Instructions

Floating-Point instructions operate on floating-point numbers. Included also in
this group are the instructions which load and store the Floating-Point Status
register (FSR). The following is a list of the Floating-Point instructions:

 Instruction Mnemonic Forms Index

 Add Floating ADDF, ADDL ADDf
 Subtract Floating SUBF, SUBL SUBf
 Multiply Floating MULF, MULL MULf
 Divide Floating DIVF, DIVL DIVf
 Dot Product Floating DOTF, DOTL DOTf
 Polynomial Floating POLYF, POLYL POLYf

 Negate Floating NEGF, NEGL NEGf
 Absolute Value Floating ABSF, ABSL ABSf

 Compare Floating CMPF, CMPL CMPf

 Move Floating MOVF, MOVL MOVf

 Logartithm Binary Floating LOGBF, LOGBL LOGBf
 Scale Binary Floating SCALBF, SCALBL SCALBf

 Move Long Floating to Floating MOVLF MOVLF
 Move Floating to Long Floating MOVFL MOVFL

 Move Integer to Floating MOVBF, MOVWF, MOVDF, MOVif
 MOVBL, MOVWL, MOVDL
 Round Floating to Integer ROUNDFB, ROUNDFW, ROUNDFD, ROUNDfi
 ROUNDLB, ROUNDLW, ROUNDLD
 Truncate Floating to Integer TRUNCFB, TRUNCFW, TRUNCFD, TRUNCfi
 TRUNCLB, TRUNCLW, TRUNCLD
 Floor Floating to Integer FLOORFB, FLOORFW, FLOORFD, FLOORfi
 FLOORLB, FLOORIW, FLOORLD

 Load FSR LFSR LFSR
 Store FSR SFSR SFSR

Floating-Point arithmetic operations are performed by the ADDf, SUBf, MULf, DIVf,
DOTf and POLYf instrucions. The NEGf and ABSf instructions move the negative or
the absolute value of their first operand to the second operand location. The
CMPF instruction compares two floating-point values, setting the PSR condition
codes as per the CMPi (integer compare) instruction. The MOVf instruction moves a
floating-point value. LOGBf and SCALBf instructions perform operation on the
exponent of a floating-point number.

The full range of conversions are provided; between floating-point types, and
between any integer and floating-point types. Conversion from floating-point to
integers can be performed by rounding to nearest (ROUNDfi), toward zero (TRUNCfi)
or toward negative infinity (FLOORfi).

The LFSR and SFSR instructions load and store the FSR, which holds mode and
status information pertaining to floating-point operations (Section 2.4.2).

 3-9

3.3.1 Floating-Point Operand Formats

The Series 32000 Floating-Point instruction set operates on two floating-point
data types: single precision (32 bits) and double precision (64 bits).
Floating-Point instruction mnemonics use the operation length suffix F (Floating)
to specify the single precision data type and the suffix L (Long Floating) to
specify the double precision data type.

A floating-point number is divided into three fields as shown in Figure 3-1.

 !1! 8 ! 23 !
 +-+---------+-------------------+
 !S! E ! F !
 !-!---------!-------------------!
 31 30 23 22 0

 Single Precision

 !1! 11 ! 52 !
 +-+--------------+--+
 !S! E ! F !
 !-!--------------!--!
 63 62 52 51 0

 Double Precision

 Figure 3-1 Floating-Point Operand Formats

The F field is the fractional portion of the represented number. The binary
point is assumed to be immediately to the left of the most-significant bit of the
F field, with an implied 1 bit to the left of the binary point. Thus, the F
field represents values from 1.0 (inclusive) to 2.0 (exclusive) as shown in
Table 3-1.

 Table 3-1 SAMPLE F FIELDS

 F Field Binary Value Decimal Value

 000...0 1.000...0 1.000...0

 010...0 1.010...0 1.250...0

 100...0 1.100...0 1.500...0

 110...0 1.110...0 1.750...0
 ^
 Implied

 3-10

The E field holds an unsigned number which gives the binary exponent of the
represented number. The value in the E field is biased; that is, a constant bias
value must be subtracted from the value in the E field in order to obtain the
true exponent. This bias value is 011...11 (binary), which is either the value
127 (in single precision) or 1023 (in double precision). Thus, the true binary
exponent can be either positive or negative, as shown in Table 3-2.

 Table 3-2 Sample E Fields

 E Field F Field Represented Value

 -1
 011...110 100...0 1.5 * 2 = 0.75

 0
 011...111 100...0 1.5 * 2 = 1.50

 1
 100...000 100...0 1.5 * 2 = 3.00

NOTE: Two forms of the E field represent special values, and are not interpreted
 as binary exponent values. 11...11 represents a value which is a Reserved
 operand (Section 3.3.4). 00...00 represents the value Zero (Section
 3.3.3) if the F field is also all zeroes, otherwise the represented value
 is a Reserved operand.

The S bit indicates the sign of the operand: 0 for positive and 1 for negative.
Floating-Point numbers are represented in sign-magnitude form, such that only the
S bit is complemented in order to change the sign of the represented number.

3.3.2 Normalized Numbers

Normalized numbers are numbers in floating-point format, where the E field is
neither all zeroes nor all ones.

The value represented by a normalized number is determined by the formula:

 S (E-Bias)
 (-1) * 2 * 1.F .

The ranges of normalized numbers are given in Table 3-3.

 3-11

 Table 3-3 NORMALIZED FLOATING-POINT RANGES

 Single Precision Double Precision

 127 -23 1023 -52
 Most Positive 2 * (2 - 2) 2 * (2 - 2)

 38 308
 = 3.40282346 * 10 = 1.7976931348623157 * 10

 -126 -1022
 Least Positive 2 2

 -38 -308
 = 1.17549436 * 10 = 2.2250738585072014 * 10

 -126 -1022
 Least Negative -(2) -(2)

 -38 -308
 = -1.17549436 * 10 = -2.2250738585072014 * 10

 127 -23 1023 -52
 Most Negative -2 * (2 - 2) -2 * (2 - 2)

 38 308
 = -3.40282346 * 10 = -1.7976931348623157 * 10

 NOTE: The values given are extended one full digit beyond their repre-
 sented accuracy to help in generating rounding and conversion
 algorithms.

3.3.3 Zero

There are two representations for zero -- a positive form and a negative form.
Positive zero has all-zero F and E fields, and its S bit is zero. Negative zero
also has all-zero F and E fields, but its sign bit is one. In spite of these
differences, the two zeroes are considered equal to each other when compared
using the CMPf instruction.

 3-12

3.3.4 Reserved Operands

The proposed IEEE Standard for Binary Floating Point Arithmetic (IEEE Task P754)
provides for certain exceptional forms of floating-point operands. The Series
32000 hardware currently treats these forms as reserved operands. The reserved
operands are:

 * Positive and Negative Infinity

 * Not-a-Number (NaN) values

 * Denormalized numbers

Both Infinity and NaN values have all one's in their E fields. Denormalized
numbers have all zeroes in their E fields and non-zero values in their F fields.

The Series 32000 hardware causes an Invalid Operation trap (Section 3.3.7) if it
receives a reserved operand, unless the instruction being executed is a simple
MOVf instruction (move without conversion). The Series 32000 hardware does not
generate reserved operands as results of floating-point calculations. The
trapping mechanism used in the Series 32000 family allows handling of these
operand forms transparently in software.

3.3.5 Integers

Some floating-point instructions perform conversions between integer and
floating-point data types. Integers are accepted and generated as two's
complement values of byte, word or double-word length, as specified in the
conversion instruction.

3.3.6 Memory Representations

Floating-Point operands are stored in memory with the least-significant byte at
the lowest address, except in the Immediate addressing mode. In this mode, the
operand is held within the instruction format with the most-significant byte at
the lowest address.

 3-13

3.3.7 Floating-Point Traps

Trap (UND)

The Floating-Point instruction set is made available to a Series 32000-based
system with an NS32381 Floating-Point Unit by setting the F bit in the CFG
register (Section 2.3). If the CFG F bit is not set, any floating-point
instruction causes the Undefined Instruction trap, Trap (UND). In systems with-
out floating-point hardware, Trap (UND) can be used to transfer control to float-
ing-point emulation software.

Trap (FPU)

Any exceptional conditions encountered during the execution of a floating-point
instruction will cause a floating-point trap. This trap is labeled Trap (FPU)
and uses the fourth entry (entry #3) of the Interrupt Dispatch Table.

The following are true for any floating-point instruction causing Trap (FPU):

 1. The status fields of the FSR are updated before trapping.

 2. No other result is delivered, neither to the destination operand loca-
 tion nor to the Processor Status Register (PSR).

 3. The return address pushed onto the Interrupt Stack is the address of
 the first byte of the trapped instruction. This allows software analy-
 sis or emulation of the trapped instruction, or re-execution after the
 exception has been logged.

The conditions which cause Trap (FPU) are:

 1. Underflow. A non-zero floating-point result is too small in magnitude
 to be represented as a normalized floating-point number in the format
 of the destination operand. This condition is always reported in the
 FSR TT field and UF bit, but causes a Trap (FPU) only if the FSR UEN
 bit is set. If the UEN bit is not set, a result of Positive Zero is
 produced, and no trap occurs.

 2. Overflow. A result (either floating-point or integer) of a floating-
 point instruction is too great in magnitude to be held in the format of
 the destination operand. Note that rounding, as well as calculations,
 can cause this condition.

 3-14

 3. Divide by Zero. An attempt has been made to divide a non-zero
 floating-point number by zero. Dividing zero by zero is considered an
 Invalid Operation instead (below). Note that the trap caused by this
 condition is still Trap (FPU) and not Trap (DVZ), which is caused only
 by integer instructions.

 4. Illegal Instruction. Two undefined floating-point instruction forms
 cause Trap (FPU) rather than Trap (UND). The binary formats causing
 this trap are:

 xxxxxxxxxx0011xx10111110
 xxxxxxxxxx1001xx10111110

 5. Invalid Operation. One of the floating-point operands of a floating-
 point instruction is a Reserved operand (Section 3.3.4), or an attempt
 has been made to divide zero by zero using the DIVf instruction.

 6. Inexact Result. The result (either floating-point or integer) of a
 floating-point instruction cannot be represented exactly in the format
 of the destination operand, and a rounding step must alter it to fit.
 This condition is always reported in the FSR TT field and IF bit unless
 any other exceptional condition has occurred in the same instruction.
 In this case, the TT field always contains the code for the other
 exception and the IF bit is not altered. A Trap (FPU) is caused by
 this condition only if the FSR IEN bit is set; otherwise the result is
 rounded and delivered, and no trap occurs.

 3-15

3.4 Logical Instructions

Logical instructions perform masking, shifting and Boolean arithmetic operations.
The following table lists the logical instructions:

 Instruction Mnemonic Forms Index

 Arithmetic

 Logical AND ANDB, ANDW, ANDD ANDi
 Logical OR ORB, ORW, ORD ORi
 Bit Clear BICB, BICW, BICD BICi
 Exclusive OR XORB, XORW, XORD XORi
 Complement COMB, COMW, COMD COMi

 Shift

 Arithmetic Shift ASHB, ASHW, ASHD ASHi
 Logical Shift LSHB, LSHW, LSHD LSHi
 Rotate ROTB, ROTW, ROTD ROTi

 Boolean

 Complement Boolean NOTB, NOTW, NOTD NOTi
 Save Condition as Boolean ScondB, ScondW, ScondD Scondi

The arithmetic instructions perform bitwise Boolean arithmetic on byte, word or
double-word general operands. The shift instructions perform shifting on byte,
word or double-word general operands. The Boolean instructions generate and
complement Boolean values.

The ANDi, ORi and XORi instructions perform the bitwise Boolean AND, OR and
Exclusive OR functions between two general operands. The BICi instruction
performs an AND NOT operation, clearing all bits in the second operand which are
set in the first. The COMi instruction moves the bitwise complement of the first
operand to the second.

The shift instructions shift their second general operand in the direction and by
the magnitude given by the first operand (a positive shift is left, a negative
shift is right). The logical shift fills the emptied bit positions with zeroes
always. The arithmetic shift fills these locations with zeroes if the shift is
to the left, and with the original contents of the sign bit (the most-significant
bit) if the shift is to the right. The rotation shift consecutively replaces
each bit emptied with the contents of the bit shifted out of the operand.

NOTE: The result generated by shifting an operand by a count which is greater
 than, or equal to, its length in bits is undefined.

 3-16

The Boolean instructions generate and handle unpacked Boolean values, defined as
integers whose values are interpreted as 0 = False and 1 = True. This definition
follows conventions established by several high-level languages which require
that True be greater than False when compared and that conversions between
Boolean and integer variables generate the above correlation between values.

All of the logical arithmetic instructions perform correct Boolean arithmetic on
Boolean values except the COMi instruction. To allow complementing Boolean
values (from True to False and vice versa), the NOTi instruction is provided,
which complements only the least-significant bit of its first operand, placing
the result in the second.

Because Boolean arithmetic often deals with values derived from relational
operations (e.g. whether one value is greater than another), the Save Condition
(Scondi) instruction is provided, which generates a Boolean value based on a
condition code test.

 3-17

3.5 Bit Instructions

Bit instructions perform or support manipulation of individual bits in General
Purpose Registers or memory. The following is a list of the Bit instructions:

 Instruction Mnemonic Forms Index

 Test Bit TBITB, TBITW, TBITD TBITi

 Set Bit SBITB, SBITW, SBITD, SBITi,
 SBITIB, SBITIW, SBITID SBITIi

 Clear Bit CBITB, CBITW, CBITD, CBITi,
 CBITIB, CBITIW, CBITID CBITIi

 Invert Bit IBITB, IBITW, IBITD IBITi

 Find First Set Bit FFSB, FFSW, FFSD FFSi

 Convert to Bit Pointer CVTP CVTP

The TBIT instruction tests a bit by copying its contents to the PSR F bit. The
SBIT, CBIT and IBIT instructions test the specified bit, and then either set,
clear or invert it. The SBITI and CBITI instructions, in addition, allow testing
and either setting or clearing of a bit in an indivisible operation for
handling multiprocessor semaphores.

The FFSi and CVTP instructions do not operate on bits, but provide related
functions to aid in bit handling. The FFSi instruction scans a byte, word or
double-word for a set bit, producing its position as a one-byte offset value.
The CVTP instruction generates the bit address of a specified bit.

Bit positions are specified using two general operand specifications: a base and
an offset, as in the instruction.

 TBITi offset,base

The base operand specification is used only to determine a base location (either
a memory address or a register) relative to which the bit is to be located, and
does not itself reference an operand at that location. The offset is a general
operand of byte, word or double-word length, as specified by the operation length
selected by the programmer (Section 4.1). It contains a signed integer which
specifies the position of the desired bit relative to bit 0 of the location
specified as the base.

If the base is specified as a General Purpose register, the offset must be within
the range 0 to 31, inclusive. If the offset is outside this range, the location
of the bit is undefined.

 3-18

If the base is specified as a memory address, the offset specifies a bit in
memory.

Both positive and negative offsets are allowed and meaningful. An offset of 0
specifies bit 0 of the byte at the base address. An offset of 8 specifies bit 0
of the byte at the next higher address. An offset of -1 specifies bit 7 of the
byte at the next lower address, and an offset of -8 specifies bit 0 of the byte
at the next lower address.

The maximum range of a double-word offset is -2,147,483,648 to +2,147,483,647
bits, corresponding to an addressing range of -268,435,456 to +268,435,455 bytes
from the specified base.

The address of the byte containing the desired bit is formally defined as

 EA(base) + (offset DIV 8)

where "EA(base)" is the effective address calculated from the base operand
specification and "offset DIV 8" is the nearest integer less than or equal to
offset/8 (as per the DIVi instruction). The bit number of the desired bit is
computed as

 offset MOD 8

where MOD is the modulus function (as per the MODi instruction).

 3-19

The following examples illustrate the interpretations of various bit
specifications:

Example 1:
 !<----------- offset -----------!
 +-----------------------------+-+-----------------------------+-+
 R0 ! !*! ! !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 31 24 23 16 15 8 7 0

 Offset : 16 Base : R0
 Interpreted as bit 16 of register R0.

Example 2:
 !<------------<------------offset----------<------------!
 -----+-----+-+-------+---------------+---------------+-------------+-+
 ... ! !*! ! ! ! ! !
 -+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 0!7 4 0!7 0!7 0!7 0!
 1004 ! 1003 ! 1002 ! 1001 ! 1000 !

 Offset: +28 EA(Base): 1000
 Interpreted as bit 4 of the byte at address 1003.

In this example, the address of the byte containing the desired bit is
1000 + (28 DIV 8), or 1003, since 28 DIV 8 = 3. The bit number within this byte
is 28 MOD 8, or 4.

Example 3:
 !----------offset-------->!
 -----+-------------+-+---------------+-------+-+-----+---------------+
 ... ! ! ! ! !*! ! !
 -+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 0!7 0!7 0!7 3 0!7 0!
 1004 ! 1003 ! 1002 ! 1001 ! 1000 !

 Offset: -13 EA(Base): 1003
 Interpreted as bit 3 of the byte at address 1001.

In this example, the address of the byte containing the desired bit is
1003 + (-13 DIV 8), or 1001, since -13 DIV 8 = -2. The bit number within this
byte is -13 MOD 8, or 3. If these results look confusing, consult again the
definitions of the DIV and MOD operations given above.

 3-20

3.6 Bit Field Instructions

Bit Field instructions copy information to and from unaligned fields in General
Purpose Registers or memory. The following is a list of the Bit Field
instructions:

 Instruction Mnemonic Forms Index

 Extract Field EXTB, EXTW, EXTD EXTi

 Extract Field Short EXTSB, EXTSW, EXTSD EXTSi

 Insert Field INSB, INSW, INSD INSi

 Insert Field Short INSSB, INSSW, INSSD INSSi

Extract instructions read a bit field and place it into a byte, word, or double-
word general operand, right-justified. Insert instructions replace a bit field
from aligned information in a general operand. A bit field may be one to 32 bits
in length.

A bit field is fully specified by the position of its least-significant bit and
its length in bits. The position of the least-significant bit is specified as in
the Bit instructions (Section 3.5), using a general operand specification for the
base and an offset contained either in a General Purpose Register or (in the
"Short" forms of these instructions) in an immediate constant. The length of the
field is specified as an immediate constant, which must specify a length in the
range of 1 to 32 bits, inclusive. The interpretation of any length specified
outside this range is undefined.

The general bit field instructions (EXTi and INSi) allow a 32-bit offset value to
be dynamically specified in a General Purpose Register, supporting the indexing
necessary to access structures such as Pascal packed arrays. The "Short" bit
field instructions (EXTSi and INSSi) eliminate the overhead of loading a register
when the offset is fixed, as is commonly the case in accessing structures such as
Pascal packed records.

If the base is specified as a General Purpose Register, the bit field is in that
register. The offset must be within the range 0 to 31, and the entire bit field
must be contained within the specified register, otherwise the location of the
bit field is undefined.

If the base is specified as a memory address, the offset specifies a bit in
memory as the least-significant bit of the field. Both positive and negative
offsets are allowed and meaningful, as in Bit instructions (Section 3.5).

 3-21

As in the Bit instructions, the address of the byte containing the least-
significant bit of the field is defined as

 EA(Base) + (offset DIV 8)

where "EA(Base)" is the effective address calculated from the base operand
specification and "offset DIV 8" is the nearest integer less than, or equal to,
offset/8 (as per the DIVi instruction). The bit number of the least-significant
bit in the field is computed as

 offset MOD 8

where MOD is the modulus function (as per the MODi instruction).

NOTES: 1. The current implementation of bit field instructions places an
 alignment restriction on bit fields greater than 25 bits in
 length. This restriction is imposed due to the fact that a field
 in memory is accessed in a double-word transfer starting at the
 byte containing the least-significant bit of the field. A bit
 field in memory must be composed of bits from no more than four
 contiguous bytes. For a field of 25 bits or less, this imposes no
 restriction on alignment, as it is impossible for such a field to
 span more than four bytes.

 2. Regardless of the length of a bit field in memory, it is always
 accessed by Bit Field instructions as a double-word starting with
 the byte which contains the least-significant bit of the field.
 The Extract instructions read a full double-word, and the Insert
 instructions read, modify and rewrite a full double-word. These
 instructions can therefore cause a page fault in memory-managed
 systems if the field is close to the end of a page. In multiproc-
 essor systems, care should be taken to ensure that the processors
 do not attempt to modify adjacent fields simultaneously.

 3-22

The following examples illustrate how a bit field is located in a register and in
memory:

Example 1:
 !<--offset--!
 +-----------------------------+---------------------+---------+-+
 R0 ! !* * * * * * * * * * *! ! !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 31 24 23 16 15 8 7 6 0

 Base: R0 Offset: 6 Length: 11
 Interpreted as an 11-bit field in register R0 starting with bit 6.

Example 2:
 !<--- offset -----!
 -----+-----+---------+---------------+-------------+-+-------------+-+
 ! !* * * * *!* * * * * * * *!* * * * * * *! ! ! !
 -+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 0!7 0!7 0!7 1 0!7 0!
 1004 ! 1003 ! 1002 ! 1001 ! 1000 !

 BA(Base): 1000 Offset: +9 Length: 20
 Interpreted as a 20-bit field starting at bit 1 of address 1001.

In this example, the address of the byte containing the least-significant bit of
the field is 1000 + (9 DIV 8), or 1001. The bit number of the first field bit
within that byte is 9 MOD 8, or 1.

Example 3:
 !-------- offset -------->!
 -----+-------------+-+---------------+---+-----+-----+---------------+
 ! ! ! ! !* * *! ! !
 -+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 0!7 0!7 0!7 3 0!7 0!
 1004 ! 1003 ! 1002 ! 1001 ! 1000 !

 EA(Base): 1003 Offset: -13 Length: 3
 Interpreted as a 3-bit field starting at bit 3 of address 1001.

In this example, the address of the byte containing the least-significant bit of
the field is 1003 + (-13 DIV 8), or 1001, since -13 DIV 8 = -2. The bit number
of the first field bit in that byte is -13 MOD 8, or 3. If these results look
confusing, consult again the definitions of the DIV and MOD operations given
above.

 3-23

3.7 String Instructions

String instructions operate on strings of integer elements. The following is a
list of the String instructions:

 Instruction Mnemonic Forms Index

 Move String MOVSB, MOVSW, MOVSD MOVSi
 Move String, Translating MOVST MOVST

 Compare Strings CMPSB, CMPSW, CMPSD CMPSi
 Compare Strings, Translating CMPST CMPST

 Skip String SKPSB, SKPSW, SKPSD SKPSi
 Skip String, Translating SKPST SKPST

A string is a sequence of integer elements, all of the same length, stored in
consecutive memory locations. Elements of a string may be bytes, words, or
double-words as specified by the operation length (Section 4.1), except when the
Translating form (above) is used, in which case the elements must be bytes.

String instructions operate on either one or two strings. These strings are
designated String 1 and String 2. The MOVS instructions copy elements from
String 1 to String 2. The CMPS instructions compare String 1 elements to the
corresponding String 2 elements. The SKPS instructions scan elements of
String 1, without using a String 2.

String locations and length are specified by the General Purpose registers R0,
R1, and R2. Before instruction execution, the registers must be set to the
following:

 R0 -- the maximum number of elements to be processed
 R1 -- the address of the first element of String 1
 R2 -- the address of the first element of String 2 (except for SKPS, which
 does not use or modify R2)

NOTE: The number of elements processed is undefined if register R0 contains a
 negative number.

String instructions process the elements of the string(s) one at a time until a
specified termination condition is reached. After each element is processed, the
instructions modify the 32-bit contents of registers R0, R1, and R2 so that they
contain the following values:

 R0 -- the number of elements left to be processed (old contents minus one)
 R1 -- the address of the next element of String 1
 R2 -- the address of the next element of String 2 (except in SKPS)

If the resulting value in R0 is zero, the instruction terminates. The contents
of register R2 always remain unchanged by the SKPS instruction.

 3-24

Options

String instructions have the following options:

 * Translation (T)
 * Backward (B)
 * Until Match (U)
 * While Match (W)

Additional information required by these options is specified in General Purpose
registers R3 and R4, as follows:

 R3 -- the address of a translation table, required if the Translation option
 is specified

 R4 -- a termination value, required if the Until Match or While Match option
 is specified

Registers R3 and R4 remain unchanged by the instruction.

The Translation option causes a string instruction to translate each String 1
element before using it. String instructions with the Translation option operate
on 1-byte elements only, and because of this the Translation option is specified
as a mnemonic suffix "T" replacing the operation length suffix.

Translation is performed by using the String 1 element value as an unsigned index
into a translation table, whose base address is taken from register R3. A byte
is read from this table location, and is used in place of the original String 1
element.

The Backward option causes a string instruction to reverse its direction,
processing string elements from successively lower memory addresses instead of
successively higher addresses. This means that registers R1 and R2 are decre-
mented by the element length after each element is processed instead of being
incremented. The Backward option is specified in assembly language by listing
the letter B in the instruction as an operand. When used in conjunction with the
Until Match or While Match option, it must be separated with a comma.

The Until Match and While Match options specify a termination condition based on
whether the contents of each String 1 element match the contents of register R4
(after translation, if that option is also specified). In order to distinguish
this termination condition from any other, the PSR F bit is set to 1 before
termination. The Until Match and While Match options are mutually exclusive.

If the Until Match option is specified, the instruction terminates as soon as the
current value matches R4. This option is specified in assembly language by list-
ing the letter U in the instruction as an operand.

If the While Match option is specified, the instruction terminates as soon as the
current value does not match R4. This option is specified in assembly language
by listing the letter W in the instruction as an operand.

 3-25

Option Encoding

Each string instruction contains a 4-bit field defining which options are
specified. The field has the following form:

 +-------+---+---+
 ! UW ! B ! T !
 +---+---+---+---+

The 1-bit T field defines the state of the Translation option. If the field is
1, the Translation option is in effect; otherwise, the option is not in effect.
If the T bit is set, the operation length field (i) must contain binary 00
(Byte).

The 1-bit B field defines the state of the Backward option. If the field is 1,
the option is in effect; otherwise, the option is not in effect.

The 2-bit UW field defines the state of the Until and While options, as given
below:

 00 neither option
 01 While Match
 10 (reserved)
 11 Until Match

Interrupts During String Instructions

String instructions are interruptible. If an interrupt is asserted during a
String instruction, the CPU first finishes processing the current string element.
It then saves the address of the String instruction as the return address and
passes control to the interrupt service procedure. When the interrupt service
procedure returns, the String instruction is re-executed, but because the
registers have been updated this has the effect of continuing string processing
from the point where the instruction was interrupted. Note that the interrupt
service procedure must follow the standard practice of restoring all registers
used before returning.

 3-26

Termination Conditions

A string instruction terminates for one of the following reasons:

 1. The limit count originally specified in register R0 has been decremented
 to zero, or was zero at the beginning of the instruction.

 2. The CMPS instruction has found a pair of string elements which are
 unequal and has, therefore, determined which string has the greater
 value.

 3. The Until Match or While Match option is in effect and the string
 instruction has found an element in String 1 which meets the specified
 termination condition.

When a string instruction terminates due to its limit count, the resulting state
of the machine is as follows:

 PSR - bit F = 0. If a CMPS instruction terminates for this reason, then
 also PSR bits Z = 1, N = 0, L = 0.
 R0 -- contains 0.
 R1 -- contains the address of the next unprocessed String 1 element.
 R2 -- contains the address of the next unprocessed String 2 element (except
 in SKPS).

When a CMPS instruction finds an unequal pair of string elements, the resulting
state of the machine is:

 PSR - bits F = 0 and Z = 0. The N and L bits indicate the relation between
 the two unequal string elements.
 R0 -- contains the number of element pairs left to be processed (this
 includes the element pair which caused termination).
 R1 -- contains the address of the String 1 element which caused
 termination.
 R2 -- contains the address of the String 2 element which caused
 termination.

Whenever the Until Match or While Match option terminates execution of a string
instruction, the resulting machine state is:

 PSR - bit F = 1. If a CMPS instruction terminates for this reason, then
 also PSR bits Z = 1, N = 0, L = 0.
 R0 -- contains the number of elements left to be processed (this includes
 the element which caused termination).
 R1 -- contains the address of the element in String 1 which caused
 termination
 R2 -- contains the address of the element in String 2 which corresponds to
 the String 1 element which caused termination (except in SKPS)

The contents of registers R3 and R4 always remain unchanged.

 3-27

Detailed Sequences

Table 3-4 below gives the detailed execution sequences followed by the string
instruction. A temporary holding location within the processor is referenced by
the name "TEMP".

 Table 3-4 Execution Sequences

 CMPS MOVS SKPS

 1 In the PSR, set bits Z=1,N=0,L=0 If R0=0, set the PSR F bit to 0 If R0=0, set the PSR F bit to 0
 and terminate the instruction. and terminate the instruction.
 If R0=0, set the PSR F bit to 0
 and terminate the instruction.

 2 Read the current String 1 Read the current String 1, Read the current String 1
 element (address in R1) from element (address in R1) from element (address in R1) from
 memory into TEMP. memory into TEMP. memory into TEMP.

 3 If the translation option is If the translation option is If the translation option is
 selected, then zero-extend TEMP selected, then zero-extend TEMP selected, then zero-extend TEMP
 from 8 bits to 32 bits and add from 8 bits to 32 bits and add from 8 bits to 32-bits and add
 it to the contents of R3, gene- it to the contents of R3, gene- it to the contents of R3, gene-
 rating the address of a trans- rating the address of a trans- rating the address of a trans-
 lation table entry. Read a byte lation table entry. Read a byte lation table entry. Read a byte
 from this memory location and from this memory location and from this memory location and
 place it into TEMP. place it into TEMP. place it into TEMP.

 4 If the Until Match or While If the Until Match or While If the Until Match or While
 Match option is specified, then Match option is specified, then Match option is specified, then
 compare TEMP to R4, interpre- compare TEMP to R4, interpre- compare TEMP to R4, interpre-
 ting both as integers of the ting both as integers of the ting both as integers of the
 size specified by the operation size specified by the operation size specified by the operation
 length. length. length.

 If the Until Match option is If the Until Match option is If the Until Match option is
 specified, and TEMP and R4 are specified, and TEMP and R4 are specified, and TEMP and R4 are
 equal, then set the PSR F bit to equal, then set the PSR F bit to equal, then set the PSR F bit to
 1 and terminate the instruction. 1 and terminate the instruction. 1 and terminate the instruction.

 If the While Match option is If the While Match option is If the While Match option is
 specified, and TEMP and R4 are specified, and TEMP and R4 are specified, and TEMP and R4 are
 unequal, then set the PSR F bit unequal, then set the PSR F bit unequal, then set the PSR F bit
 to 1 and terminate the instruc- to 1 and terminate the instruc- to 1 and terminate the instruc-
 tion. tion. tion.

 5 Compare TEMP to the contents of Write TEMP to the String 2 Do nothing; continue to Step 6.
 the current String 2 location location (address in R2).
 (address in R2) and update PSR
 bits Z, N and L to reflect the
 result. If the resulting Z bit
 is zero (meaning not equal),
 then set PSR F bit to 0 and
 terminate the instrucion.

 6 If the Backward option is spec- If the Backward option is spec- If the Backward option is spec-
 ified, decrement R1 and R2 by ified, decrement R1 and R2 by ified, decrement R1 and R2 by
 the length in bytes specified the length in bytes specified the length in bytes specified
 by the operation length. Other- by the operation length. Other- by the operation length. Other-
 wise increment R1 and R2 by wise increment R1 and R2 by wise increment R1 and R2 by
 this amount. this amount. this amount.

 7 Decrement R0 by 1. Decrement R0 by 1. Decrement R0 by 1.

 8 If an interrupt is pending, If an interrupt is pending, If an interrupt is pending,
 service it here. Otherwise go to service it here. Otherwise go to service it here. Otherwise go to
 Step 1. Step 1. Step 1.

 3-28

3.8 Block Instructions

Block instructions move and compare byte, word, and double-word elements stored
in contiguous blocks of memory. There are two block instructions:

 Instruction Mnemonic Forms Index

 Move Multiple MOVMB, MOVMW, MOVMD MOVMi

 Compare Multiple CMPMB, CMPMW, CMPMD CMPMi

A block is a small string (16 bytes or less) of integers.

Block instructions differ from their string counterparts in three major ways:

 1. They require no overhead in setting up registers, as both block
 operands are general.

 2. They are not interruptible.

 3. They are limited to blocks of 16 bytes or less so that they do not
 adversely affect interrupt latency.

Block instructions have three operands: block1, block2, and length. The MOVMi
instruction copies block1 to block2. The CMPMi instruction compares the elements
of block1 to the corresponding block2 elements, indicating in PSR bits Z, N and L
which block contains the greater value, or whether they are equal.

Block1 and block2 are general operands which must be in memory (access class
addr, Section 4.2.1).

The length operand is an immediate value which specifies the length of each
block. In assembly language, length is specified as the number of elements
(bytes, words or double-words) in the block. (This is not the value which is
encoded in the binary form of the instruction.) Since a block must contain at
least one byte and no more than 16 bytes, the range of values for length depends
on the instruction's operation length suffix (B, W, or D: Section 4.1) as shown
by the following:

 Operation Length Suffix length

 B 1 to 16
 W 1 to 8
 D 1 to 4

 3-29

In the binary form of the instruction, the block length is encoded in a displace-
ment field and appended to the basic instruction. The displacement field
contents are to be computed from the specified length value as

 (length - 1) * i

where i is the element size in bytes: 1 (for B), 2 (for W), or 4 (for D).

NOTES: 1. The two block operands of the MOVMi instruction must not overlap.
 If they do overlap, the resulting values in the destination block
 are undefined.

 2. If the binary contents of the length operand differ from those
 values which can be derived from the expression above, the length
 of the blocks is undefined.

 3-30

3.9 Array Instructions

Array instructions operate in conjunction with the Scaled Indexing addressing
mode option (Section 4.4.9) to support random accesses into single- and
multi-dimensional arrays. The following ia a list of the array instructions:

 Instruction Mnemonic Forms Index

 Bounds Check CHECKB, CHECKW, CHECKD CHECKi

 Calculate Index INDEXB, INDEXW, INDEXD INDEXi

An array consists of a number of elements of the same length, stored in a
contiguous block of memory. An array can be of a single dimension (i.e., a
vector) or of multiple dimensions (i.e., a matrix). Individual elements in an
array are accessed using one subscript or index expression per dimension.

The CHECKi instruction performs a bounds check on any general operand, checking
whether its value is within the range specified by a pair of values in another
general operand. If so, it zero-adjusts the value by subtracting the lower bound
from it, and places the result in any specified General Purpose Register. If
not, it indicates an error in the PSR F bit, which can be used either as a branch
condition or to cause a trap (see the FLAG instruction). If the value being
checked is an index into a single-dimensional array, the result placed in the
register is directly usable with Scaled Indexing to access the indicated array
element.

The INDEXi instruction is used for accesses into multidimensional arrays. Its
purpose is to calculate a single 1-dimensional index based on the values of the
indexes (one per dimension) by which the desired element is specified. The order
in which the indexes are incorporated into the result depends on the scheme used
for ordering the array elements in memory.

Depending on the high-level language, array storage ordering generally follows
one of two schemes. Row major ordering, the most popular, and typical of the
Pascal and C languages, is shown in Table 3-5. Column major ordering, typical of
FORTRAN, is shown in Table 3-6. Note that in row major ordering it is the
rightmost index which is incremented with consecutive element addresses, and in
column major ordering it is the leftmost.

 3-31

 Table 3-5 Row Major Ordering Table 3-6 Column Major Ordering

 Pascal array declaration: FORTRAN array declaration:

 VAR A: ARRAY[1..2,1..3,1..2] INTEGER A(2,3,2)
 OF INTEGER;

 Element size: 4 bytes Element size: 4 bytes
 Base address: 1000 (Hex) Base address: 1000 (Hex)

 Array Element Address (Hex) Array Element Address (Hex)

 A [1,1,1] 1000 A (1,1,1) 1000
 A [1,1,2] 1004 A (2,1,1) 1004
 A [1,2,1] 1008 A (1,2,1) 1008
 A [1,2,2] 100C A (2,2,1) 100C
 A [1,3,1] 1010 A (1,3,1) 1010
 A [1,3,2] 1014 A (2,3,1) 1014
 A [2,1,1] 1018 A (1,1,2) 1018
 A [2,1,2] 101C A (2,1,2) 101C
 A [2,2,1] 1020 A (1,2,2) 1020
 A [2,2,2] 1024 A (2,2,2) 1024
 A [2,3,1] 1028 A (1,3,2) 1028
 A [2,3,2] 102C A (2,3,2) 102C

Note that the same memory location is referenced by the Pascal index sequence
[I,J,K] and the FORTRAN index sequence (K,J,I).

The general expression for the one-dimensional index generated to access either
A[I,J,K, ... ,Z] in Pascal or A(Z, ... ,K,J,I) in FORTRAN is:

 (...((Ia*Dj+Ja)*Dk+Ka)*...)*Dz+Za

where Dj, Dk, ... , Dz are the lengths of A along the J, K, ... , and Z
dimensions, respectively, and the values Ia, Ja, Ka, ... , Za
are the index values, zero-adjusted by the CHECKi instruction (by subtracting
their lower bounds).

The INDEXi instruction implements one step of the evaluation of this expression
from the inside out, by providing the function

 accum = accum * (length+1) + index

where accum is any register (R0-R7), used in consecutive INDEXi instructions as
 an accumulator location,
 index is the current index value being processed, and
 length is a general operand containing the current dimension length minus 1
 (so that it always matches the size of the index operand).

 3-32

3.10 Processor Control Instructions

Processor control instructions control the sequence of program execution. These
instructions provide conditional and unconditional branches, calls to and returns
from local and external procedures, and generation and returns from traps and
interrupts. The following is a list of the processor control instructions:

 Instructions Mnemonic Forms Index

 Branches

 Jump JUMP JUMP
 Conditional Branch Bcond Bcond
 Unconditional Branch BR BR
 Case Branch (Multiway) CASEB, CASEW, CASED CASEi
 Add, Compare and Branch ACBB, ACBW, ACBD ACBi

 Local Procedure Calls/Returns

 Jump to Subroutine JSR JSR
 Branch to Subroutine BSR BSR
 Return from Subroutine RET RET

 External Procedure Calls/Returns

 Call External Procedure CXP CXP
 Call External Procedure CXPD CXPD
 with Descriptor
 Return from RXP RXP
 External Procedure

 Explicit Trap Instructions

 Breakpoint Trap BPT BPT
 Flag Trap (Conditional) FLAG FLAG
 Supervisor Call Trap SVC SVC

 Trap/Interrupt Returns

 Return from Trap* RETT RETT
 Return from Interrupt* RETI RETI

* Privileged instruction (see note).

Branches transfer control to an instruction nonsequentially. The JUMP instruc-
tion allows the destination address to be specified using a general choice of
addressing modes. The BR instruction also transfers control, but provides a more
code-compact form for PC-relative references. The Bcond instruction performs a
branch as per the BR instruction if a specified condition code is true. The
CASEi instruction branches by adding the contents of any general operand to the

 3-33

Program Counter. In conjunction with Scaled Indexing (Section 4.4.9), this
implements a multiway branch which corresponds directly to the Pascal CASE
statement and the C SWITCH statement. The ACBi (Add, Compare and Branch)
instruction supports looping by adding a small increment (range -8 to +7) to any
general operand and branching if the result is non-zero.

Local procedure calls (JSR and BSR) transfer control as per the JUMP and BR
instructions, respectively, except that they first save the address of the next
sequential instruction onto the current stack as a 32-bit return address. The
called procedure returns control after such a call with the RET instruction.

External procedure calls are implemented by the CXP and CXPD instructions. An
external procedure is defined as a procedure which is in another module from the
procedure currently executing. See Section 2.8.2 for further details of the
module environment implemented by the Series 32000 architecture. An external
procedure call saves the current contents of the MOD register as well as the
return address onto the current stack, sets up the MOD and SB registers to match
the environment of the destination module, and transfers control. In the CXP
instruction, the destination procedure is specified with an index into the Link
Table belonging to the current module, from which a descriptor is read, locating
the destination. In the CXPD instruction, this descriptor is given as a general
operand, greatly facilitating references to procedures which have themselves been
passed as parameters. (A procedure can be passed as a parameter by passing its
descriptor, using the ADDR instruction.) The RXP instruction is used to return
control after an external procedure call, restoring the MOD and SB registers as
well as the Program Counter.

Three instructions have the function of causing deliberate traps. The BPT, FLAG
and SVC instructions each have unique vectors in the Interrupt Dispatch Table
(Section 2.8.4). The BPT instruction is intended to support debug breakpointing
of programs. The FLAG instruction causes a trap if the PSR F bit is set (e.g. if
the previous ADD instruction overflowed), and the SVC instruction provides the
mechanism to make requests of a protected operating system.

The RETT instruction returns control from a trap or the Non-Maskable or Non-
Vectored interrupt, restoring the PSR, MOD and SB registers. Since traps are
often caused deliberately to request service of an operating system, the RETT
instruction also allows parameters on the top of the original stack to be
discarded in the process of returning. The RETI instruction is used for
returning from any vectored maskable interrupt, providing the function of the
RETT instruction and also communicating with one or more NS32202 Interrupt
Control Units to implement transparent interrupt control.

NOTE: The instructions RETT and RETI are privileged, because they may change the
 contents of the high-order byte of the PSR, which is protected. The
 Illegal Operation trap, Trap(ILL), will ocour if either of these instruc-
 tions is attempted by a program in User Mode (i.e., while the PSR U bit is
 set).

 3-34

3.11 Processor Service Instructions

Processor service instructions provide general housekeeping functions and
services. The following is a list of the processor service instructions:

 Instructions Mnemonic Forms Index

 Effective Address

 Calculate Effective Address ADDR ADDR

 Context Instructions

 Save General Purpose Registers SAVE SAVE
 Restore General Purpose Registers RESTORE RESTORE
 Enter New Procedure Context ENTER ENTER
 Exit Procedure Context EXIT EXIT

 Register/Stack Manipulation

 Adjust Stack Pointer ADJSPB, ADJSPW, ADJSPD ADJSPi
 Bit Clear in PSR* BICPSRB, BICPSRW BICPSRB
 BICPSRW
 Bit Set in PSR* BISPSRB, BISPSRW BISPSRB
 BISPSRW
 Load Processor Register* LPRB, LPRW, LPRD LPRi
 Store Processor Register* SPRB, SPRW, SPRD SPRi
 Set Configuration Register* SETCFG SETCFG

 Miscellaneous

 No Operation NOP NOP
 Wait for Interrupt WAIT WAIT
 Diagnose DIA DIA
 Cache Invalidate* CINV CINV

* Privileged, or having privileged forms (see note).

There is one effective address instruction, ADDR, which calculates the effective
address of its first operand and places that 32-bit address into its second
operand location.

 3-35

Context instructions allow the saving and restoring of portions of the processor
context to and from the current stack. The SAVE instruction pushes the contents
of any set of General-Purpose registers specified by the programmer. The RESTORE
instruction undoes this by popping information from the top of the stack into any
set of these registers. The ENTER and EXIT instructions deal with a larger
context which is used by both local and external procedures. The ENTER instruc-
tion is generally the first instruction executed in a procedure, and has the
function of completing the "activation record" or "stack frame". It saves the
Frame Pointer (FP) register onto the current stack, allocates a specified number
of bytes on the stack to be used for dynamic local variables, and sets up the
Frame Pointer as a base pointer for this area. It also pushes the contents of
any specified General-Purpose registers, as per the SAVE instruction. After
executing this instruction, the Frame Pointer can be used in the Frame Memory and
Frame Memory Relative addressing modes (Sections 4.4.8 and 4.4.3) to access both
these local variables and any parameters passed to this procedure. The EXIT
instruction is placed at the end of the procedure, undoing the action of the
matching ENTER instruction. It restores the contents of the specified General-
Purpose registers from the stack, discards the local variable space, and restores
the Frame Pointer, leaving the return address at the top of the stack for the
appropriate Return instruction.

Register/Stack Manipulation instructions provide the means to load, store and
adjust the contents of CPU dedicated registers. (Corresponding instructions for
manipulating dedicated Floating-Point and Memory Management registers are listed
in Sections 3.3 and 3.12.) The ADJSPi instruction provides the means to directly
adjust the current Stack Pointer register by the contents of any general operand
in order to allocate or purge space on the stack or for alignment purposes. The
BICPSR and BISPSR instructions allow specified bits in the PSR register to be
cleared or set without affecting the rest of the PSR. The LPRi and SPRi instruc-
tions load or store a specified dedicated register. The SETCFG instruction sets
up the CFG register (Section 2.3) to declare the presence of external interrupt
control and slave processors.

Four instructions provide miscellaneous functions. The NOP (No Operation)
instruction is a 1-byte instruction which does nothing except transfer control to
the next sequential instruction. The WAIT instruction causes instruction proces-
sing to be suspended until an interrupt occurs. The DIA instruction provides a
function similar to WAIT for hardware breakpointing purposes, but is not intended
for use in programming. The CINV instruction invalidates entries in the on-chip
caches.

NOTE: The instructions flagged with an asterisk ("*") have forms which are
 privileged. The Illegal Operation trap, Trap(ILL), will occur if they are
 attempted in User Mode (i.e., while the PSR U bit is set). The BICPSRW
 and BISPSRW instruction forms are privileged, as they may change the
 high-order byte of the PSR, which is protected. The LPRi and SPRi
 instructions are privileged when they reference the INTBASE, USP, CFG,
 Debug register or the enitre PSR. The SETCFG and the CINV instructions are
 privileged always.

 3-36

3.12 Memory Management Instructions

The following is a list of the Memory Management instructions:

 Instruction Mnemonic Forms Index

 Load Memory Management LMR LMR
 Register
 Store Memory Management SMR SMR
 Register

 Validate Address for Reading RDVAL RDVAL
 Validate Address for Writing WRVAL WRVAL

 Move Value from Supervisor
 to User Space MOVSUB, MOVSUW, MOVSUD MOVSUi
 Move Value from User
 to Supervisor Space MOVUSB, MOVUSW, MOVUSD MOVUSi

The LMR and SMR instructions load and store the contents of Memory Management
registers (Section 2.5) as 32-bit values. The RDVAL instruction tests the
protection level of a specified user memory location to determine whether the
current user-mode program is allowed to read it. The WRVAL instruction tests
whether the current user is allowed to write into a specified memory location.
The MOVSUi instruction moves a byte, word, or double-word value from a specified
location in the Supervisor addressing space to a location in the User space, and
the MOVUSi instruction moves a value from User space to Supervisor space.

NOTES: 1. If the M bit in the CFG register has not been set (by the SETCFG
 instruction), the LMR, SMR, RDVAL and WRVAL instructions will
 generate the Undefined Instruction trap, Trap(UND).

 2. All Memory Management instructions are privileged. If attempted
 by a program running in User Mode (i.e., while the PSR U bit is
 set), the Illegal Operation trap, Trap(ILL), will occur instead.

 3-37

3.13 Custom Instructions

A set of instructions has been set aside for custom use. These instructions are
reserved for such use, and will not be defined otherwise by NSC.

A custom instruction starts with one of the following binary encodings as its
least-significant byte.

 1. 00010110
 2. 00110110
 3. 10110110

Note that each of these corresponds to the first byte of a Floating-Point or
Memory Management instruction, the difference being that bit 3 is "0" instead of
"1".

If the C bit in the CFG register is cleared (by the SETCFG instruction), these
instructions cause the Undefined Instruction trap, Trap(UND). Since a trap
pushes the address of this first byte as the return address, the format and
length of the remainder of the instruction may be defined in any manner, as
required by the custom application.

If the C bit in the CFG register is set, these instructions are executed by an
external "Custom" Slave Processor. The remainder of each instruction must follow
the format of its corresponding Floating-Point or Memory Management instruction.
The custom instructions corresponding to Memory Management instructions are
privileged. In executing a custom instruction, the operand definitions and the
protocol followed in communicating with the Custom Slave are identical to those
for the corresponding Floating-Point or Memory Management instruction.

See the applicable CPU data sheet for details of the instruction formats and the
Slave Processor protocols used.

 3-38

 Chapter 4

 INSTRUCTION OPTIONS AND CONSTRUCTION

This chapter defines the options available in Series 32000 instructions, how
these options are denoted in Chapter 5 (Instruction Set), and how the binary form
of an instruction is constructed based on the selections made.

The structure of an instruction is given in Chapter 5 by its format definition.
A typical format definition follows:

 Syntax
 Line
Syntax: CMPf src1, src2
 gen gen Operand
 read.f read.f Attributes
 Basic
 ! src1 ! src2 ! CMPf ! Instruction
 +---------+---------+---------+-+---------------+ Format
 ! gen ! gen !0 0 1 0 0!f!1 0 1 1 1 1 1 01
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The notations used are defined in the following sections.

 Syntax Line 4.1

 Operand Attributes 4.2

 Instruction Format 4.3

Other information presented in this chapter:

 Addressing Modes 4.4

 Construction Examples 4.5

 4-1

4.1 Syntax Presentation

The Syntax line presents the instruction mnemonic, followed by a list of
operands, as shown. Lower-case items indicate options to be specified by the
programmer.
 Mnemonic
 Operands

 Syntax. ADDi src, dest

Within the mnemonic, the following lower-case items may appear:

 i An integer operation length suffix. It is specified by the programmer
 as

 B = Byte (8-bit integer operation)
 W = Word (16-bit integer operation)
 D = Double-Word (32-bit integer operation)

 and defines the length of the operation to be performed. In arithmetic
 operations, the carry and overflow tests use this specification to
 determine which bit positions are to be checked. When an implied
 operand of attribute "quick" appears (Section 4.2.3), it is internally
 sign-extended to this length before use. The lengths of integer
 general operands are usually taken from this length, but this depends
 on their individual length attributes, Section 4.2.2.

 f A floating-point operation length suffix. It is specified by the
 programmer as

 F = Single-precision Floating (32-bit floating-point operation)
 L = Double-precision Long Floating (64-bit floating-point
 operation)

 and defines the length of the operation performed. The lengths of
 floating-point general operands are usually taken from this length
 specification, but this depends on their individual length attributes,
 Section 4.2.2. In certain conversion instructions (e.g. ROUNDfi) both
 integer and floating-point operation lengths may appear.

 cond A condition code, as in the Conditional Branch instruction:

 Syntax: Bcond dest

 The specifications allowed and their interpretations are listed in the
 instruction description.

Operands are always given in lower case, and are to be specified by the
programmer according to the attributes appearing below them (Section 4.2).
The name given to an operand on the Syntax line serves to identify it in the
instruction description.

 4-2

4.2 Operand Attributes

Operands are defined in Chapter 5 by a set of attributes. These define what may
be specified for each operand, and exactly how any valid operand specification
will be interpreted when the instruction is executed.

A typical set of attributes is shown below:

 Implied General

 Syntax: ADDQi src, dest
 quick gen
 rmw.i

 Attributes
 Access Length
 Class

Some operands listed as part of the instruction syntax are implied, meaning that
their locations are not determined from a general choice of addressing modes. An
implied operand is identified by the attribute "reg", "quick", "short", "imm" or
"disp"; i.e., anything except "gen". For the explanations of implied operand
attributes, see Section 4.2.3.

Most Series 32000 operands, however, are general, meaning that a general choice
of addressing modes (Section 4.4) may be used to specify their locations.
General operands are identified by the attribute "gen". A general operand has
the additional attributes of an access class and also a length where relevant.

The access class attribute serves to define all cases of addressing mode usage
including exceptional cases whose effects (or even legality) might not otherwise
be obvious. The possible access classes for a general operand are read, write,
rmw, addr and regaddr. Three addressing modes are affected by the access class:
Register, Immediate and Top of Stack, as shown in Table 4-1 and described in
Section 4.2.1.

The length attribute defines a general operand's data type and its size in bytes
(see Section 4.2.2).

An operand with attribute i is an integer of the size given as the integer
operation length by the programmer. An operand with attribute 2i is twice this
size. An operand with attribute B, W or D is a byte, word or double-word
integer, respectively, regardless of the operation length.

An operand with length attribute f is a floating-point value of the size given as
the floating-point operation length by the programmer. An operand with length
attribute F or L is a single-precision or double-precision floating-point value,
respectively, regardless of the operation length.

 4-3

4.2.1 Access Classes

Computer architectures usually have exceptional cases of operand reference based
on the context of the instruction making the reference. For example, if an
architecture allows references to registers as general operands, and provides a
Jump instruction specifying a general destination, an obvious question becomes
whether in this context (Jump) it is still legal to specify a register.

Rather than defining the interpretations of operand references on an instruction-
by-instruction basis, the Series 32000 architecture defines five standard con-
texts (access classes) within which an Series 32000 family CPU will interpret a
reference to a general operand. Each instruction assigns one access class to
each of its general operands, which in turn fully defines the action of any
addressing mode in referencing that operand.

Only three addressing modes have interpretations which are affected by the access
class of an operand. These are Register, Immediate and Top of Stack. The five
access classes, defined below, are read, write, rmw, addr and regaddr. See also
Table 4-1.

read: The addressing modes are interpreted in the context of an operand being
 read but not rewritten. If Register mode is used, the specified
 register contains the operand. Immediate mode is legal only for
 operands of this access class. If Top of Stack mode is specified, the
 Stack Pointer is post-incremented by the number of bytes corresponding
 to the length of the operand (as determined from its length attribute,
 Section 4.2.2), thus "popping" it from the stack.

write: The addressing modes are interpreted in the context of an operand being
 written without having been read. If Register mode is used, the
 specified register receives the operand. Immediate mode is undefined
 for this access class. If Top of Stack mode is specified, the Stack
 Pointer is pre-decremented by the number of bytes corresponding to the
 length of the operand (as determined from its length attribute,
 Section 4.2.2), thus "pushing" it onto the stack.

rmw: Read-Modify-Write. The addressing modes are interpreted in the context
 of an operand being read, modified and rewritten to the same location.
 If Register mode is used, the specified register contains the operand.
 Immediate mode is undefined for this access class. If Top of Stack
 mode is specified, the Stack Pointer provides the address of the
 operand, but is not altered.

 4-4

 Table 4-1 Addressing Mode Actions vs. Access Class

 Access Class
 Addressing
 Mode read write rmw addr regaddr

 Register Rn, Fn Rn, Fn Rn, Fn (Rn) Rn, Fn

 Immediate legal undefined undefined undefined undefined

 Top of Stack Pop Push (SP) (SP) (SP)

 NOTES: 1. The notations (Rn) and (SP) signify use of the enclosed
 register as a pointer. The register is not altered.

 2. Using Scaled Indexing in an addressing mode overrides the
 access class and forces it to "addr".

 4-5

addr: Address. The addressing modes are interpreted in the context of an
 operand which cannot be held in a register, or of an effective address
 calculation which does not correspond to an operand being fetched as
 data. Examples of this context are ADDR A,B (place the effective
 address of A into B), JUMP X (place the effective address of X into
 the Program Counter) or any addressing mode using Scaled Indexing
 (since arrays cannot be held in registers; see Table 4-1). If Register
 mode is used, the operand is in memory, and the specified register
 contains its address. Immediate mode is undefined for this access
 class. If Top of Stack mode is specified, the Stack Pointer provides
 the address of the operand, but is not altered.

 Note: The addr access class does not define the use to which an
 operand is put, but only the context in which the addressing modes are
 interpreted. An addr operand may be read, written, or neither read nor
 written, depending on the instruction being executed.

regaddr: Register/Address. The addressing modes are interpreted in the context
 of designating a base for locating a data item of nonstandard size
 and/or alignment. An example of this context is the operand B in the
 instruction TBITW A,B (test the bit which is A bits from the beginning
 of base location B). If Register mode is used, the data item is held
 within the specified register. Immediate mode is undefined for this
 access class. If Top of Stack mode is specified, the Stack Pointer
 provides the address of the base, but is not altered.

 Note: The regaddr access class does not define the use to which an
 operand is put, but only defines the context in which the addressing
 modes are interpreted. Information at the location given in a regaddr
 context may be read, written, or neither read nor written, depending
 on the instruction being executed.

4.2.2 Length Attributes

The length attribute of a general operand defines its data type and its length
(in bytes). Operands with length attribute B, W, D, i or 2i are integers.
Operands with length attribute F, L or f are floating-point values.

The length in bytes of an operand affects the following three addressing modes:

Register: If the length of an operand is smaller than the designated
 General-Purpose register, it is only the low-order portion of the
 register which is referenced or modified. The rest of the
 register is unchanged. Operands with length attribute 2i are a
 special case; see Section 4.2.2.1 below.

Immediate: The length of the value held within the binary instruction format
 matches the length in bytes of the operand.

 4-6

Top of Stack: If the access class attribute (Section 4.2.1) indicates that the
 Stack Pointer is to be modified, it is modified by the operand
 length in bytes.

4.2.2.1 Integer Length Attributes

The length attributes which identify an integer are B, W, D, i and 2i. For
integers, the Register addressing mode assumes that the General-Purpose registers
(R0-R7) are to be used. Floating-Point registers cannot be specified for integer
operands. The integer length attributes are defined as follows:

 B The operand is a 1-byte integer.

 W The operand is a 2-byte (word) integer.

 D The operand is a 4-byte (double-word) integer.

 i The operand is either one, two, or four bytes in length, depending on
 the operation length suffix (B, W or D: Section 4.1) appended to the
 instruction mnemonic by the programmer.

 2i The operand is twice the length given as the operation length suffix
 (Section 4.1) appended to the instruction mnemonic by the programmer.

The MEI and DEI instructions (Multiply/Divide Extended Integer) present special
cases in which operands with length attribute 2i can be held in registers. If an
operand with length attribute 2i is specified as being within a register, it
occupies a pair of General-Purpose registers (R0 and R1, R2 and R3, R4 and R5, or
R6 and R7), and the even-numbered register of the pair must be specified as the
operand location. The operand is held with its least-significant half in the
even-numbered register (right-justified) and its most-significant half in the
odd-numbered register (also right-justified). Any portions of the two registers
not used to hold the operand are neither referenced nor modified.

 4-7

4.2.2.2 Floating-Point Length Attributes

The length attributes which identify a floating-point operand are F, L and f.
For floating-point operands the Register addressing mode assumes that the
Floating-Point registers (F0-F7) are to be used. General-Purpose registers
cannot be specified for floating-point operands. The floating-point length
attributes are defined as follows:

 F The operand is a 4-byte single-precision floating-point value.

 L The operand is an 8-byte double-precision ("Long") floating-point
 value.

 f The operand is either a single-precision or double-precision floating-
 point value, depending on the operation length suffix (F or L, Section
 4.1) appended to the instruction mnemonic by the programmer. See the
 description of "L" above for the format of a double-precision operand
 within registers.

 4-8

4.2.3 Implied Operand Attributes

Implied operands are specified without using addressing modes. Their attributes
define how they may be specified.

reg: The operand location is a General-Purpose register (R0-R7). Any
 General-Purpose register may be specified. The entire register is
 always used and/or modified by the instruction. The register number is
 encoded in the binary instruction format within a 3-bit field marked
 "reg".

quick: The operand is a signed, 4-bit immediate value. Its range is -8 to +7.
 Before use, it is internally sign-extended to the length given by the
 operation length suffix appended to the instruction mnemonic. A quick
 operand is encoded in the binary instruction format within a 4-bit
 field marked "quick".

short: The operand occupies a 4-bit field within the binary instruction
 format. The interpretation of the field depends on the instruction.

imm: The operand is a 1-byte immediate value, appended to the instruction
 following any addressing extensions. Its interpretation is determined
 by the instruction.

disp: The operand is an immediate signed integer value, encoded as a
 displacement field and appended to the instruction following any
 addressing extensions. Its use is determined by the instruction.

 A displacement field is stored with the most-significant byte at the
 lowest address. Its format is determined by its most-significant bits
 as shown below.

 +---+---------------------------+
 ! 0 ! 7-bit signed value ! Range: -64...+63
 +---+---+---+---+---+---+---+---+

 +---+---+-----------------------+
 ! 1 0 ! 14-bit !
 +---+---+ signed ----+ Range: -8192...+8191
 ! value !
 +---+---+---+---+---+---+---+---+

 +---+---+-----------------------+
 ! 1 1 ! !
 +---+---+ ----+ Range:
 ! 30-bit ! -520,093,696...+536,870,911
 +---- signed ----+
 ! value ! Note:
 +---- ----+ The pattern "11100000" for
 ! ! the most-signifcant byte is
 +---+---+---+---+---+---+---+---+ reserved by NSC for future
 use.

 4-9

4.3 Binary Instruction Format

The binary format of an Series 32000 instruction is shown in Figure 4-1. It is
divided into two sections.

 1. The Basic Instruction portion defines the operation performed and the
 number and kinds of operands. It is presented in Chapter 5
 individually for each instruction, using field nomenclature as defined
 in Section 4.3.1 below.

 2. Extension fields are optionally appended as defined by the instruction
 and the addressing modes chosen by the programmer. These extensions
 fall into a general instruction format, defined in Section 4.3.2.

Because the Series 32000 family implements a full two-address architecture, most
instructions have two general operands (with attribute "gen", Section 4.2). To
distinguish between them, the first general operand appearing in the Syntax line
of an instruction description will be designated Operand A and the second
Operand B.

 4-10

 Syntax: OPCODE r, x, y, z
 reg gen gen disp

 Operand A Operand B
 (first gen) (second gen)

 Basic Instruction

 Increasing
 Basic Instruction 1,2 or 3 Address
 bytes

 Index Byte (Operand A)
 if Operand A is indexed

 Index Byte (Operand B)
 if Operand B is indexed

 Addressing Extension (A)
 Immediate value, or
 disp, or Extensions,
 disp1 followed by disp2 as
 required
 Addressing Extension (B)
 Immediate value, or
 disp, or
 disp1 followed by disp2

 Implied Operands (imm or disp)
 in the order listed
 on Syntax line

 Figure 4-1 General Format

 4-11

4.3.1 Basic Instruction

The Basic Instruction portion defines the operation performed and the addressing
modes used for referencing general operands, and provides fields within it for
holding all implied operands with attribute reg, quick or short (Section 4.2.3).
It is one, two or three bytes in length.

The format of the Basic Instruction is diagrammed for each instruction under the
Syntax line of the instruction description. The format used for storing the
Basic Instruction in memory is the same as for data elements; that is, the
least-significant byte appears first, at the lowest address. Fields within the
Basic Instruction are presented as defined below.

4.3.1.1 Operation Code Fields

Operation code fields are presented explicitly in binary. All fields presented
in this manner are derived from the instruction mnemonic and define the basic
operation to be performed.

4.3.1.2 Operation Length Fields: i and f

Operation Length fields define the length to which calculations are performed
within a basic data type (integer or floating point). They also define the
lengths of most general operands (indirectly, through each operand's own length
attribute, Section 4.2.2). They are derived from the Operation Length mnemonic
suffix (Section 4.1) chosen by the programmer, as shown below.

 Mnemonic
 Field Suffix Encoding

 i B 00

 W 01

 D 11

 f F 1

 L 0

4.3.1.3 General Addressing Mode Fields: gen

These are 5-bit fields which define the addressing mode used to access each
operand. The name of the operand from the Syntax line appears above the field.
The encodings of these fields are given in the definitions of the addressing
modes, Section 4.4.

 4-12

4.3.1.4 Implied Operand Fields: reg, quick, short

These fields hold the necessary information for implied operands which are
defined with the corresponding attribute (reg, quick or short: Section 4.2.3).
The name of the operand from the Syntax line appears above the field.

A reg field is a 3-bit field holding a register number (0-7).

A quick field is a 4-bit field holding a signed value (range -8 to +7).

A short field is a 4-bit field holding information which is required by the
individual instruction. Its contents are defined in the instruction
description.

4.3.2 Extension Fields

The following fields extend the length of the instruction beyond the Basic
Instruction field. They appear as required by the individual instruction or by
the addressing modes chosen for specifying its general operands.

4.3.2.1 Index Bytes

The first form of extension is in the form of Index Bytes. The instruction is
extended in this manner whenever Scaled Indexing (Section 4.4.9) is used in
specifying a general operand. Either or both of the general operands may be
specified using Scaled Indexing. If both operands are specified in this form,
then the Index Byte for Operand A appears before the Index Byte for Operand B.
See Figure 4-1. The format of an Index Byte is given in the definition of Scaled
Indexing, Section 4.4.9.

4.3.2.2 Addressing Extensions

An addressing extension is appended for each general operand as required. Its
contents depend on the addressing mode chosen for each. See Section 4.4 for the
usages of addressing extensions in addressing modes. The addressing extension
for operand A appears before the one for operand B (Figure 4-1).

Addressing extensions are constructed from two basic elements: displacement
fields and immediate values.

NOTE: Unlike other values in memory, addressing extensions are ordered with the
 most-significant byte at the lowest address.

 4-13

An addressing extension contains either:

 1. One immediate value, or

 2. One displacement field, labelled "disp" in the addressing mode
 definitions (Section 4.4), or

 3. Two displacement fields, labelled "disp1" and "disp2". In this form,
 disp1 is appended first, followed by disp2.

If a Register or Top of Stack addressing mode is used to specify a general
operand, no addressing extension appears for that operand.

A displacement field holds a signed two's-complement addressing constant. It is
stored with the most-significant byte at the lowest address. Its length is
determined by its most-significant bits as shown below.

 +---+---------------------------+
 ! 0 ! 7-bit signed value ! Range: -64...+63
 +---+---+---+---+---+---+---+---+

 +---+---+-----------------------+
 ! 1 0 ! 14-bit !
 +---+---+ signed ----+ Range: -8192...+8191
 ! value !
 +---+---+---+---+---+---+---+---+

 +---+---+-----------------------+
 ! 1 1 ! !
 +---+---+ ----+ Range: currently
 ! 30-bit ! -520,093,696...+536,870,911
 +---- signed ----+
 ! value ! Note:
 +---- ----+ The pattern "11100000" for
 , , the most-signifcant byte is
 +---+---+---+---+---+---+---+---+ reserved by NSC for future
 use.

An immediate value appears as an addressing extension only when the Immediate
addressing mode is specified (Section 4.4.4). The length of the value is
determined from the operand's length attribute (Section 4.2.2). The value is
ordered with its most-significant byte at the lowest address.

4.3.2.3 Implied Operand Extensions: imm, disp

Implied operands, of attribute "imm" or "disp" (Section 4.2.3), appear last,
after all addressing extensions. If there is more than one imm or disp operand
appearing in the instruction, then the operands are appended in the order in
which they are listed on the Syntax line.

 4-14

4.4 Series 32000 Addressing Modes

Any general operand (Section 4.2) may be specified by the programmer using a
general choice of addressing modes. This section defines addressing mode syntax,
functions and encodings.

Table 4-2 lists the addressing modes provided for specifying a general operand.
It also serves as an index to this section. The Encoding column gives the binary
encoding used in a gen field (Section 4.3.1.3) to select each mode. The Name
column gives the name of the addressing mode as used in this manual, and the
Syntax column shows the syntax used in assembly language to express it. (Note:
What is given is only the lowest level of expression, which most directly relates
to the action of the addressing mode. See the applicable assembler manual for
full details of expression syntax and symbolic features.)

Scaled Indexing is an option available as part of any addressing mode except
Immediate. It does not stand alone as an addressing mode, but is listed with the
addressing modes because of the binary encodings used to select the option.

 4-15

 Table 4-2 Series 32000 Addressing Modes

 Encoding Name Syntax

 Register 00000 Register 0 R0 or F0
 00001 Register 1 R1 or F1
 00010 Register 2 R2 or F2
 00011 Register 3 R3 or F3
 00100 Register 4 R4 or F4
 00101 Register 5 R5 or F5
 00110 Register 6 R6 or F6
 00111 Register 7 R7 or F7

 Register Relative 01000 Register 0 Relative disp(R0)
 01001 Register 1 Relative disp(R1)
 01010 Register 2 Relative disp(R2)
 01011 Register 3 Relative disp(R3)
 01100 Register 4 Relative disp(R4)
 01101 Register 5 Relative disp(R5)
 01110 Register 6 Relative disp(R6)
 01111 Register 7 Relative disp(R7)

 Memory Relative 10000 Frame Memory Relative disp2(disp1(FP))
 10001 Stack Memory Relative disp2(disp1(SP))
 10010 Static Memory Relative disp2(disp1(SB))

 (reserved) 10011 (Reserved for
 future use.)

 Immediate 10100 Immediate value

 Absolute 10101 Absolute @disp

 External 10110 External EXT(disp1)+disp2

 Top of Stack 10111 Top of Stack TOS

 Memory Space 11000 Frame Memory disp(FP)
 11001 Stack Memory disp(SP)
 11010 Static Memory disp(SB)
 11011 Program Memory * + disp

 Scaled Indexing 11100 Byte Indexed basemode[Rn:B]
 11101 Word Indexed basemode[Rn:W]
 11110 Double-Word Indexed basemode[Rn:D]
 11111 Quad-Word Indexed basemode[Rn:Q]

 4-16

4.4.1 Register Modes

 Mode Syntax Encoding

 Register 0 R0 or F0 00000

 Register 1 R1 or F1 00001

 Register 2 R2 or F2 00010

 Register 3 R3 or F3 00011

 Register 4 R4 or F4 00100

 Register 5 R5 or F5 00101

 Register 6 R6 or F6 00110

 Register 7 R7 or F7 00111

 Extensions

 None.

The interpretation of these modes is formally defined below. However, rule 6
defines the general case, which is that the specified General-Purpose register
(R0-R7) holds the operand.

The following rules are listed in order of decreasing precedence. Lower-numbered
rules take precedence over higher-numbered rules.

1. If the access class of the operand (Section 4.2.1) is "addr", then the
 operand is in memory. The effective address of the operand is held in the
 specified General-Purpose register.

2. If Scaled Indexing is used, the access class of the operand is redefined as
 "addr", and rule 1 above applies.

3. If the operand length attribute (Section 4.2.2) is "2i", then a pair of
 General-Purpose registers (R0 and R1, R2 and R3, R4 and R5, or R6 and R7)
 holds the operand. The even-numbered register of the pair must be speci-
 fied, and if the odd-numbered register is specified the location of the
 operand is undefined. The least-significant half of the operand is held in
 the low-order portion of the even-numbered register, and the remaining
 portion of the register is neither used nor affected. The most-significant
 half of the operand is held in the low-order portion of the odd-numbered
 register, and any remaining portion of the register is neither used nor
 affected.

 4-17

4. If the operand length derived from its length attribute (Section 4.2.2) is
 single-precision floating-point, then the operand is held in the specified
 Floating-Point register (F0-F7).

5. If the operand length derived from its length attribute (Section 4.2.2) is
 double-precision floating-point, then the operand is held in the specified
 Floating-Point register (F0-F7).

6. When none of the above exceptions apply, the operand is an integer held
 within the specified General-Purpose register (R0-R7). If the operand
 length derived from its length attribute is shorter than the full 32-bit
 length of the register, then the operand occupies the low-order portion of
 the register, and the remaining portion of the register is neither used nor
 affected.

 4-18

4.4.2 Register Relative Modes

 Mode Syntax Encoding

 Register 0 Relative disp(R0) 01000

 Register 1 Relative disp(R1) 01001

 Register 2 Relative disp(R2) 01010

 Register 3 Relative disp(R3) 01011

 Register 4 Relative disp(R4) 01100

 Register 5 Relative disp(R5) 01101

 Register 6 Relative disp(R6) 01110

 Register 7 Relative disp(R7) 01111

 Extensions

 One displacement field:
 disp.

The operand is in memory. Its effective address is the sum of the 32-bit con-
tents of the specified General-Purpose register (R0-R7) and the displacement
value sign-extended to 32 bits.

 4-19

4.4.3 Memory Relative Modes

 Mode Syntax Encoding

 Frame Memory Relative disp2(disp1(FP)) 10000

 Stack Memory Relative disp2(disp1(SP)) 10001

 Static Memory Relative disp2(disp1(SB)) 10010

 Extensions

 Two displacement
 fields: disp1
 followed by disp2.

The operand is in memory, at the address given by the sum of disp2 (sign-extended
to 32 bits) and a 32-bit pointer in memory. The address of this pointer is
generated by adding disp1 (sign-extended to 32 bits) and the contents of the
specified register (FP, SP or SB). The symbol "SP" means the stack pointer which
is currently selected by the S bit in the PSR (Section 2.2).

NOTE: The Stack Memory Relative mode uses the contents of the selected stack
 pointer as it was at the beginning of the instruction. The effective
 address is therefore independent of any changes made to the stack pointer
 by any Top of Stack mode appearing in the same instruction.

 4-20

4.4.4 Immediate Mode

 Mode Syntax Encoding

 Immediate value 10100

 Extensions

 The value, placed
 most-significant
 byte first.

The operand value is input from the addressing extension portion of the instruc-
tion. The value appears most-significant byte first. Its length in bytes is
determined from the operand length attribute (Section 4.2.2). Floating-Point as
well as integer instructions may use Immediate mode.

NOTES: 1. Immediate mode is legal only for operands of access class "read".
 Any other use is undefined.

 2. Immediate mode may not be used as the base mode for Scaled
 Indexing.

 4-21

4.4.5 Absolute Mode

 Mode Syntax Encoding

 Absolute @address 10101

 Extensions

 One displacement
 field: address.

The absolute address is specified. This address is encoded in the binary
instruction as a displacement field of any length required to hold the address.

 4-22

4.4.6 External Mode

 Mode Syntax Encoding

 External EXT(disp1)+disp2 10110
 or
 EXT(disp1)

 Extensions

 Two displacement
 fields: disp1
 followed by disp2.
 If disp2 is omitted
 in assembly language,
 it must still be
 included as a disp2
 field containing zero.

The External addressing mode provides the means for a software module to access
data within a data space outside of that module. The operand is referenced
through the Link Table of the current module (Section 2.8.3). The value disp1 is
a Link Table entry number, and disp2 is a final displacement added to the address
provided from that Link Table entry.

The operand is in memory, at the address given by the sum of disp2 (sign-extended
to 32 bits) and a 32-bit pointer in the current Link Table. The address of this
pointer is generated by adding disp1, multiplied by four, and the contents of the
32-bit value at memory address MOD + 4. "MOD" is the contents of the MOD regis-
ter, interpreted as a 16-bit unsigned number.

 4-23

4.4.7 Top of Stack Mode

 Mode Syntax Encoding

 Top of Stack TOS 10111

 Extensions

 None.

The operand is in memory, at the top of the current stack. It is pushed, popped,
or neither pushed nor popped, as appropriate to the usage of the operand.

The stack pointer used is the stack pointer that is currently selected by the S
bit in the PSR (Section 2.2).

The stack pointer is used by Top of Stack mode according to the access class of
the operand. The rules below are listed in order of decreasing precedence.
Lower-numbered rules take precedence over higher-numbered rules.

1. If the operand is of access class "rmw", "addr" or "regaddr", then the
 effective address of the operand is given by the contents of the stack
 pointer, and no increment or decrement is performed.

2. If Scaled Indexing is used, the access class of the operand is redefined as
 "addr", and rule 1 above applies.

3. If the operand is of access class "read", the operand is read from the
 address given by the contents of the stack pointer. The stack pointer is
 then incremented by the length in bytes of the operand, as determined from
 its length attribute (Section 4.2.2).

4. If the operand is of access class "write", the stack pointer is decremented
 by the length in bytes of the operand, as determined from its length attri-
 bute (Section 4.2.2). The operand is then written to the address given by
 the new contents of the stack pointer.

NOTES: 1. If Top of Stack mode is used for both general operands of an
 instruction, the operands are accessed and the stack pointer modi-
 fied in left-to-right operand order. The rightmost addressing
 mode uses as its initial stack pointer value the contents of the
 stack pointer after any increment or decrement has been performed
 by the leftmost addressing mode.

 2. The Stack Memory and Stack Memory Relative modes use as their
 stack pointer value the contents of the selected stack pointer as
 they were at the beginning of the instruction. The actions of
 these modes are therefore independent of any modifications made
 to the stack pointer by any Top of Stack mode appearing within the
 same instruction.

 4-24

4.4.8. Memory Space Modes

 Mode Syntax Encoding

 Frame Memory disp(FP) 11000

 Stack Memory disp(SP) 11001

 Static Memory disp(SB) 11010

 Program Memory * + disp 11011

 Extensions

 One displacement
 field: disp.

The operand is in memory, at the address given by the sum of the contents of the
specified register and the displacement value sign-extended to 32 bits.

The symbol "SP" means the stack pointer (SP0 or SP1) which is currently selected
by the S bit in the PSR (Section 2.2). The symbol "*" means the contents of the
Program Counter.

NOTES: 1. The Stack Memory mode uses the contents of the selected stack
 pointer as it was at the beginning of the instruction. The
 effective address is therefore independent of any changes to the
 stack pointer contents made by any Top of Stack mode occurring in
 the same instruction.

 2. The Program Counter always contains the address of the first byte
 of the instruction being executed.

 4-25

4.4.9 Scaled Indexing

 Mode Syntax Encoding

 Byte Indexed basemode[Rn:B] 11100

 Word Indexed basemode[Rn:W] 11101

 Double-Word Indexed basemode[Rn:D] 11110

 Quad-Word Indexed basemode[Rn:Q] 11111

 Extensions

 basemode = base addressing mode 1. Index Byte.
 (see below)
 2. Any extensions
 Rn = any General-Purpose Register, required by
 used as the index register. basemode.

Any addressing mode except Immediate is allowed to include indexing by the
contents of any General-Purpose register (R0-R7), interpreted as a signed 32-bit
integer. The index value is scaled (multiplied) by a factor of 1, 2, 4 or 8
before use, so that it can be used as an element number for an array of 1-, 2-,
4- or 8-byte elements. An indexed addressing expression has the form

 basemode[Rn:l]

where basemode is an addressing mode expression,
 Rn is any General-Purpose register, and
 l is an element length qualifier, chosen from:
 B = Byte, scale factor = 1
 W = Word, scale factor = 2
 D = Double-word, scale factor = 4
 Q = Quad-word, scale factor = 8 .

In the binary instruction format, addressing modes with Scaled Indexing are
encoded within the Basic Instruction gen field as one of four special codes which
specify only the length qualifier (see table above). The basemode and Rn compo-
nents are specified in an Index Byte appended to the Basic Instruction. See
Section 4.3 for the position of an Index Byte in the general instruction format.
The Index Byte has the following format:

 ! basemode! Rn !
 +---------+-----+
 ! gen ! n !
 +-+-+-+-+-!-+-+-+
 7 3 2 0

 4-26

Any further addressing extensions required by basemode are appended as given in
Section 4.3.2.2, in exactly the same manner as if basemode were not indexed.

NOTES: 1. Any operand specified using Scaled Indexing is redefined as being
 of access class "addr" regardless of the operand's access class in
 the instruction definition. This affects the interpretation of
 basemodes Register and Top of Stack, and makes the use of an
 Immediate basemode illegal. See Section 4.2.1.

 2. Scaled Indexing may be applied only once in an addressing expres-
 sion. Basemode is therefore not allowed to include Scaled
 Indexing within itself.

 4-27

4.5 Constructing Complete Binary Instructions: Some Examples

The following examples illustrate the process of assembling the binary form of an
Series 32000 instruction from its assembly-language form.

Example 1:

The simple example below as generated from the Move instruction (MOVi).

 MOVB R0, R1

This instruction copies the low-order byte of register R0 to the low-order byte
of register R1. The format definition of the MOVB instruction is taken from
Chapter 5 as shown below.

Syntax: MOVi src, dest MOVB
 gen gen MOVW
 read.i write.i MOVD

 ! src ! dest ! MOVi !
 +---------+---------+-------+---+
 ! gen ! gen !0 1 0 1! i !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

In this example, the lower-case items in the Syntax line have been specified by
the programmer as follows:

 i = B (Byte operation length, Section 4.1)
 src = R0 (Register 0 addressing mode, Section 4.4.1)
 dest = R1 (Register 1 addressing mode, Section 4.4.1)

To complete the Basic Instruction, the gen fields for the two general operands
src and dest and the i field for the operation length must be provided. The
encoding for the src operand (R0 Register addressing mode) is 00000. The
encoding for the dest operand (R1 Register addressing mode) is 00001. The
encoding for the operation length (B) is 00. Thus, the Basic Instruction is:

! R0 ! R1 ! MOVB !
+---------+---------+-------+---+ and appears in memory as the two
!0 0 0 0 0!0 0 0 0 1!0 1 0 1!0 0! consecutive bytes: 54 00 (Hex).
!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

The Register addressing modes R0 and R1 require no addressing extensions.
Therefore, the Basic Instruction above is the complete binary form of the example
instruction.

 4-28

Example 2:

The next example is generated from the JUMP instruction.

 JUMP 0(4(SB))

This instruction performs an indirect jump through a 32-bit pointer in memory.
The pointer's address is calculated by adding 4 to the contents of the SB
register.

The format definition of the JUMP instruction is:

Syntax: JUMP dest
 gen
 addr

 ! dest ! JUMP !
 +---------+---------------------+
 ! gen !0 1 0 0 1 1 1 1 1 1 1!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

This instruction has only one operand, the general operand dest, which is speci-
fied by the programmer with the addressing expression 0(4(SB)). This form of
addressing expression specifies that the Static Memory Relative addressing mode
(Section 4.4.3) is to be used to calculate the address to which the instruction
will jump. The code for this addressing mode is placed in the gen field as
binary 10010. Thus, the Basic Instruction is:

 ! Static !
 !Mem. Rel.! JUMP !
 +---------+---------------------+
 !1 0 0 1 0!0 1 0 0 1 1 1 1 1 1 1!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

The Memory Relative addressing modes require that two displacements be appended
to the Basic Instruction. These are designated disp1 and disp2. From the
expression provided in the assembly-language example, the displacement values are
to be:

 disp1 = 4, and
 disp2 = 0 .

 (continued)

 4-29

From the format given for a displacement field (Section 4.3.2.2), we see that a
small value can be represented in either one, two or four bytes. Obviously, we
wish to choose the smallest field which works, so we will use the 1-byte format
for each displacement field.

Appending the two displacements to the Basic Instruction, we get the complete
binary instruction as shown below.

 ! Static !
 !Mem. Rel.! JUMP !
 +---------+---------------------+
 !1 0 0 1 0!0 1 0 0 1 1 1 1 1 1 1!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

 disp1: +-+-------------+
 !0!0 0 0 0 1 0 0!
 !-+-+-+-+-+-+-+-!
 7 0

 disp2: +-+-------------+
 !0!0 0 0 0 0 0 0!
 !-+-+-+-+-+-+-+-!
 7 0

The complete binary instruction is represented in consecutive memory bytes as

 7F 92 04 00 (Hex).

 4-30

Example 3:

The following example is generated from the ADDi instruction.

 ADDD EXT(8)+80, -4(FP)

This instruction adds a 32-bit value from the memory location specified as
EXT(8)+80 to a 32-bit value at the memory location specified as -4(FP).

The format definition of the ADDi instruction is:

Syntax: ADDi src, dest ADDB
 gen gen ADDW
 read.i rmw.i ADDD

 ! src ! dest ! ADDi !
 +---------+---------+-------+---+
 ! gen ! gen !0 0 0 0! i !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

This instruction has two general operands. For purposes of constructing its
binary form, the src operand is labeled operand A and the dest operand is
labeled operand B, as discussed in Section 4.3.

The operation length suffix is D, encoded as 11 in the i field. The src operand
is specified using the External addressing mode (Section 4.4.6), which is encoded
in the binary instruction as 10110 in the corresponding gen field. The dest
operand is specified using the Frame Memory addressing mode (Section 4.4.8),
which is encoded in the corresponding gen field as 11000. The Basic Instruction
appears then as shown below.

 Frame
 ! External! Memory ! ADDD !
 +---------+---------+-------+---+
 !1 0 1 1 0!1 1 0 0 0!0 0 0 0!1 1!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

 (continued)

 4-31

Since neither operand uses Scaled Indexing, the first extensions appended to the
Basic Instruction are the addressing extension fields required by the External
addressing mode used to specify the src operand (Operand A). The External
addressing mode requires two displacement fields: disp1 (containing 8) followed
by disp2 (containing 80). The disp1 displacement value can be held in a
single-byte displacement field. The disp2 displacement value cannot, as it is
outside the range (-64 to +63) which can be represented in a signed 7-bit number.
It can, however, be held in a two-byte displacement field. Appending the
displacement fields for Operand A yields the result shown below.

 Frame
 ! External! Memory ! ADDD !
 +---------+---------+-------+---+
 !1 0 1 1 0!1 1 0 0 0!0 0 0 0!1 1!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

 ! 8 1
 +-+-------------+
 Disp1 (A): !0!0 0 0 1 0 0 0!
 !-+-+-+-+-+-+-+-!
 7 0

 ! 80 !
 +---+-----------+
 Disp2 (A): !1 0!0 0 0 0 0 0!
 +-+-+-+-+-+-+-+-+
 !0 1 0 1 0 0 0 0!
 !-+-+-+-+-+-+-+-!
 7 0

 (continued)

 4-32

After the addressing extensions required for Operand A, the addressing extensions
required for Operand B are appended. Since Operand B (the dest operand) is
specified using the Frame Memory addressing mode, there is one displacement field
required, containing the value -4. This value is within the range -64 to +63,
and so it can be held in the single-byte displacement format. It is appended as
shown:

 Frame
 ! External! Memory 1 ADDD !
 +---------+---------+-------+---+
 !1 0 1 1 0!1 1 0 0 0!0 0 0 0!1 1!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

 ! 8 !
 +-+-------------+
 Disp1 (A): !0!0 0 0 1 0 0 0!
 !-+-+-+-+-+-+-+-!
 7 0

 ! 80 !
 +---+-----------+
 Disp2 (A): !1 0!0 0 0 0 0 0!
 +-+-+-+-+-+-+-+-+
 !0 1 0 1 0 0 0 0!
 !-+-+-+-+-+-+-+-!
 7 0

 ! -4 !
 +-+-------------+
 Disp (B): !0!1 1 1 1 1 0 0!
 !-+-+-+-+-+-+-+-!
 7 0

The complete instruction appears in consecutive memory bytes as:

 03 B6 08 80 50 7C (Hex).

 4-33

Example 4:

A final example of how an instruction is assembled uses the Extract Field (EXTi)
instruction.

 EXTB R0, 10(SB), 0(SB)[R1:B], 5

This instruction copies a 5-bit field from a point in memory determined by a bit
offset (contained in R0) from the address 10(SB) to the address specified by
0(SB)[R1:B]. The format definition of the Basic Instruction is:

Syntax: EXTi offset, base, dest, length EXTB
 reg gen gen disp EXTW
 regaddr write.i EXTD

 off-
 ! base ! dest ! set ! EXTi !
 +---------+---------+-----+-+---+---------------+
 ! gen ! gen ! reg !0! i !0 0 1 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

In this more complex instruction, there are several items which must be placed in
the Basic Instruction. These are the addressing modes specified by the expres-
sions 10(SB) and 0(SB)[R1:B], the i field corresponding to the B operation length
suffix, and the reg field corresponding to the reg operand specified as R0. The
code for the expression 10(SB), specifying the Static Memory addressing mode, is
11010. The code for the expression 0(SB)[R1:B], specifying the Static Memory
addressing mode with Scaled Indexing (scale factor = 1), is 11100. (Note that
when Scaled Indexing is used, it is the code for Scaled Indexing which is placed
in the Basic Instruction. See Section 4.4.9.) The i field is 00, for the B
operation length suffix. The reg field is 000, for R0. Thus, the Basic
Instruction is:

 Static Byte
 ! Memory ! Indexed ! R0 ! EXTB !
 +---------+---------+-----+-+---+---------------+
 !1 1 0 1 0!1 1 1 0 0!0 0 0!0!0 0!0 0 1 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

 (continued)

 4-34

The expression 10(SB) specifies Operand A and 0(SB)[R1:B] specifies Operand B.
Because it is indexed, Operand B requires an Index Byte. The Index Byte is the
first extension to be appended to the Basic Instruction. It contains the code
for the basemode 0(SB) and the register number for R1. The basemode (Static
Memory) is encoded as 11010 and the register number is encoded for R1 as 001.

 Static Byte
 ! Memory ! Indexed ! R0 ! EXTB !
 +---------+---------+-----+-+---+---------------+
 !1 1 0 1 0!1 1 1 0 0!0 0 0!0!0 0!0 0 1 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

 Static
 ! Memory ! R1 !
 +---------+-----+
 Index Byte (B): !1 1 0 1 0!0 0 1!
 !-+-+-+-+-+-+-+-!
 7 0

 (continued)

 4-35

The next extensions to be appended are the addressing extensions required by the
addressing modes for the general operands. Since Operand A is specified using
the Static Memory addressing mode, it requires one displacement field, containing
10. This displacement is placed in single-byte format after the Index Byte.

The Static Memory basemode 0(SB) for Operand B requires one displacement field
containing 0. This displacement is placed in single-byte format after the
displacement field for Operand A.

 Static Byte
 ! Memory ! Indexed ! R0 ! EXTB !
 +---------+---------+-----+-+---+---------------+
 !1 1 0 1 0!1 1 1 0 0!0 0 0!0!0 0!0 0 1 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

 Static
 ! Memory ! R1 !
 +---------+-----+
 Index Byte (B): !1 1 0 1 0!0 0 1!
 !-+-+-+-+-+-+-+-!
 7 0

 ! 10 !
 +-+-------------+
 Disp (A): !0!0 0 0 1 0 1 0!
 !-+-+-+-+-+-+-+-!
 7 0

 ! 0 !
 +-+-------------+
 Disp (B): !0!0 0 0 0 0 0 0!
 !-+-+-+-+-+-+-+-!
 7 0

 (continued)

 4-36

Finally, the length operand (specified as 5) is an implied displacement which is
appended after all addressing extensions. It also can be encoded in single-byte
format due to its small contents. Thus, the complete machine instruction is:

 Static Byte
 ! Memory ! Indexed ! R0 ! EXTB !
 +---------+---------+-----+-+---+---------------+
 !1 1 0 1 0!1 1 1 0 0!0 0 0!0!0 0!0 0 1 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

 Static
 ! Memory ! R1 !
 +---------+-----+
 Index Byte (B): !1 1 0 1 0!0 0 1!
 !-+-+-+-+-+-+-+-!
 7 0

 ! 10 !
 +-+-------------+
 Disp (A): !0!0 0 0 1 0 1 0!
 !-+-+-+-+-+-+-+-!
 7 0

 ! 0 !
 +-+-------------+
 Disp (B): !0!0 0 0 0 0 0 0!
 !-+-+-+-+-+-+-+-!
 7 0

 ! 5 !
 +-+-------------+
 "length" (disp): !0!0 0 0 0 1 0 1!
 !-+-+-+-+-+-+-+-1
 7 0

The complete binary form of this instruction therefore appears in consecutive
memory bytes as

 2E 00 D7 D1 0A 00 05 (Hex).

 4-37

 Chapter 5

 SERIES 32000 INSTRUCTION SET

This chapter contains the detailed definitions of each of the instructions in
the Series 32000 instruction set.

Instructions are presented in the format shown in Figure 5-1. The items
indicated there are described below.

1. Mnemonic index. Instructions are alphabetized according to this index,
 which gives a general form of the mnemonic(s) for each instruction. For a
 listing of instructions by functional groups, see instead Appendix A or
 Chapter 3.

2. Enumerated mnemonics. This area holds a list of all valid mnemonic forms
 for the instruction, if there are alternative forms.

3. Format definition. This area defines the assembly-language and binary
 formats of the instruction, and the number and kinds of operands. The
 information contained here is explained in Chapter 4.

4. Instruction description. The operation performed by the instruction is
 defined here.

5. Flags Affected. All flags in the Processor Status Register which are
 affected by the instruction are listed. See Section 2.2 for the general
 definitions of these flags.

6. Traps. Any trap that may be caused by the instruction is listed.

 NOTE: Since the Abort trap, Trap (ABT), may occur on any instruction for
 memory management purposes, it is not listed unless there is a cause
 which is unique to that instruction.

7. Examples. One or more examples are given, where required, in order to
 clarify the operation performed by the instruction. Conventions used in
 presenting example instructions and operands are given in Section 5.1.

 5-1

 ADDQi
 Add Quick Integer

 Syntax: ADDQi src, dest ADDQB
 quick gen ADDQW
 rmw.i ADDQD

 ! dest ! src ! ADDQi !
 +---------+-------+---------+---+
 ! gen ! quick !0 0 0 1 1! i !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

 The ADDQi instruction adds the src and dest operands and places the result in the
 dest operand location. Before the addition is performed, src is sign-extended to
 the length of dest.

 Flags Affected: C is set on a carry from addition, cleared if no carry.
 F is set on an overflow from addition, cleared if no overflow.
 Integer carry and overflow conditions are defined in
 Section 3.1.

 Traps: Integer Overflow Trap (OVF) is activated if the V flag is set
 and the result cannot be represented exactly in dest.

 Example:

 ADDQB -8, R0 0C 04

 The above example adds the quick integer -8 to the low-order byte of register R0.
 The remaining bytes of R0 are unaffected.

 The action of the above instruction is illustrated below.

 Operand Values: Hex (Dec)
 Operands Before After

 -8 F8 * --
 (quick) (-8)

 R0 AAAAAA78 AAAAAA70
 (+120) (+112)

 UPSR nzfvxltc nz0vxlt1

 * This shows the internal format of the quick operand after sign-extension to
 byte length. The operand is encoded within the instruction as binary 1000.

 Figure 5-1 Typical Instruction Definition

 5-2

6

2

1

3

4

5

7

5.1 Instruction Examples

Figure 5-2 shows an instruction example from Section 5.2. Each example shows the
encodings and the actions of one or more typical forms of the instruction being
described.

5.1.1 Coding Examples

Example instructions are shown coded both in assembly-language source form and in
machine-language form.

The machine-language form is presented in hexadecimal as would be expected in a
"dump" format. The leftmost byte displayed occupies the lowest memory address.
The entire instruction is presented, including all extensions.

5.1.2 Action Examples

The actions of an example instruction are shown in three columns.

The "Operands" column identifies all operands of the instruction: both those
explicitly stated in assembly language and those which are implicitly affected by
"side-effects" (e.g. the PSR and SP registers where relevant). When a number is
presented it generally refers to an operand at that memory address, and is a
hexadecimal value. However, if the comment "(immediate)" or "(disp)" appears
below it, it is a literal value provided from within the instruction itself, and
is presented symbolically as in the assembly-language form of the instruction.
Its value appears in the "Before" column.

The "Before" and "After" columns present the values of operands before and after
execution of the example instruction. The radixes used in presenting these
values are listed in the column heading, as

 "Hex" = Hexadecimal,
 "Binary" = Binary,
 "Boolean" = Boolean interpretation of the value (True or False), or
 "Dec" = Decimal interpretation of the value. Where a value can be
 interpreted as either signed or unsigned, and the distinction is
 relevant to the action of the instruction, the terms "Signed"
 and "Unsigned" are used.

NOTE: An immediate or displacement value is not considered to have an "After"
 value, even though it never changes, because it is not available as an
 immediate or displacement value to any subsequent instructions.

 5-3

 SUBCi
 Subtract with Carry [Borrow] (continued)

 Examples:

 1. SUBCB 32, R1 70 A0 20
 2. SUBCW TOS, -8(FP) 31 BE 78

 Example 1 subtracts the sum of 32 and the C flag value from the low-order byte of
 register R1 and places the result in the low-order byte of register R1. The
 remaining bytes of R1 are not affected.

 Example 2 subtracts the sum of the word at the top of the stack and the C flag
 value from the word at the memory address specified by -8(FP). The instruction
 then places the 2-byte result at the memory address specified as -8(FP).

 In the following illustration, the C flag value is assumed to be 1.

 Operand Values: Hex (Dec)
 Operands Before After

 Ex. 1: 32 20 --
 (immediate) (+32)

 R1 00000050 0000002F
 (+80) (+47)

 UPSR nzfvxlt1 nz0vxlt0

 Ex. 2: -8(FP) CB99 9286
 (-13415) (-28026)

 UPSR nzfvxlt1 nz0vxlt0

 Stack:
 0000FFEE 3912 (+14610) xxxx *
 0000FFF0 AAAA AAAA

 SP 0000FFEE 0000FFF0

 * The instruction has not itself changed the contents of these memory locations.
 However, information that is outside the stack should be considered unpredict-
 able for other reasons. See Section 2.8.1.

 Figure 5-2 Typical Instruction Example

 5-4

Machine
Language

Assembly
Language

Radixes
 Used

Effects of
Example 1

Effects of
Example 2

5.1.3 Operand Presentation Format

The memory format convention used by the Series 32000 family places the least-
significant byte of a memory operand at the first (i.e. lowest) address. The
correct interpretation of a multiple-byte value in memory, therefore, is produced
by assembling consecutive bytes of the value from right to left. The address of
an operand in memory is also the address of its least-significant byte.

Operand values in examples are presented in units of bytes, words, double-words
or quad-words. Each unit is shown in the form corresponding to the interpreta-
tion of its contents, so that the least-significant digit of its least-
significant byte always appears as the rightmost digit.

Units appearing consecutively in memory are separated from each other either
horizontally (by a space) or vertically. Memory addresses of consecutive units
increase to the right and downward. The value given in the Operand column is the
address of the first unit (i.e. the address of its least-significant byte). For
example,

 5000 1234 5678 9ABC and 5000 1234
 5678
 9ABC

both show three consecutive 16-bit words in memory starting with the value 1234
at address 5000. If the same memory information were presented as consecutive
bytes, it would appear as

 5000 34 12 78 56 BC 9A .

Because an immediate or displacement value is encoded within the instruction
format with its most-significant byte at the lowest address (i.e. backward from
the ordering used elsewhere in memory), any such value is presented in the form
of consecutive bytes.

Hexadecimal and binary operand representations are always presented fully,
including any leading zeroes, in order to define the length of each unit
unambiguously.

The character "x" means "don't care". Within a value in the Before column, any
field made up of these characters is ignored. Within a result in the After
column, these represent a field which may be changed unpredictably. In a binary
value, each "x" represents one don't care bit. In a hexadecimal value, each "x"
represents four bits, all of which are don't care bits.

Filler values of hexadecimal A...A, B...B or C...C are used in examples instead
of x...x whenever there is information which is ignored but also not changed.
Any decimal interpretation given with the operand ignores these fields. The
values 0...0 and F...F are never used as filler, as they occur very often within
the significant portion of an operand.

 5-5

The Processor Status register (PSR) is presented in binary, in the form
xxxxIPSU/NZFVxLTC. In the Before column of an example, lower-case letters
(e.g. xxxxipsu/nzfvxltc) represent initially unknown values of the corresponding
bits. Any bits appearing in the After column which still contain these lower-
case symbols have not been changed by the instruction being illustrated, with the
exception of all bits shown as "x", which are don't care bits as defined above.
Any bits which are changed by the instruction are shown in the After column with
their new values underlined. In situations where the most-significant half of
the PSR is never used or affected by an instruction, only the least-significant
half of the PSR is shown, labeled UPSR for "User PSR".

 5-6

5.2 Instruction Definitions

This section defines the individual Series 32000 instructions. The instructions
are ordered alphabetically by their general mnemonic form. For listings of
instructions by functional groups, see Appendix A. For help in interpreting the
information presented here, see the beginning of this chapter.

 5-7

ABSf
Absolute Value Floating

Syntax: ABSf src, dest ABSF
 gen gen ABSL
 read.f write.f

 ! src ! dest ! ABSf !
 +---------+---------+---------+-+---------------+
 ! gen ! gen !1 1 0 1 0!f!1 0 1 1 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The ABSf instruction computes the absolute value of the src operand and places
the result in the dest operand location.

Flags Affected: No PSR flags.
 The FSR TT field is set to reflect any exceptional conditions
 encountered in executing the instruction. If none is
 encountered, TT is set to all zeroes. See Sections 2.4.2 and
 3.3 for details of exceptional conditions and reporting.

Traps: Undefined Instruction Trap(UND) is activated if the F bit in
 the CFG register is clear.

 Floating-Point Trap (FPU) is activated if a floating-point
 exception is detected. See Section 3.3.

Example:

 ABSF F0, F2 BE B5 00

This example computes the absolute value of the single-precision number in
register F0 and places the result in register F2.

The instruction is illustrated below:

 Operand Values: Hex (Dec)
 Operands Before After

 F0 C2250000 C2250000
 (-41.25) (-41.25)

 F2 AAAAAAAA 42250000
 (+41.25)

 5-8

 ABSi
Absolute Value

Syntax: ABSi src, dest ABSB
 gen gen ABSW
 read.i write.i ABSD

 ! src ! dest ! ABSi !
 +---------+---------+-------+---+---------------+
 ! gen ! gen !1 1 0 0! i !0 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The ABSi instruction computes the absolute value of the src operand and places
the result in the dest operand location.

The absolute value of a positive number is the number itself. The absolute value
of a negative number is taken by subtracting it (as two's complement) from zero.

Flags Affected: F is set if an overflow from subtraction occurs, cleared
 otherwise. An overflow condition will occur if the src operand
 is the most negative number that can be represented in the
 operand length specified by the programmer. For bytes, this
 value is -128 (Hex 80): for words it is -32768 (Hex 8000) and
 for double-words it is -2,147,483,648 (Hex 80000000). These
 values have no corresponding positive values in the same operand
 length. The result produced on an overflow is the original src
 operand value.

 C is not affected.

Traps: Integer Overflow Trap (OVF) is activated if the V flag is set
 and the result cannot be represented exactly in dest.

 5-9

ABSi
Absolute Value (continued)

Examples:

 1. ABSB R5, R6 4E B0 29
 2. ABSD 8(SP), R7 4E F3 C9 08

Example 1 computes the absolute value of the low-order byte of register R5 and
places the result in the low-order byte of register R6. The remaining bytes of
R6 are not affected.

Example 2 computes the absolute value of the double-word at the memory address
specified by 8(SP) and places the result in register R7.

These instructions are illustrated below:

 Operand Values: Hex (Dec)
 Operands Before After

 Ex. 1: R5 AAAAAA13 AAAAAA13
 (+19) (+19)

 R6 BBBBBBBB BBBBBB13
 (+19)

 UPSR nzfvxltc nz0vxltc

 Ex. 2: 8(SP) FFFFFFFF FFFFFFFF
 (-1) (-1)

 R7 AAAAAAAA 00000001
 (+1)

 UPSR nzfvxltc nz0vxltc

 5-10

 ACBi
Add, Compare and Branch

Syntax: ACBi inc, index, dest ACBB
 quick gen disp ACBW
 rmw.i ACBD

 ! index ! inc ! ACBi !
 +---------+-------+---------+---+
 ! gen ! quick !1 0 0 1 1! i !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

The ACBi instruction adds the inc value to the index operand (after sign- extend-
ing the 4-bit inc value to the length of index) and places the sum in the index
operand location. If the sum is not zero, the instruction branches to the loca-
tion specified as dest. If the sum is zero, the instruction ignores dest and
passes control to the next sequential instruction.

In the machine instruction, dest is specified as a displacement from the current
contents of the Program Counter; i.e., from the address of the first byte of this
instruction. Using the NSC Series 32000 assembler, this displacement may be
given explicitly in the form *+disp or *-disp, or dest may be specified as a
statement label or as any addressing expression that evaluates to an address
accessible via Program Counter Relative addressing. See the applicable assembler
manual for further information.

Flags Affected: None.

Traps: Integer Overflow Trap (OVF) is activated if the V flag is set
 and the result cannot be represented exactly in index.

Example:

 LOOP: MULD R2, R1 CE 63 10
 ACBB -1, R0, LOOP CC 07 7D

In this example, the ACBB instruction adds -1 to the low-order byte of register
R0 and passes execution control to the MULD statement labeled LOOP as long as the
result is not zero. The combined instructions form an iterative loop.

 5-11

ACBi
Add, Compare and Branch (continued)

The action of each execution of the above ACBB instruction is illustrated below.
Initial values for registers R0, R1, and R2 are assumed to be 3, 2, and 2,
respectively. Note that at the first execution of the ACBB instruction the first
MULD instruction has already been executed. The MULD instruction, labeled LOOP,
is assumed to be at address 9000 Hex, and the ACBB instruction is assumed to be
at address 9003 Hex.

 Operand Values: Hex
 Operand Before After

 1: PC 00009003 00009000 *
 R0 AAAAAA03 AAAAAA02
 R1 00000004 00000004
 R2 00000002 00000002

 2: PC 00009003 00009000 *
 R0 AAAAAA02 AAAAAA01
 R1 00000008 00000008
 R2 00000002 00000002

 3: PC 00009003 00009006 **
 R0 AAAAAA01 AAAAAA00
 R1 00000010 00000010 ***
 R2 00000002 00000002

 * The disp operand value is assumed to be -3, encoded in one-byte displacement
 format as 7D Hex. This is the difference between the statement labeled LOOP
 and the ACBB instruction.

 ** The ACBB instruction is executed three times and returns control to the MULD
 instruction at address 9000 twice. At the third execution, register R0
 is decremented to zero so the instruction passes control to the next
 sequential instruction at address 9006.

*** The final result of the MULD iterative loop is ((2*2)*2)*2 or 16 (=10 Hex).

 5-12

 ADDf
Add Floating

Syntax: ADDf src, dest ADDF
 gen gen ADDL
 read.f rmw.f

 ! src ! dest ! ADDf !
 +---------+---------+---------+-+---------------+
 ! gen ! gen !0 0 0 0 0!f!1 0 1 1 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The ADDf instruction adds the src and dest operands and places the result in
the dest operand location. Results for normalized and zero operands are given
in the table below. The symbols "m" and "n" represent any non-zero normalized
numbers. The symbols "+z" and "-z" represent positive zero and negative zero,
respectively.

 dest: n +z -z
 src !
 !
 m ! m+n* m m
 !
 +z ! n +z *
 !
 -z ! n * -z

* These cases, when the result is zero, select the result based on the current
 rounding mode selected in the FSR. If the "Round toward Negative Infinity"
 mode is selected, then the result returned is negative zero. Otherwise, the
 result returned is positive zero.

Flags Affected: No PSR flags. FSR flags are affected as follows:
 UF is set if an underflow occurs; unaffected otherwise.
 IF is set on an inexact result; unaffected otherwise.
 TT field is set to reflect any exceptional conditions
 encountered in executing the instruction. If none is
 encountered, TT is set to all zeroes.
 See Sections 2.4.2 and 3.3 for details of exceptional conditions
 and reporting.

Traps: Undefined Instruction Trap (UND) is activated if the F bit in
 the CFG register is clear.

 Floating-Point Trap (FPU) is activated if a floating-point
 exception is detected. See Section 3.3.

 5-13

ADDf
Add Floating (continued)

Examples:

 1. ADDF F0, F7 BE C1 01
 2. ADDL F2, 16(SB) BE 80 16 10

Example 1 adds the single-precision numbers in registers F0 and F7 and places the
result in register F7.

Example 2 adds the double-precision numbers in register F2 and at the address
16(SB) and places the double-precision result at address 16(SB).

 Operand Values: Hex (Dec)
 Operands Before After

 Ex. 1: F0 40840000 40840000
 (+4.125) (+4.125)

 F7 41D40000 41F50000
 (+26.5) (+30.625)

 Ex. 2: F2 41C0200888300000 41C0200888300000
 (+541069584.375) (+541069584.375)

 16(SB) 4114C86300000000 41C022A194900000
 (+340504.75) (+541410089.125)

 5-14

 ADDi
Add

Syntax: ADDi src, dest ADDB
 gen gen ADDW
 read.i rmw.i ADDD

 ! src ! dest ! ADDi !
 +---------+---------+-------+---+
 ! gen ! gen !0 0 0 0! i !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

The ADDi instruction adds the src and dest operands and places the sum in the
dest operand location.

Flags Affected: C is set on a carry from addition, cleared if no carry.
 F is set on an overflow from addition, cleared if no overflow.
 Integer carry and overflow conditions are defined in
 Section 3.1

Traps: Integer Overflow Trap (OVF) is activated if the V flag is set
 and the result cannot be represented exactly in dest.

 5-15

ADDi
Add (continued)

Examples:

 1. ADDB R0, R1 40 00
 2. ADDD 4(SB), -4(FP) 03 D6 04 7C

Example 1 adds the low-order byte of register R0 to the low-order byte of
register R1 and places the result in the low-order byte of register R1. The
remaining bytes of R1 are not affected.

Example 2 adds double-words. 4(SB) and -4(FP) specify the operand addresses.
The instruction places the double-word sum in memory at the address specified by
-4(FP).

 Operand Values: Hex (Dec)
 Operands Before After

 Ex. 1: R0 AAAAAA9F AAAAAA9F
 (-97) (-97)

 R1 BBBBBB62 BBBBBB01
 (+98) (+1)

 UPSR nzfvxltc nz0vxlt1

 Ex. 2. 4(SB) 20401110 20401110
 (+541069584) (+541069584)

 -4(FP) 0334A001 2374B111
 (+53780481) (+594850065)

 UPSR nzfvxltc nz0vxlt0

 5-16

 ADDCi
Add with Carry

Syntax: ADDCi src, dest ADDCB
 gen gen ADDCW
 read.i rmw.i ADDCD

 ! src ! dest ! ADDCi !
 +---------+---------+-------+---+
 ! gen ! gen !0 1 0 0! i !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

The ADDCi instruction adds the src operand, dest operand, and the C flag and
places the sum in the dest operand location.

Flags Affected: C is set on a carry from addition, cleared if no carry.
 F is set on an overflow from addition, cleared if no overflow.
 Integer carry and overflow conditions are defined in
 Section 3.1.

Traps: Integer Overflow Trap (OVF) is activated if the V flag is set
 and the result cannot be represented exactly in dest.

 5-17

ADDCi
Add with Carry (continued)

Examples:

 1. ADDCB 32, R0 10 A0 20
 2. ADDCD 8(SB), R0 13 D0 08

Example 1 adds 32, the low-order byte of register R0, and the C flag contents and
places the result in the low-order byte of register R0. The remaining bytes of
register R0 are unaffected.

Example 2 adds the double-word at the address specified by 8(SB), the contents of
the register R0, and the contents of the C flag and places the result in register
R0.

In the following illustration, the C flag is assumed to be 1.

 Operand Values: Hex (Dec)
 Operands Before After

 Ex. 1: 32 20 --
 (immediate) (+32)

 R0 AAAAAA0F AAAAAA30
 (+15) (+48)

 UPSR nzfvxlt1 nz0vxlt0

 Ex. 2: 8(SB) FFFFFFFF FFFFFFFF
 (-1) (-1)

 R0 00000030 00000030
 (+48) (+48)

 UPSR nzfvxlt1 nz0vxlt1

 5-18

 ADDPi
Add Packed Decimal

Syntax: ADDPi src, dest ADDPB
 gen gen ADDPW
 read.i rmw.i ADDPD

 ! src ! dest ! ADDPi !
 +---------+---------+-------+---+---------------+
 ! gen ! gen !1 1 1 1! i !0 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The ADDPi instruction adds the src operand, dest operand, and the C flag and
places the result in the dest operand location as a packed decimal (BCD)
integer.

The src and dest operands are interpreted as unsigned packed decimal (BCD)
integers. If either operand contains invalid digits, the result is undefined.
See Section 3.2 for details of packed decimal arithmetic.

Flags Affected: C is set on a carry, cleared if no carry.
 F is cleared.
 The packed decimal carry condition is defined in Section 3.2.

Traps: None.

 5-19

ADDPi
Add Packed Decimal (continued)

Examples:

 1. ADDPD R0, R1 4E 7F 00
 2. ADDPB 5(SB), TOS 4E FC D5 05

Example 1 adds the packed decimal double-word integers contained in registers R0
and R1 and the C flag and places the result in register R1.

Example 2 adds two byte-long packed decimal integers. The integers are at the
addresses specified by 5(SB) and TOS. The instruction places the one-byte result
on the top of the stack.

In the following illustrations, the C flag value is assumed to be 0.

 Operand Values: Hex *
 Operands Before After

 Ex. 1: R0 75308643 75308643

 R1 12345678 87654321

 UPSR nzfvxlt0 nz0vxlt0

 Ex. 2: 5(SB) 99 99

 SP 0000FFDE 0000FFDE

 Stack:
 0000FFDE 01 00 **
 0000FFDF AA AA

 UPSR nzfvxlt0 nz0vxlt1

* The hexadecimal representation also expresses the decimal interpretation of
 the value.

** In Example 2, a carry occurs.

 5-20

 ADDQi
Add Quick Integer

Syntax: ADDQi src, dest ADDQB
 quick gen ADDQW
 rmw.i ADDQD

 ! dest ! src ! ADDQi !
 +---------+-------+---------+---+
 ! gen ! quick !0 0 0 1 1! i !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

The ADDQi instruction adds the src and dest operands and places the result in the
dest operand location. Before the addition is performed, src is sign-extended to
the length of dest.

Flags Affected: C is set on a carry from addition, cleared if no carry.
 F is set on an overflow from addition, cleared if no overflow.
 Integer carry and overflow conditions are defined in
 Section 3.1.

Traps: Integer Overflow Trap (OVF) is activated if the V flag is set
 and the result cannot be represented exactly in dest.

Example:

 ADDQB -8, R0 0C 04

The above example adds the quick integer -8 to the low-order byte of register R0.
The remaining bytes of R0 are unaffected.

The action of the above instruction is illustrated below.

 Operand Values: Hex (Dec)
 Operands Before After

 -8 F8 * --
 (quick) (-8)

 R0 AAAAAA78 AAAAAA70
 (+120) (+112)

 UPSR nzfvxltc nz0vxlt1

* This shows the internal format of the quick operand after sign-extension to
 byte length. The operand is encoded within the instruction as binary 1000.

 5-21

ADDR
Compute Effective Address

Syntax: ADDR src, dest
 gen gen
 addr write.D

 ! src ! dest ! ADDR !
 +---------+---------+-----------+
 ! gen ! gen !1 0 0 1 1 1!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

The ADDR instruction places the effective address of the src operand into the
dest operand location. The src operand itself is not referenced.

Flags Affected: None.

Traps: None.

Example:

 ADDR 4(FP), R0 27 C0 04

This example places the effective address specified as 4(FP) into register R0.

 Operand Values: Hex
 Operands Before After

 FP 00001000 00001000

 R0 AAAAAAAA 00001004 *

* The effective address of 4(FP) is the sum of the contents of the FP register
 (H'1000) and the displacement 4, as defined for the Frame Memory addressing
 mode.

 5-22

 ADJSPi
Adjust Stack Pointer

Syntax: ADJSPi src ADJSPB
 gen ADJSPW
 read.i ADJSPD

 ! src ! ADJSPi
 +---------+-----------------+---+
 ! gen !1 0 1 0 1 1 1 1 1! i !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

The ADJSPi instruction adjusts the value of the current stack pointer by subtrac-
ting the src operand from it. This has the effect of lengthening the stack by
the number of bytes given in the src operand if positive, and shortening it if
src is negative. The S flag in the PSR determines whether the current stack
pointer register is SP0 or SP1. Regardless of the length of the src operand, the
entire stack pointer is modified. The src operand is interpreted as a signed
integer, and is sign-extended to 32 bits before the subtraction is performed.

Flags Affected: None.

Traps: None.

Example:

 ADJSPD -4(FP) 7F C5 7C

This instruction subtracts the double-word at address -4(FP) from the contents of
the current stack pointer, lengthening the stack by that number of bytes.

In the following illustration, the PSR S flag is assumed to be set, selecting
register SP1 as the current stack pointer.

 Operand Values: Hex
 Operands Before After

 -4(FP) 00000010 00000010

 SP1 00001010 00001000

 5-23

ANDi
And

Syntax: ANDi src, dest ANDB
 gen gen ANDW
 read.i rmw.i ANDD

 ! src ! dest ! ANDi !
 +---------+---------+-------+---+
 ! gen ! gen !1 0 1 0! i !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

The ANDi instruction performs a bit-wise logical AND on the src and dest operands
and places the result in the dest operand location.

The instruction ANDs each bit in src with the corresponding dest bit. If two
corresponding bits are both "1", the dest bit is set to "1"; otherwise, the dest
bit is set to "0".

Flags Affected: None.

Traps: None.

Example:

 ANDB R0, R1 68 00

This example ANDs the low-order bytes of registers R0 and R1 and places the
result in the low-order byte of R1. The instruction affects only the low-order
byte of R1.

The instruction is illustrated below:

 Operand Values: Binary
 Operands Before After

 R0 10010010 10010010
 (low byte)

 R1 01110111 00010010
 (low byte)

 5-24

 ASHi
Arithmetic Shift

Syntax: ASHi count, dest ASHB
 gen gen ASHW
 read.B rmw.i ASHD

 ! count ! dest ! ASHi !
 +---------+---------+-------+---+---------------+
 ! gen ! gen !0 0 0 1! i !0 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The ASHi instruction performs an arithmetic shift on the dest operand in the
manner specified by the count operand. The sign of count determines the
direction of the shift. The absolute value of count gives the number of bit
positions to shift the dest operand.

The count operand value must be within the range -7 to +7 for the ASHB form,
-15 to +15 for the ASHW form, and -31 to +31 for the ASHD form. A positive count
specifies a left shift; a negative count specifies a right shift. In an arithme-
tic left shift, high-order bits (including the sign bit) shifted out of dest are
lost, and low-order bit positions emptied by the shift are zero-filled. In an
arithmetic right shift, low-order bits shifted out of dest are lost, and all
high-order bit positions emptied by the shift are filled from the original sign
bit of dest.

The count and dest operands are interpreted as signed integers.

Flags Affected: None.

Traps: Integer Overflow Trap (OVF) is activated if the V flag is set
 and the result cannot be represented exactly in dest.

 5-25

ASHi
Arithmetic Shift (continued)

Examples:

 1. ASHB 2, 16(SB) 4E 84 A6 02 10
 2. ASHB TOS, 16(SB) 4E 84 BE 10

Example 1 shifts the byte specified by 16(SB) two bit positions to the left.

Example 2 pops a byte from the top of the currently-selected stack. Based on
this value, it shifts the byte specified by 16(SB) accordingly.

 Operand Values: Binary (Dec)
 Operands Before After

 Ex. 1. 2 00000010 --
 (immediate) (+2)

 16(SB) 00011111 01111100
 (+31) (+124)

 Ex. 2: Stack:
 (48000) 11111110 (-2) xxxxxxxx
 (48001) 10101010 10101010

 16(SB) 11111000 11111110
 (-8) (-2)

 SP (48000) (48001)

 5-26

 Bcond
Conditional Branch

Syntax: Bcond dest
 disp

 ! cond ! B !
 +-------+-------+
 ! short !1 0 1 0!
 !-+-+-+-+-+-+-+-!
 7 0

The Bcond instruction branches to the location specified as dest if the condition
specified by cond is true. If the condition is false, execution continues with
the next sequential instruction.

Cond is a two character condition name that specifies the state of a flag or
flags in the PSR. If the flag(s) have the specified state, the condition is
true! otherwise, the condition is false.

The Conditional Branch instruction may specify the following conditions:

 Condition True Short
 Condition Name State Field

 Equal EQ Z flag set 0000
 Not Equal NE Z flag clear 0001
 Carry Set CS C flag set 0010
 Carry Clear CC C flag clear 0011
 Higher HI L flag set 0100
 Lower or Same LS L flag clear 0101
 Greater Than GT N flag set 0110
 Less Than or Equal LE N flag clear 0111
 Flag Set FS F flag set 1000
 Flag Clear FC F flag clear 1001
 Lower LO Z and L flags clear 1010
 Higher or Same HS Z or L flag set 1011
 Less Than LT Z and N flags clear 1100
 Greater Than or Equal GE Z or N flag set 1101

The condition name is appended to the instruction mnemonic as illustrated in the
following examples. The name is translated at assembly time to the corresponding
4-bit Short field of the basic instruction.

The interpretation of condition codes is such that the instruction sequence

 CMPB A,B
 BGT ERROR

will cause a branch if operand A is greater than operand B in the CMPB
instruction.

 5-27

Bcond
Conditional Branch (continued)

In the machine instruction, dest is specified as a displacement from the current
contents of the Program Counter; i.e., from the address of the first byte of this
instruction (see Section 4.2.3 for displacement formats). Using the ASM16
assembler, this displacement may be given explicitly in the form *+disp or
*-disp, or dest may be specified as a statement label or any addressing expres-
sion which evaluates to an address accessible via Program Counter Relative
addressing. See the applicable assembler manual for further information.

Flags Affected: None.

Traps: None.

Examples:

 1. BLO LOOP AA BF 66
 2. BNE *+10 1A 0A

Example 1 passes execution control to the instruction labeled LOOP if the Z and L
flags in the PSR are 0.

Example 2 passes execution control to a nonsequential instruction if the Z flag
is 0. The instruction passes execution control by adding 10 to the PC register.

In the following illustrations, the Z and L flags are assumed to be zero. LOOP
is assumed to be the label of a statement beginning at address 9000 Hex.

 Operand Values: Hex (Dec)
 Operand Before After

 Ex. 1: PC 0000909A 00009000
 (37018) (36864)

 LOOP BF 66 --
 (disp) (-154)

 UPSR n0fvx0tc n0fvx0tc

 Ex. 2: PC 00009FF0 00009FFA
 (40944) (40954)

 *+10 0A --
 (disp) (+10)

 UPSR n0fvx0tc n0fvx0tc

 5-28

 BICi
Bit Clear

Syntax: BICi src, dest BICB
 gen gen BICW
 read.i rmw.i BICD

 ! src ! dest ! BICi !
 +---------+---------+-------+---+
 ! gen ! gen !0 0 1 0! i !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

The BICi instruction clears (sets to 0) the bits in the dest operand that
correspond to the "1" bits in the src operand.

Flags Affected: None.

Traps: None.

Example:

 BICB R0, 3(SB) 88 06 03

This example clears the bits, in the byte at address 3(SB), corresponding to the
"1" bits in the low-order byte of register R0.

 Operand Values (Binary)
 Operands Before After

 R0 10011001 10011001
 (low byte)

 3(SB) 11110000 01100000

 5-29

BICPSRB
BICPSRW
Bit Clear in PSR

Syntax: BICPSRB src
 gen
 read.B

 ! src ! BICPSRB !
 +---------+---------------------+
 ! gen !0 0 1 0 1 1 1 1 1 0 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

Syntax: BICPSRW src
 gen
 read.W

 ! src ! BICPSRW !
 +---------+---------------------+
 ! gen !0 0 1 0 1 1 1 1 1 0 1!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

The Bit Clear in PSR instructions clear (set to 0) the bits in the PSR correspon-
ding to the "1" bits in the src operand. The BICPSRB instruction affects only
the low-order byte of the PSR; the BICPSRW instruction affects the entire PSR.

Flags Affected: Flags specified by src "1" bits are cleared.

Traps: Illegal Operation Trap (IIL) is activated if a BICPSRW instruc-
 tion is attempted while the PSR U flag is set.

Example:

 BICPSRB B'10100010 7C A1 A2

This instruction clears bits 1, 5 and 7 in the low-order byte of the PSR. These
are the T, F and N flags, respectively.

The instruction is illustrated below:

 Operand Values (Binary)
 Operands Before After

 B'10100010 10100010 --
 (immediate)

 PSR xxxxipsu/nzfvxltc xxxxipsu/0z0vxl0c

 5-30

 BISPSRB
 BISPSRW
Bit Set in PSR

Syntax: BISPSRB src
 gen
 read.B

 ! src ! BISPSRB !
 +---------+---------------------+
 ! gen !0 1 1 0 1 1 1 1 1 0 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

Syntax: BISPSRW src
 gen
 read.W

 ! src ! BISPSRW !
 +---------+---------------------+
 ! gen !0 1 1 0 1 1 1 1 1 0 1!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

The BISPSRB and BISPSRW instructions set the bits in the PSR corresponding to the
"1" bits in the src operand.

Flags Affected: Flags specified by src "1" bits are set.

Traps: Illegal Operation Trap (ILL) is activated if a BISPSRW
 instruction is attempted while the PSR U flag is 1.

Example:

 BISPSRB B'10100010 7C A3 A2

This instruction sets bits 1, 5 and 7 in the low-order byte of the PSR. These
are the T, F and N flags, respectively.

 Operand Values (Binary)
 Operands Before After

 B'10100010 10100010 --
 (immediate)

 PSR xxxxipsu/nzfvxltc xxxxipsu/1z1vxl1c

 5-31

BPT
Breakpoint Trap

Syntax: BPT

 ! BPT !
 +---------------+
 !1 1 1 1 0 0 1 0!
 !-+-+-+-+-+-+-+-!
 7 0

The BPT instruction activates the Breakpoint Trap (BPT). The return address
pushed on the Interrupt Stack is the address of the BPT instruction itself.

Flags Affected: None.

Traps: Breakpoint Trap (BPT) is activated.

Example:

 BPT F2

 5-32

 BR
Unconditional Branch

Syntax: BR dest
 disp

 ! BR !
 +---------------+
 !1 1 1 0 1 0 1 0!
 !-+-+-+-+-+-+-+-!
 7 0

The BR instruction branches to the location specified as dest.

In the machine instruction, dest is specified as a displacement from the current
contents of the Program Counter; i.e., from the address of the first byte of this
instruction. Using the NSC Series 32000 assembler, this displacement may be
given explicitly in the form *+disp or *-disp, or dest may be specified as a
statement label or any addressing expression which evaluates to an address
accessible via Program Counter Relative addressing. See the applicable assembler
manual for further information.

Flags Affected: None.

Traps: None.

Examples:

 1. BR ERROR EA BF 66
 2. BR *+10 EA 0A

Example 1 passes execution control to the instruction labeled ERROR.

Example 2 passes execution control to a nonsequential instruction by adding 10 to
the PC register.

In the following illustration, ERROR is assumed to be the label of a statement
beginning at address 9000 Hex.

 Operand Values: Hex (Dec)
 Operand Before After

 Ex. 1: PC 0000909A 00009000
 (37018) (36864)

 ERROR BF 66 --
 (disp) (-154)

 Ex. 2: PC 00009FF0 00009FFA
 (40944) (40954)

 *+10 0A --
 (disp) (+10)

 5-33

BSR
Branch To Subroutine

Syntax: BSR dest
 disp

 ! BSR !
 +---------------+
 !0 0 0 0 0 0 1 0!
 !-+-+-+-+-+-+-+-!
 7 0

The BSR instruction calls the local procedure at the address specified as dest.
It does so by pushing the address of the next sequential instruction onto the
currently-selected stack and branching.

In the machine instruction, dest is specified as a displacement from the current
contents of the Program Counter: i.e., from the address of the first byte of this
instruction. Using the NSC Series 32000 assembler, this displacement may be
given explicitly in the form *+disp or *-disp, or dest may be specified as a
statement label or any addressing expression which evaluates to an address
accessible via Program Counter Relative addressing. See the applicable assembler
manual for further information.

Flags Affected: None.

Traps: None.

Example:

 BSR CALC 02 10

This example causes a program to branch to the local procedure labeled CALC after
saving the address of the next sequential instruction on the stack.

The action of the above instruction is illustrated below. The statement labeled
CALC is assumed to be at address 9010 Hex, 16 bytes forward from the first byte
of this instruction. Since the displacement field is one byte long, the total
length of this instruction is two bytes. The return address is therefore the
original PC contents plus two.

 Operand Values: Hex (Dec)
 Operand Before After

 PC 00009000 00009010

 CALC 10 --
 (disp) (+16)

 SP 0000FFD4 0000FFD0

 Stack:
 0000FFD0 xxxxxxxx 00009002
 0000FFD4 AAAAAAAA AAAAAAAA

 5-34

 CASEi
Case Branch

Syntax: CASEi src CASEB
 gen CASEW
 read.i CASED

 ! src ! CASEi !
 +---------+-----------------+---+
 ! gen !1 1 1 0 1 1 1 1 1! i !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

The CASEi instruction branches to a nonsequential instruction by adding the src
operand to the PC register. The src operand is interpreted as a signed integer,
and is sign-extended to 32 bits before the addition is performed.

A Case Branch instruction, using Scaled Indexing and a table of branch offsets,
may be used to implement a multiway branch. See example below.

Flags Affected: None.

Traps: None.

Example:

 CASEB TABLE[R7:B] 7C E7 DF 04
 TABLE: ; (starts here)

This example branches to a nonsequential instruction by adding the byte at the
address specified by TABLE[R7:B] to the PC register. The entire contents of
register R7 determine the location of the operand to be added.

 Operand Values: Hex
 Operand Before After

 PC 00009000 0000906A

 R7 00000005 00000005

 TABLE
 00009004 * 0A 1A 3A 5A 7A 6A 4A 0A 1A 3A 5A 7A 6A 4A

 TABLE[R7:B] 6A 6A

* Address 9004 (Hex) marks the beginning of a table of branch offsets. In this
 example, the table is located directly after the CASEB instruction, and is
 accessed via the Program Memory addressing mode, with a displacement of 4.
 Since register R7 contains 5, the effective address of TABLE[R7:B] is 9009
 (Hex). This means the sixth branch offset (6A) is selected to be added to the
 PC register.

 5-35

CBITi
CBITIi
Clear Bit, Clear Bit Interlocked

Syntax: CBITi offset, base CBITB CBITIB
 gen gen CBITW CBITIW
 read.i regaddr CBITD CBITID

 ! offset ! base ! CBITi !
 +---------+---------+-------+---+---------------+
 ! gen ! gen !0 0 1 0! i !0 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

Syntax: CBITIi offset, base
 gen gen
 read.i regaddr

 ! offset ! base ! CBITIi !
 +---------+---------+-------+---+---------------+
 ! gen ! gen !0 0 1 1! i !0 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The CBITi and CBITIi instructions clear (set to 0) the register or memory bit
specified by base and offset after copying the bit value to the F flag in the
PSR.

The CBITIB, CBITIW, and CBITID instructions, in addition, activate the Inter-
locked Operation output pin on the CPU, which may be used in multi-processor
systems to interlock accesses to semaphore bits. See the applicable CPU data
sheet for further details.

The location of the bit is determined from offset and base. Offset is a general
operand, whose length is given by the operation length suffix. Base is an
addressing expression giving a byte address from which offset specifies a bit
position. See Section 3.5 for details of specifying bit positions.

If base is a register, then the bit is within that register, at the bit position
given by the offset operand. If base is a memory location, then the bit is at
bit position

 offset MOD 8

within the memory byte whose address is

 EA(base) + (offset DIV 8),

where EA(base) is the effective address of base. See Section 3.5 for defini-
tions of the operators MOD and DIV above, and for further details of bit
instructions.

Offset is interpreted as a signed integer.

 5-36

 CBITi
 CBITIi
Clear Bit (continued)

Flags Affected: F is set to the original value of the specified bit.

Traps: None.

Example:

 CBITW R0, 0(R1) 4E 49 02 00

This example clears a bit in memory after copying the bit value to the F flag.
For designating the location of the target bit, the low-order word of register R0
supplies the bit offset, and 0(R1) is specified as the base address.

In the following illustration, the target bit is assumed to be 1 prior to
instruction execution.

 Operand Values: Hex (Dec) [Binary]
 Operands Before After

 R0 AAAA004C AAAA004C
 (offset) (+76) (+76)

 R1 00001000 00001000
 (+4096) (+4096)

 base 00001000 --
 address (+4096)
 0(R1)

 00001009 * 10 00
 (+4105) [00010000] [00000000]

 UPSR nzfvxltc nz1vxltc

* The address 1009 (Hex) is the effective address of the byte containing the
 desired bit. This address is computed from the offset and the base address as
 follows:

 base address + (offset DIV 8)
 4096 + 9
 4105 , or 1009 (Hex) .

 The bit number within this byte is calculated as:

 offset MOD 8
 76 MOD 8
 4 .

 5-37

CHECKi
Bounds Check

Syntax: CHECKi dest, bounds, src CHECKB
 reg gen gen CHECKW
 addr read.i CHECKD

 ! bounds ! src ! dest! CHECKi !
 +---------+---------+-----+-+---+---------------+
 ! gen ! gen ! reg !0! i !1 1 1 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The CHECKi instruction compares the src operand against an upper and lower bound
from the bounds operand, determining whether it is within those bounds. The
instruction then subtracts the lower bound from src, placing the result as a
32-bit value into the general-purpose register specified as dest. This
"zero-adjusted" result is usable directly as either an index into a
one-dimensional array (within an addressing mode using Scaled Indexing) or as an
input value to the INDEX instruction for generating an index into a multi-
dimensional array. See Section 3.9 for details of array access.

The bounds operand contains two values--an upper bound followed by a lower
bound--as shown:

 +-------------------------------+
 bounds: ! upper bound !
 +-------------------------------+
 ! lower bound !
 +-------------------------------+

The upper and lower bounds each have the same length as the src operand. Thus,
the entire bounds operand is twice the length of the src operand.

If src is greater than the upper bound or less than the lower bound, it is
"out of bounds" and the F flag is set to 1. If src is within the upper and lower
bounds, the F flag is cleared.

The instruction places the zero-adjusted result into the dest register. The
zero-adjusted value is computed as "src - lower bound". The result is zero-
extended to 32 bits. If src is out of bounds, the result placed in dest is
undefined.

The src and bounds operands are interpreted as signed integers. The result
placed in the dest register is a 32-bit unsigned integer.

Flags Affected: F is set if src is out of bounds, cleared otherwise.

Traps: Integer Overflow Trap (OVF) is activated if the V flag is set
 and the src operand is out of bounds.

 5-38

 CHECKi
Bounds Check (continued)

Example:

 CHECKB R0, 4(SB), R2 EE 80 D0 04

This example compares the low-order byte of register R2 with each of the two
one-byte bounds at the address specified by 4(SB). The instruction sets or
clears the F flag to indicate the comparison result and then subtracts the lower
bound from the low-order byte of R2, placing the result in register R0.

The instruction is illustrated below. An array index in the low-order byte of R2
is being checked against its range of [1..10] and then "zero-adjusted" to its
corresponding value for the range [0..9]. The result is being placed into R0 for
use in an addressing mode using Scaled Indexing.

 Operand Values: Hex (Dec)
 Operands Before After

 R0 AAAAAAAA 00000002 *
 (+2)

 4(SB) 0A 01 0A 01
 (+10,+1) (+10,+1)

 R2 AAAAAA03 AAAAAA03
 (+3) (+3)

 UPSR nzfvxltc nz0vxltc

* The result in R0 represents the result of adjusting the value 3 from a range of
 [1..10] to the zero-based range of [0..9]. The corresponding adjusted value is
 2.

 5-39

CINV
Cache Invalidate

Syntax: CINV options, src CINV
 gen
 read.D

 ! src ! options CINV !
 +---------+---------+-------+---+---------------+
 ! gen !0!A!I!D!0 1 0 0 1 1 1 0 0 0 1 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The CINV instruction invalidates the contents of locations in the on-chip Data
Cache and Instruction Cache. The instruction can be used to invalidate either the
entire contents of the on-chip caches or only a 16-byte block (one cache line).
In the latter case, the 28 most-signifcant bits of the source operand specify the
physical address of the aligned 16-byte block; the 4 least-significant bits of
the source operand are ignored. If the specified block is not located in the on-
chip caches, then the instruction has no effect. If the entire cache contents is
to be invalidated, then the source operand is read, but its value is ignored.

Options are specified by listing the letters A (invalidate All), I (Instruction
Cache), and D (Data Cache). If neither the I nor D option is specified, the
instruction has no effect.

In the instruction encoding, the options are represented in the A, I and D fields
as follows:

 A: 0 - invalidate only a 16-byte block (one cache line)
 1 - invalidate the entire cache

 I: 0 - do not affect the Instruction Cache
 1 - invalidate the Instruction Cache

 D: 0 - do not affect the Data Cache
 1 - invalidate the Data Cache

Flags Affected: None.

Traps: Illegal Operation Trap (ILL) is activated if this instruction is
 attempted while the PSR U bit is set.

Examples:

 1. CINV A,D,I,R3 1E A7 1B
 2. CINV I,R3 1E 27 19

Example 1 invalidates the entire Instruction Cache and Data Cache.

Example 2 invalidates the 16-byte block (one cache line) whose physical address
in the Instruction Cache is contained in R3.

 5-40

CMPf
Compare Floating

Syntax: CMPf src1, src2 CMPF
 gen gen CMPL
 read.f read.f

 ! src1 ! src2 ! CMPf !
 +---------+---------+---------+-+---------------+
 ! gen ! gen !0 0 1 0 0!f!1 0 1 1 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The CMPf instruction compares the src1 and src2 operands and sets the Z and N
flags to indicate comparison results. Positive and negative zero are equal.

Flags Affected: Z is set if src1 equals src2, cleared otherwise.
 N is set if src1 is greater than src2, cleared otherwise.
 L is cleared always.
 The FSR TT field is set to reflect any exceptional conditions
 encountered in executing the instruction. If none is
 encountered, TT is set to all zeroes.
 See Sections 2.4.2 and 3.3 for details of exceptional conditions
 and reporting.

Traps: Undefined Instruction Trap (UND) is activated if the F bit in
 the CFG register is clear.

 Floating-Point Trap (FPU) is activated if a floating-point
 exception is detected. See Section 3.3.

Example:

 CMPF F0, F2 BE 89 00

This example compares the single-precision numbers in registers F0 and F2.

 Operand Values: Hex (Dec)
 Operands Before After

 F0 42250000 42250000
 (+41.25) (+41.25)

 F2 40A00000 40A00000
 (+5.0) (+5.0)

 UPSR nzfvxltc 10fvx0tc

 5-41

 CMPi
Compare

Syntax: CMPi src1, src2 CMPB
 gen gen CMPW
 read.i read.i CMPD

 ! src1 ! src2 ! CMPi !
 +---------+---------+-------+---+
 ! gen ! gen !0 0 0 1! i !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

The CMPi instruction compares the src1 and src2 operands and sets the Z, N, and L
flags in the PSR to indicate the comparison result. The N flag indicates the
result of a signed integer comparison; the L flag indicates the result of an
unsigned integer comparison. Both types of comparison are performed.

Flags Affected: Z is set if src1 is equal to src2, cleared otherwise.
 N is set if src1 is greater than src2 (signed comparison),
 cleared otherwise.
 L is set if src1 is greater than src2 (unsigned comparison),
 cleared otherwise.

Traps: None.

Example:

 CMPB 7(SB), 4(R0) 04 D2 07 04

This example compares byte operands. 7(SB) and 4(R0) specify the operand
addresses.

In the following illustration, operand values before instruction execution are
assumed: Z, N and L flag values are unknown.

 Operand Values: Hex (Dec)
 Operands Before After

 7(SB) FF FF
 (signed: -1) (signed: -1)
 (unsigned: +255) (unsigned: +255)

 4(R0) 7F 7F
 (signed: +127) (signed: +127)
 (unsigned: +127) (unsigned: +127)

 UPSR nzfvxltc 00fvx1fc

 5-42

CMPMi
Compare Multiple

Syntax: CMPMi block1, block2, length CMPMB
 gen gen disp CMPMW
 addr addr CMPMD

 ! block1 ! block2 ! CMPMi !
 +---------+---------+-------+---+---------------+
 ! gen ! gen !0 0 0 1! i !1 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The CMPMi instruction compares the contents of block1 and block2 and sets the Z,
N, and L flags to indicate the comparison result. The blocks are comprised of
integers of length i. The number of integers is specified by length.

The instruction compares two integers (one from each block) at a time. If the
current integers are equal, the instruction continues with the next two integers;
otherwise, the instruction sets the PSR flags and terminates.

The N flag indicates the result of signed integer comparison. The L flag
indicates the result of unsigned integer comparison. Both types of comparison
are performed.

In assembly language, the length operand is specified as the number of integers
in each block. In the machine instruction, however, the length operand is
encoded according to the formula

 (num - 1) * i

where num is the number of integers in each block, and i is the number of bytes
per integer.

A block may not be greater than 16 bytes in length.

Flags Affected: Z is set if block1 and block2 are equal for their entire length;
 cleared otherwise.

 N is set if, in the first unequal pair of integers, the block1
 integer is greater than the block2 integer (signed comparison);
 cleared otherwise.

 L is set if, in the first unequal pair of integers, the block1
 integer is greater than the block2 integer (unsigned
 comparison); cleared otherwise.

Traps: None.

 5-43

 CMPMi
Compare Multiple (continued)

Example:

 CMPMW 10(R0), 16(R1), 4 CE 45 42 0A 10 06

This instruction compares four word-long integers from the block starting at the
address specified by 10(R0) to the block starting at the address specified by
16(R1).

 Operand Values: Hex (Signed) [Unsigned]
 Operands Before After

 R0 00002000 00002000

 R1 0000F000 0000F000

 0000200A * 1FBE 1FBE
 10A9 10A9
 8729 (-30935) 8729 (-30935)
 [+34601] [+34601]
 6511 6511

 0000F010 ** 1FBE 1FBE
 10A9 10A9
 0839 (+2105) 0839 (+2105)
 [+2105] [+2105]
 6511 6511

 UPSR nzfvxltc 00fvx1fc

 * The address of the first block as specified by 10(R0).
** The address of the second block as specified by 16(R1).

 5-44

CMPQi
Compare Quick Integer

Syntax: CMPQi src1, src2 CMPQB
 quick gen CMPQW
 read.i CMPQD

 ! src2 ! src1 ! CMPQi !
 +---------+-------+---------+---+
 ! gen ! quick !0 0 1 1 1! i !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

The CMPQi instruction compares the src1 and src2 operands and sets the Z, N, and
L flags to indicate the comparison result. Before the comparison, src1 is
sign-extended to the length of src2. Leading "0"s are supplied for a positive
src operand value; leading "1"s for a negative value.

The N flag indicates the result of signed integer comparison. The L flag
indicates the result of unsigned integer comparison. Both types of comparison
are performed.

Flags Affected: Z is set if src1 is equal to src2, cleared otherwise.
 N is set if src1 is greater than src2 (signed comparison),
 cleared otherwise.
 L is set if src1 is greater than src2 (unsigned comparison),
 cleared otherwise.

Traps: None.

Example:

 CMPQB -8, R0 1C 04

This example compares the quick integer -8 with the low-order byte of register
R0.

 Operand Values: Hex (Signed) [Unsigned]
 Operands Before After

 -8 F8 * --
 (quick) (-8) [+248]

 R0 AAAAAA00 AAAAAA00
 (0) [0] (0) [0]

 UPSR nzfvxltc 00fvx1fc

* This shows the internal format of the quick operand after sign-extension to
 Byte length. The operand is encoded within the instruction as binary 1000.

 5-45

 CMPSi
 CMPST
Compare Strings

Syntax: CMPSi options CMPSB
 CMPSW
 CMPSD
 ! CMPSi ! CMPST
 +---------+---+-+-+---------+---+---------------+
 !0 0 0 0 0!UW !B!0!0 0 0 0 1! i !0 0 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

Syntax: CMPST options

 ! CMPST !
 +---------+---+-+-+---------+---+---------------+
 !0 0 0 0 0!UW !B!1!0 0 0 0 1!0 0!0 0 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

Operands of the CMPSi and CMPST instructions are specified in General Purpose
Registers:

 R0 - Number of string elements to be processed.
 R1 - Address of current String 1 element.
 R2 - Address of current String 2 element.
 R3 - Address of translation table (CMPST form only).
 R4 - Match value (with Until Match or While Match option only).

The CMPSi instruction compares corresponding integer elements from String 1
(address in R1) and String 2 (address in R2) and sets the Z, N and L flags to
indicate the comparison results (see "Flags Affected" below). If the current two
elements are equal, the instruction compares the next two elements; otherwise, it
terminates. After each comparison, the instruction sets register R0 to the
number of elements remaining to be compared and sets registers R1 and R2 to the
addresses of the next elements to be compared. See Section 3.7 for the exact
sequences performed by String instructions.

The N flag indicates the result of signed integer comparison. The L flag
indicates the result of unsigned integer comparison. Both types of comparison
are performed.

The CMPST instruction compares one-byte elements in String 1, after translation,
to one-byte elements in String 2. The translated value to be compared is found
by adding the current element from the first string as an unsigned integer to the
translation table address found in register R3. The instruction compares
elements, sets flags, and sets registers as described above. See Section 3.7 for
details of string translation.

Options may be specified by listing the letters B (Backward), U (Until Match) and
W (While Match) as operands. The U and W options are mutually exclusive. See
Section 3.7 for details of the options available in String instructions.

 5-46

CMPSi
CMPST
Compare Strings (continued)

In the machine instruction, the options are encoded in the B and UW fields as
follows:

 B field = 0 Forward direction.
 1 Backward direction.

 UW field = 00 Neither Until Match nor While Match.
 01 While Match.
 10 (reserved)
 11 Until Match.

String instructions are interruptible. See Section 3.7.

Flags Affected: Z, N and L are affected, as given below.
 F is set if the U or W option is specified and the corresponding
 Until/While condition is met, otherwise it is cleared.

 Because of the variety of termination conditions possible in a
 CMPS instruction, the following sequence is recommended to
 interpret the flag settings:

 1. If the U or W option is specified, then check the F flag. If
 it is set, then the CMPS instruction has terminated because
 of the Until Match or While Match test, and the other flag
 settings are Z=1, N=0, L=0. Register R1 holds the address of
 the String 1 element which caused termination, and register
 R2 holds the address of the corresponding element in String
 2. Register R0 contains the number of elements left to be
 processed, including the element which terminated the

 instruction.

 2. If F=0, check the Z flag. If it is set, then the CMPS
 instruction has terminated because the limit count in R0 has
 been decremented to zero, and the strings are equal up to
 that point. Registers R1 and R2 hold the addresses of the
 next (unprocessed) string elements, and the remaining flag
 settings are N=0, L=0.

 3. If neither the F or Z bit is set (above), then the CMPS
 instruction has terminated because the strings are unequal.
 Registers R1 and R2 hold the addresses of the first two
 string elements that are unequal, and the N and L flags show
 their relation. Register R0 holds the number of remaining
 elements, including the element at which the instruction has
 stopped. If the N bit is set, the element from String 1

 5-47

 CMPSi
 CMPST
Compare Strings (continued)

 (indicated by R1) is greater than the element from String 2
 (indicated by R2), where both are interpreted as signed
 integers. If the L bit is set, the element from String 1 is
 greater than the element from String 2, where both are
 interpreted as unsigned integers.

Traps: None.

Example:

 CMPSB 0E 04 00

This example compares 1-byte elements from two strings until either an unequal
pair is found or the limit count in R0 decrements to zero.

The action of the above instruction on two unequal strings is illustrated below.
The underlined string elements show the point at which the instruction
terminates.

 Operands Values: Hex (Dec)
 Operands Before After

 R0 00000020 0000000F
 (+32) (+15)

 R1 00002000 00002011

 R2 0000F000 0000F011

 UPSR nzfvxltc 100vx1tc

 Starting String Contents
 Addresses

 2000 1E 04 05 1C 0A 14 0C 0B 09 07 1F 0F 17 01 00 11

 1F 1E 1A 09 01 12 14 0E 1E 0A 00 03 09 06 16 18

 F000 1E 04 05 1C 0A 14 0C 0B 09 07 1F 0F 17 01 00 11

 1F 1D 1A 09 01 12 14 0E 1E 0A 00 03 09 06 16 18

 5-48

COMi
Complement

Syntax: COMi src, dest COMB
 gen gen COMW
 read.i write.i COMD

 ! src ! dest ! COMi !
 +---------+---------+-------+---+---------------+
 ! gen ! gen !1 1 0 1! i !0 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The COMi instruction places the one's complement of the src operand in the dest
operand location.

The one's complement is the logical NOT operation performed on each bit of src.
If the src operand bit is "0", then the corresponding dest operand bit is set to
"1". Otherwise, the dest bit is set to "0".

Flags Affected: None.

Traps: None.

Example:

 COMB R0, -4(FP) 4E 34 06 7C

This example places the one's complement of the low-order byte of register R0 in
the byte at the address specified by -4(FP).

The instruction is illustrated below:

 Operand Values: Binary
 Operands Before After

 R0 10101010 10101010
 (low-order)

 -4(FP) 00000000 01010101

 5-49

 CVTP
Convert to Bit Pointer

Syntax: CVTP offset, base, dest
 reg gen gen
 addr write.D

 off-
 ! base ! dest ! set ! CVTP !
 +---------+---------+-----+---------------------+
 ! gen ! gen ! reg !0 1 1 0 1 1 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The CVTP instruction places in the dest operand location the absolute bit address
of the memory bit specified by base and offset. See Section 3.5 for the use of a
base and offset in specifying a bit position.

The bit address specifies the number of bits from the first bit in the memory
space (bit 0 of the byte at address 0) to the specified bit. The bit address is
computed as

 8 * EA(base) + offset

where EA(base) is the effective address calculated for base, and offset is a
signed byte, word or double-word as given by the operation length.

Flags Affected: None.

Traps: None.

Example:

 CVTP R0, 32(SB), R2 6E 83 D0 20

This example computes the absolute bit address of the memory bit specified by
register R0 and the address 32(SB). The instruction places the resulting bit
address into register R2 as a double-word.

 Operand Values: Hex
 Operands Before After

 R0 00001234 00001234

 SB 00000FE0 00000FE0

 base 00001000 --------
 address
 32(SB)

 R2 AAAAAAAA 00009234

 5-50

CXP
Call External Procedure

Syntax: CXP index
 disp

 ! CXP !
 +---------------+
 !0 0 1 0 0 0 1 0!
 !-+-+-+-+-+-+-+-!
 7 0

The CXP instruction calls a procedure which is outside the current module (an
"external" procedure).

The entry point of the external procedure is specified by an external procedure
descriptor, which is located in the Link Table (Section 2.8.3) of the current
module. The index operand gives the Link Table entry number of the descriptor.

The descriptor is a 32-bit value in the following format:

 +-------------------------------+-------------------------------+
 ! offset ! module !
 !-------------------------------!-------------------------------!
 31 16 15 0

The descriptor address is the sum of index, multiplied by four, and the contents
of the double-word at memory address MOD+4 (the Link Base pointer, Section
2.8.2), where MOD is the contents of the MOD register.

Once the descriptor has been located, the instruction does the following:

 1. Decrements the current stack pointer by two, then pushes the contents of
 the MOD register (16 bits) onto the currently-selected stack. The stack
 pointer is modified by a total of four in this step. The extra two
 bytes placed on the stack are reserved for future use.

 2. Saves the address of the next sequential instruction (32 bits) onto the
 currently-selected stack. This double-word is the return address.

 3. Copies the low-order word of the descriptor to the MOD register. The
 low-order word is the address of the new Module Table entry.

 4. Copies the double-word at address MOD+0 to the SB register. This
 double-word is the Static Base pointer for the new module.

 5-51

 CXP
Call External Procedure (continued)

 5. Copies to the PC register the sum of the high-order word of the
 descriptor (interpreted as an unsigned value) and the double-word at
 address MOD+8. This sum is the address of the external procedure entry
 point in the new module.

Program execution continues at the address placed in the PC register. The
procedure has been invoked, and is running in its own module environment.

In the machine instruction, index is encoded as a displacement field appended to
the basic instruction. In assembly language, index is specified as the name of
the external procedure or in the form of an External addressing mode expression.

Flags Affected: None.

Traps: None.

Examples:

 1. CXP OUTSIDE 22 00
 2. CXP EXT(1) 22 01

Example 1 calls the external procedure named OUTSIDE.

Example 2 calls the external procedure whose descriptor is located in the second
entry of the current Link Table (entry number 1).

 5-52

CXP
Call External Procedure (continued)

The action of the instruction in Example 2 is illustrated below:

 Operand Values: Hex
 Operands Before After

 1 01 --
 (index)

 90A4 * 00100020 00100020
 (descriptor) (module 0020)
 (offset 0010)

 MOD 0010 0020

 PC 00009005 0000F010

 SB 00009080 0000F100

 SP 0000FFF8 0000FFF0

 Stack:
 0000FFF0 xxxxxxxx 00009007
 0000FFF4 xxxxxxxx xxxx0010 **
 0000FFF8 AAAAAAAA AAAAAAAA

 Module Table:

 00000010 00009080 (SB)
 14 000090A0 (LB)
 18 00009000 (PB)
 1C xxxxxxxx
 00000020 0000F100 (SB)
 24 0000F110 (LB)
 28 0000F000 (PB)
 2C xxxxxxxx

 * 90A4 is the descriptor address. It is computed as the sum of the index 1 in
 the expression EXT(1), scaled by 4, and the Link Table address. The Link
 Table address is from address 14 (Hex) in the Module Table.

 ** The 16-bit field shown as "xxxx" is reserved for future use, and should be
 treated as don't-care bits.

 5-53

 CXPD
Call External Procedure with Descriptor

Syntax: CXPD desc
 gen
 addr

 ! desc ! CXPD !
 +---------+---------------------+
 ! gen !0 0 0 0 1 1 1 1 1 1 1!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

The CXPD instruction calls the external procedure specified by the desc
(descriptor) operand. The descriptor is a 32-bit value in the following format:

 +-------------------------------+-------------------------------+
 ! offset ! module !
 !-------------------------------!-------------------------------!
 31 16 15 0

The instruction does the following:

 1. Decrements the current stack pointer by two, then pushes the contents of
 the MOD register (16 bits) onto the currently-selected stack. The stack
 pointer is modified by a total of four in this step. The extra two
 bytes placed on the stack are reserved for future use.

 2. Saves the address of the next sequential instruction (32 bits) onto the
 currently-selected stack. This double-word is the return address.

 3. Copies the low-order word of the descriptor to the MOD register. The
 low-order word is the address of the new Module Table entry.

 4. Copies the double-word at address MOD+0 to the SB register. This
 double-word is the Static Base pointer for the new module.

 5. Copies to the PC register the sum of the high-order word of the
 descriptor (interpreted as an unsigned value) and the double-word at
 address MOD+8. This sum is the address of the external procedure entry
 point in the new module.

Program execution continues at the address placed in the PC register. The
procedure has been invoked, and is running in its own module environment.

Flags Affected: None.

Traps: None.

 5-54

CXPD
Call External Procedure with Descriptor (continued)

Example:

 CXPD 8(SB) 7F D0 08

This example calls an external procedure whose descriptor is contained at memory
address 8(SB).

The instruction is illustrated below:

 Operand Values: Hex
 Operands Before After

 00009088 * 00100020 00100020
 (descriptor) (module 0020)
 (offset 0010)

 MOD 0010 0020

 PC 00009005 0000F010

 SB 00009080 0000F100

 SP 0000FFF8 0000FFF0

 Stack:
 0000FFF0 xxxxxxxx 00009007
 0000FFF4 xxxxxxxx xxxx0010 **
 0000FFF8 AAAAAAAA AAAAAAAA

 Module Table:

 00000010 00009080 (SB)
 14 000090A0 (LB)
 18 00009000 (PB)
 1C xxxxxxxx
 00000020 0000F100 (SB)
 24 0000F110 (LB)
 28 0000F000 (PB)
 2C xxxxxxxx

 * 9088 (Hex) is the descriptor's effective address, as specified by 8(SB).

 ** The 16-bit field shown as "xxxx" is reserved for future use, and should be
 treated as don't-care bits.

 5-55

 DEIi
Divide Extended Integer

Syntax: DEIi src, dest DEIB
 gen gen DEIW
 read.i rmw.2i DEID

 ! src ! dest ! DEIi !
 +---------+---------+-------+---+---------------+
 ! gen ! gen !1 0 1 1! i !1 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The DEIi instruction divides the entire dest operand by the src operand and
places the quotient and the remainder in the dest operand location.

The instruction places the quotient in the high-order half of dest and the
remainder in the low-order half. The dest operand may be specified as an
even-odd General Purpose register pair. In such cases, the instruction places
the remainder in the even register and the quotient in the next consecutive (odd)
register. The register pair must be specified in assembly language by the name
of the even register of the pair.

The src and dest operands are interpreted as unsigned integers.

Flags Affected: None.

Traps: DVZ (Divide by Zero) activated if src equals zero.
 Integer Overflow Trap (OVF) is activated if the V flag is set
 and the result cannot be represented exactly in dest.

Example:

 DEIW R2, R0 CE 2D 10

This example divides the double-word value contained in the low-order words of R0
and R1 by the low-order word of register R2. The result is a double-word con-
taining a quotient and a remainder. The remainder is written to the low-order
word of register R0! the quotient is written to the low-order word of register
R1. The high-order words of registers R0 and R1 are not used or affected.

The instruction is illustrated below:

 Operand Values: Hex (Dec)
 Operands Before After

 R2 AAAA0001 AAAA0001
 (+1) (+1)

 R0 BBBBFFFF BBBB0000
 R1 CCCC0000 CCCCFFFF
 (+65535) (+65535, rem. 0)

The above case divides 65535 by 1 (H'0000FFFF by H'0001). The quotient is 65535
(in R1), and the remainder is 0 (in R0).

 5-56

DIA
Diagnose

Syntax: DIA

 ! DIA !
 +---------------+
 !1 1 0 0 0 0 1 0!
 !-+-+-+-+-+-+-+-!
 7 0

The DIA instruction is intended to support breakpointing circuitry, and is not
intended for use in a program. It is a 1-byte instruction which performs a
branch to itself, establishing an "infinite loop" which is interruptible. When
the loop thus established is interrupted, the return address pushed onto the
Interrupt Stack is the address of the DIA instruction itself.

Flag Affected: None.

Traps: None.

Example:

 DIA C2

 5-57

 DIVf
Divide Floating

Syntax: DIVf src, dest DIVF
 gen gen DIVL
 read.f rmw.f

 ! src ! dest ! DIVf !
 +---------+---------+---------+-+---------------+
 ! gen ! gen !1 0 0 0 0!f!1 0 1 1 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The DIVf instruction divides the dest operand by the src operand and places the
result in the dest operand location.

Results for normalized and zero operands are given in the table below. The
symbols "+n" and "-n" represent non-zero normalized numbers, positive and nega-
tive, respectively. The symbols "+z" and "-z" represent positive and negative
zero, respectively.

 dest: +n -n +z -z
 src !
 !
 +n ! * * +z -z
 !
 -n ! * * -z +z

 * The result in these cases is the quotient of the two operands.

Flags Affected: No PSR flags. FSR flags are affected as follows:
 UF is set if an underflow occurs; unaffected otherwise.
 IF is set on an inexact result; unaffected otherwise.
 TT field is set to reflect any exceptional conditions
 encountered in executing the instruction. If none is
 encountered, TT is set to all zeroes.
 See Sections 2.4.2 and 3.3 for details of exceptional conditions
 and reporting.

Traps: Undefined Instruction Trap (UND) is activated if the F bit in
 the CFG register is clear.

 Floating-Point Trap (FPU) is activated if a floating-point
 exception is detected. See Section 3.3. Particularly relevant
 to floating-point division are the Divide by Zero exception,
 caused by attempting to divide a non-zero number by zero, and
 the Invalid Operation exception, caused by attempting to divide
 zero by zero.

 5-58

DIVf
Divide Floating (continued)

Examples:

 1. DIVF F0, F7 BE E1 01
 2. DIVL -8(FP), 16(SB) BE A0 C6 78 10

Example 1 divides the single-precision number in register F7 by the number in
register F0 and places the result in F7.

Example 2 divides the double-precision number at address 16(SB) by the number at
address -8(FP) and places the result at address 16(SB).

The instructions are illustrated below:

 Operand Values: Hex (Dec)
 Operands Before After

 Ex. 1: F0 42250000 42250000
 (+41.25) (+41.25)

 F7 434E4000 40A00000
 (+206.25) (+5.0)

 Ex. 2: -8(FP) 409F440000000000 409F440000000000
 (+2001.0) (+2001.0)

 16(SB) 41A2B128DDC00000 40F3218E00000000
 (+156800110.875) (+78360.875)

 5-59

 DIVi
Divide

Syntax: DIVi src, dest DIVB
 gen gen DIVW
 read.i rmw.i DIVD

 ! src ! dest ! DIVi !
 +---------+---------+-------+---+---------------+
 ! gen ! gen !1 1 1 1! i !1 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The DIVi instruction divides the dest operand by the src operand, rounds the
quotient to the next lower (or more negative) integer, and places the result in
the dest operand location. The src and dest operands are interpreted as signed
integers.

Flags Affected: None.

Traps: DVZ (Divide by Zero) activated if src equals zero.
 Integer Overflow Trap (OVF) is activated if the V flag is set.
 It occurs only if the largest negative integer in a data format
 is divided by -1.
Examples:

 1. DIVW 10(SP), 4(SP) CE 7D CE 0A 04
 2. DIVD -6(FP), 12(SB) CE BF C6 7A 0C

Example 1 divides the word at the address specified by 4(SP) by the word at the
address specified by 10(SP). The instruction rounds the quotient and places the
result at 4(SP).

Example 2 divides the double-word at the address specified by 12(SB) by the
double-word at the address specified by -6(FP). The instruction rounds the
quotient and places the result in the double-word at address 12(SB).

These instructions are illustrated below:

 Operand Values: Hex (Dec)
 Operands Before After

 Ex. 1: 10(SP) 000A 000A
 (+10) (+10)

 4(SP) 006F 000B
 (+111) (+11)

 Ex. 2: -6(FP) 00000014 00000014
 (+20) (+20)

 12(SB) FFFFFF9F FFFFFFFB
 (-97) (-5)

In example 1, 111 divided by 10 is 11.1. The next lower integer is 11.
In example 2, -97 divided by 20 is -4.85. The next lower integer is -5.

 5-60

DOTf
Dot Product Floating

Syntax: DOTf src1, src2 DOTF
 gen gen DOTL
 read.f read.f

 ! src1 ! src2 ! DOTf !
 +---------+---------+---------+-+---------------+
 ! gen ! gen !0 0 1 1 0!f!1 1 1 1 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The DOTf instruction multiplies src1 and src2 and than adds the result to the
floating-point register F0. (F0 := F0 + (src1 * src2))

Flags Affected: No PSR flags.
 The FSR TT field is set to reflect any exceptional conditions
 encountered in executing the instruction. If none is
 encountered, TT is set to all zeroes. See Sections 2.4.2 and
 3.3 for details of exceptional conditions and reporting.

Traps: Undefined Instruction Trap(UND) is activated if the F bit in
 the CFG register is clear.

 Floating-Point Trap (FPU) is activated if a floating-point
 exception is detected. See Section 3.3.

Example:

 DOTF F2, F3 FE CD 10

This example multiplies the single-precision numbers in F2 and F3 and adds the
result to register F0.

The instruction is illustrated below:

 Operand Values: Hex (Dec)
 Operands Before After

 F0 C2250000 42E88000
 (-41.25) (+116.25)

 F2 418C0000 418C0000
 (+17.50) (+17.50)

 F3 41100000 41100000
 (+9.00) (+9.00)

 5-61

ENTER
Enter New Procedure Context

Syntax: ENTER reglist, constant
 imm disp

 ! ENTER !
 +---------------+
 !1 0 0 0 0 0 1 0!
 !-+-+-+-+-+-+-+-+
 7 0

The ENTER instruction creates a "Frame" on the current stack for use by a proce-
dure. A Frame is a block of memory on the stack that provides local storage for
the current procedure. The constant operand specifies the number of bytes to be
reserved on the stack for local data storage. The Frame Pointer (FP) register is
saved and then set up as a pointer from which frame information can be located.

The instruction does the following:

 1. Pushes the contents of the FP register (32 bits) onto the stack.

 2. Copies the contents of the current stack pointer to the FP register.

 3. Subtracts the constant operand from the value of the current stack
 pointer, lengthening the stack by that number of bytes.

 4. Pushes the General-Purpose registers specified by reglist onto the
 stack.

The reglist operand is specified in assembly language by a list of zero or more
General-Purpose register names, enclosed in brackets "[]". The instruction
pushes the contents of each register in the list as a double-word onto the
currently-selected stack. Register names may appear in any order within reglist
but must be separated by commas. Brackets are required even if no register names
are given.

In the machine instruction, the reglist operand is encoded in an 8-bit field as
shown. Each bit in the field corresponds to one general-purpose register. When
the instruction is executed, the instruction reads the bits in the field from
right to left beginning with bit 0. If a bit is "0", the instruction ignores the
corresponding register. If a bit is "1", it saves the corresponding register.

 +--+--+--+--+--+--+--+--+
 !R7!R6!R5!R4!R3!R2!R1!R0!
 !--+--+--+--+--+--+--+--!
 7 0

Flags Affected: None.

Traps: None.

 5-62

 ENTER
Enter New Procedure Context (continued)

Example:

 ENTER [R0, R2, R7], 16 82 85 10

This instruction creates a frame on the stack consisting of 16 bytes for local
data storage and the contents of register R0, R2, and R7.

In the following illustration, the PSR S flag is assumed to be 1, selecting SP1
as the current stack pointer.

 Operand Values: Hex
 Operands Before After

 R0 00000010 00000010

 R2 FFFFFFEF FFFFFFEF

 R7 FFFFF9AB FFFFF9AB

 16 10 --
 (disp) (+16)

 FP 000010F8 000010EC

 SP1 000010F0 000010D0

 Stack:

 000010D0 xxxxxxxx FFFFF9AB
 000010D4 xxxxxxxx FFFFFFEF
 000010D8 xxxxxxxx 00000010
 000010DC xxxxxxxx xxxxxxxx *
 000010E0 xxxxxxxx xxxxxxxx
 000010E4 xxxxxxxx xxxxxxxx
 000010E8 xxxxxxxx xxxxxxxx
 000010EC xxxxxxxx 000010F8
 000010F0 AAAAAAAA AAAAAAAA

* 16 bytes of uninitialized local data storage.

 5-63

EXIT
Exit Procedure Context

Syntax: EXIT reglist
 imm

 ! EXIT !
 +---------------+
 !1 0 0 1 0 0 1 0!
 !-+-+-+-+-+-+-+-+
 7 0

The EXIT instruction removes the frame of the current procedure from the stack,
restores the former contents of the specified General-Purpose registers (i.e.,
their contents prior to entering the current procedure), and restores the frame
of the previous procedure as the current procedure context.

The instruction does the following:

 1. Restores the General-Purpose registers specified by reglist by popping
 them from the current stack.

 2. Copies the contents of the FP register to the current stack pointer.

 3. Pops the old frame address (32 bits) from the stack to the FP register.

In assembly language, the reglist operand is specified as a list of zero or more
General-Purpose register names, enclosed in brackets "[]". The instruction cop-
ies to each register in the list a double-word popped from the stack. Register
names may appear in any order within reglist but must be separated by commas.
Brackets are required even if no register names are given.

In the machine instruction, the reglist operand is encoded in an eight-bit field
as shown below. Each bit in the field corresponds to one general-purpose
register. When the instruction is executed, the instruction reads the bits in
the field from right to left beginning with bit 0. If a bit is "0", the instruc-
tion ignores the corresponding register. If a bit is "1", it restores the corre-
sponding register from the stack. Note that the format of the reglist operand is
reversed from its format in the ENTER instruction; i.e. bit 0 corresponds to
register R7 instead of R0.

 +--+--+--+--+--+--+--+--+
 !R0!R1!R2!R3!R4!R5!R6!R7!
 !--+--+--+--+--+--+--+--!
 7 0

Flags Affected: None.

Traps: None.

 5-64

 EXIT
Exit Procedure Context (continued)

Example:

 EXIT [R0, R2, R7] 92 A1

This instruction restores the contents of the listed General-Purpose registers,
reclaims the frame of the current procedure, and restores the frame of the
previous procedure as the current context.

 Operand Values: Hex
 Operands Before After

 R0 CCCCCCCC 00000010

 R2 CCCCCCCC FFFFFFEF

 R7 CCCCCCCC FFFFF9AB

 FP 000010EC 00001000

 SP 000010D0 000010F0

 Stack:

 000010D0 FFFFF9AB xxxxxxxx *
 000010D4 FFFFFFEF xxxxxxxx *
 000010D8 00000010 xxxxxxxx *
 000010DC BBBBBBBB xxxxxxxx *
 000010E0 BBBBBBBB xxxxxxxx *
 000010E4 BBBBBBBB xxxxxxxx *
 000010E8 BBBBBBBB xxxxxxxx *
 000010EC 00001000 xxxxxxxx *
 000010F0 AAAAAAAA AAAAAAAA

* The EXIT instruction does not itself change the contents of these memory
 locations. However, information that is outside the stack should be
 considered unpredictable for other reasons. See Section 2.8.1.

 5-65

EXTi
Extract Field

Syntax: EXTi offset, base, dest, length EXTB
 reg gen gen disp EXTW
 regaddr write.i EXTD

 off-
 ! base ! dest ! set ! EXTi !
 +---------+---------+-----+-+---+---------------+
 ! gen ! gen ! reg !0! i !0 0 1 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The EXTi instruction copies the bit field specified by base, offset and length to
the dest operand location. The field is right-justified in dest. High-order
bits are zero-filled if the field is shorter than dest or discarded if the field
is longer than dest.

The location of the field is taken from the position of its least-significant
bit, given by offset and base as follows:

If base is a register, then the field is within that register, starting at the
bit position given by offset. If base is a memory location, then the field
starts at bit position

 offset MOD 8

within the memory byte whose address is

 EA(base) + (offset DIV 8),

where EA(base) is the effective address of base. See Section 3.6 for
definitions of the operators MOD and DIV above.

Offset is interpreted as a 32-bit signed integer.

Length specifies the number of bits in the field. It must be in the range 1
through 32.

See Section 3.6 for further details of specifying bit fields.

NOTE: Although a bit field may contain up to 32 bits, an alignment restriction
 appears for fields containing more than 25 bits: a field may not span
 more than four bytes. See Section 3.6.

Flags Affected: None.

Traps: None.

 5-66

 EXTi
Extract Field (continued)

Example:

 EXTW R0, 0(R1), R2, 7 2E 81 48 00 07

This example copies a 7-bit field from memory into the low-order word of register
R2. Bits 7 through 15 of register R2 are set to zero and the remaining bits of
R2 are unaffected. For designating the location of the field, register R0
supplies the bit offset, and 0(R1) is specified as the base address.

 Operand Values: Hex (Dec)
 Operands Before After

 R0 0000004C 0000004C
 (offset) (+76) (+76)

 R1 00001000 00001000
 (+4096) (+4096)

 base 00001000 --
 address (+4096)
 0(R1)

 R2 AAAAAAAA AAAA0071

 00001009 * EF10 EF10 **
 (+4105)

 * The address 1009 (Hex) is the effective address of the byte containing the
 least-significant bit of the specified field. This address is computed as
 4096 + (76 DIV 8) = 4105, where 4096 is the base address specified by 0(R1)
 and 76 is the bit offset given by the contents of register R0.

** The bit field starts at bit position 4 (= 76 MOD 8) in the byte at address
 1009 (Hex) and is seven bits long as illustrated.

 ! 7-bit field !
 +---------+-------------+-------+
 !1 1 1 0 1!1 1 1 0 0 0 1!0 0 0 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 !7 0!7 0!
 ! 100A ! 1009 !

 5-67

EXTSi
Extract Field Short

Syntax: EXTSi base, dest, offset, length EXTSB
 gen gen !------imm-----! EXTSW
 regaddr write.i EXTSD

 ! base ! dest ! EXTSi !
 +---------+---------+-------+---+---------------+
 ! gen ! gen !0 0 1 1! i !1 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The EXTSi instruction copies the bit field specified by base, offset, and length
to the dest operand location. The field is right-justified in dest. High-order
bits are zero-filled if the field is shorter than dest or discarded if the field
is longer than dest.

The offset and length operands are encoded together as an immediate byte appended
to the basic instruction. The offset is encoded as the high-order three bits of
this byte! the length operand, minus one, is encoded as the low-order five bits.
The byte has the following form:

 +--------+--------------+
 ! offset ! length - 1 !
 +--+--+--+--+--+--+--+--+
 7 6 5 4 3 2 1 0

The offset value must be in the range 0 through 7. The length value specifies
the number of bits in the field. It must be in the range 1 through 32.

The location of the field is taken from the position of its least-significant
bit. If base is a register, then the field is within that register, starting at
the bit position given by offset. If base is a memory location, then the field
starts at the bit position given by offset within the memory byte whose address
is given as base.

See Section 3.6 for further details of specifying bit fields.

NOTE: Although a bit field may contain up to 32 bits, an alignment restriction
 appears for fields containing more than 25 bits: a field may not span
 more than four bytes. See Section 3.6.

Flags Affected: None.

Traps: None.

 5-68

 EXTSi
Extract Field Short (continued)

Example:

 EXTSW 16(SB), R2, 4, 7 CE 8D D0 10 86

This example copies a bit field to the low-order word of register R2. The field
begins at bit position 4 of the byte at the address specified as 16(SB) and is
seven bits long.

 Operand Values: Hex
 Operands Before After

 R2 AAAAAAAA AAAA0071 **

 16(SB) EF10 EF10 *

* The bit field starts at bit number 4 in the byte at address 16(SB) and is seven
 bits long as illustrated:

 ! 7-bit field !
 +---------+-------------+-------+
 !1 1 1 0 1!1 1 1 0 0 0 1!0 0 0 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 !7 0!7 0!
 ! 17(SB) ! 16(SB) !

** The bit field is right-justified in the low-order word of register R2. Nine
 leading zero bits are added to the bit field to fill the low-order word.

 5-69

FFSi
Find First Set Bit

Syntax: FFSi base, offset FFSB
 gen gen FFSW
 read.i rmw.B FFSD

 ! base ! offset ! FFSi !
 +---------+---------+-------+---+---------------+
 ! gen ! gen !0 0 0 1! i !0 1 1 0 1 1 1 0!
 +-+
 23 15 7 0

The FFSi instruction searches for the first "1" bit in the base operand. The
search starts at the bit specified by the offset operand and proceeds in
ascending order to the first "1" bit or to the last bit in base.

If a "1" bit is found, the instruction sets the offset operand value to the bit
number of the first "1" bit found in the base operand and clears the F flag in
the PSR.

If a "1" bit is not found, the instruction sets the offset operand value to zero
and sets the F flag in the PSR tc 1.

The offset is interpreted as an unsigned number. Its value must be within the
range 0 to 7 (in FFSB instruction), 0 to 15 (in FFSW instruction), and 0 to 31
(in FFSD instruction), otherwise the result placed in the offset operand and in
the F bit is undefined.

Note: If the FFSi instruction finds a "1" bit and it is desired to scan the
 remaining portion of the base operand, the offset operand must be
 incremented first or the "1" bit previously found must be cleared.
 Otherwise, the FFSi instruction will detect that bit again.

Flags Affected: F is set if a "1" bit is not found, cleared if found.

Traps: None.

Examples:

 1. FFSW 8(SB), R0 6E 05 D0 08
 2. FFSB -4(FP), TOS 6E C4 C5 7C

Example 1 searches the word at the address specified by 8(SB) for the first "1"
bit. The search begins at the bit specified by the low-order byte of register
R0, and the result is placed in the low-order byte of R0. The remaining portion
of R0 is not used or affected.

Example 2 searches the byte at the address specified by -4(FP). The search
begins at the bit specified by the byte on the top of the stack, which is
replaced by the resulting bit number.

 5-70

 FFSi
Find First Set Bit (continued)

These instructions are illustrated below:

 Operand Values: Hex (Dec) [Binary]
 Operands Before After

 Ex. 1: R0 AAAAAA05 AAAAAA08
 (+5) (+8)

 8(SB) EF10 EF10
 [1110111100010000] [1110111100010000]

 UPSR nzfvxltc nz0vxltc

 Ex. 2: SP 0000FFDE 0000FFDE

 Stack:
 0000FFDE 05 00
 (+5) (0)

 -4(FP) 10 10
 [00010000] [00010000]

 UPSR nzfvxltc nz1vxltc

In Example 1, the instruction finds the first "1" bit at bit position 8.

In Example 2, the instruction finds no "1" bits; that is, the bits at bit
positions 5, 6, and 7 are all "0" bits.

 5-71

FLAG
Trap on Flag

Syntax: FLAG

 ! FLAG !
 +---------------+
 !1 1 0 1 0 0 1 0!
 !-+-+-+-+-+-+-+-!
 7 0

The FLAG instruction activates the Flag Trap (FLG) if the F flag in the PSR is
set. The Flag Trap passes control to the Flag service procedure. The return
address pushed on the Interrupt Stack is the address of the FLAG instruction
instruction itself. If the F flag is not set, program execution continues with
next sequential instruction.

Flags Affected: None.

Traps: The Flag Trap (FLG) is activated if the F flag is set.

Example:

 FLAG D2

 5-72

 FLOORfi
Floor Floating to Integer

Syntax: FLOORfi src, dest FLOORFB FLOORLB
 gen gen FLOORFW FLOORLW
 read.f write.i FLOORFD FLOORLD

 ! src ! dest ! FLOORfi !
 +---------+---------+-----+-+---+---------------+
 ! gen ! gen !1 1 1!f! i !0 0 1 1 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The FLOORfi instruction rounds the src operand to the nearest integer less than,
or equal to, it (i.e., toward negative infinity) and places the result in the
dest operand location as a signed integer.

Flags Affected: No PSR flags. FSR flags are affected as follows:
 IF is set on an inexact result; unaffected otherwise.
 TT field is set to reflect any exceptional conditions
 encountered in executing the instruction. If none is
 encountered, TT is set to all zeroes.
 See Sections 2.4.2 and 3.3 for details of exceptional conditions
 and reporting.

Traps: Undefined Instruction Trap (UND) is activated if the F bit in
 the CFG register is clear.

 Floating-Point Trap (FPU) is activated if a floating-point
 exception is detected. See Section 3.3. Particularly relevant
 to this instruction is the Overflow exception, which is caused
 by attempting to convert a floating-point number that is too
 great in absolute value to be held in a signed integer of the
 size specified for dest.

 5-73

FLOORfi
Floor Floating to Integer (continued)

Examples:

 1. FLOORFB F0, R0 3B 3C 00
 2. FLOORLD F2, 16(SB) 3E BB 16 10

Example 1 rounds the single-precision number in register F0 to a byte-long
integer and copies the integer to the low-order byte of register R0.

Example 2 rounds the double-precision number in register F2 to a double-word
integer and copies the integer to address 16(SB).

 Operand Values: Hex (Dec)
 Operands Before After

 Ex. 1: F0 C0280000 C0280000
 (-2.65) (-2.65)

 R0 AAAAAAAA AAAAAAFD
 (-3)

 Ex. 2: F2 41C0200888700000 41C0200888700000
 (+541069584.875) (+541069584.875)

 16(SB) AAAAAAAA 20401110
 (+541069584)

 5-74

 IBITi
Invert Bit

Syntax: IBITi offset, base IBITB
 gen gen IBITW
 read.i regaddr IBITD

 ! offset ! base ! IBITi !
 +---------+---------+-------+---+---------------+
 ! gen ! gen !1 1 1 0! i !0 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The IBITi instruction inverts (complements) the register or memory bit specified
by base and offset after copying the bit value to the F flag in the PSR.

The location of the bit is determined from offset and base. Offset is a general
operand, whose length is given by the operation length suffix. Base is an
addressing expression giving a byte address from which offset specifies a bit
position. See Section 3.5 for details of specifying bit positions.

If base is a register, then the bit is within that register, at the bit position
given by the offset operand. If base is a memory location, then the bit is at
bit position

 offset MOD 8

within the memory byte whose address is

 EA(base) + (offset DIV 8),

where EA(base) is the effective address of base. See Section 3.5 for defini-
tions of the operators MOD and DIV above, and for further details of bit
instructions.

Offset is interpreted as a signed integer.

Flags Affected: F is set to the original value of the specified bit.

Traps: None.

 5-75

IBITi
Invert Bit (continued)

Example:

 IBITW R0, 1(R1) 4E 79 02 01

This example inverts a bit in memory after copying the bit value into the F flag.
For designating the location of the target bit, the low-order word of register R0
supplies the bit offset, and 1(R1) is specified as the base address.

In the following illustration, the target bit is assumed to be 0 prior to
instruction execution.

 Operand Values: Hex (Dec) [Binary]
 Operands Before After

 R0 AAAA004C AAAA004C
 (offset) (+76) (+76)

 R1 00001000 00001000
 (+4096) (+4096)

 base 00001001 --
 address (+4097)
 1(R1)

 0000100A * EF FF
 (+4106) [11101111] [11111111]

 UPSR nzfvxltc nz0vxltc

 * The address 100A (Hex) is the effective address of the byte containing the
 desired bit. This address is computed from the offset and the base address as
 follows:

 base address + (offset DIV 8)
 4097 + 9
 4106, or 100A (Hex) .

 The bit number within this byte is calculated as:

 offset MOD 8
 76 MOD 8
 4 .

 5-76

 INDEXi
Calculate Index

Syntax: INDEXi accum, length, index INDEXB
 reg gen gen INDEXW
 read.i read.i INDEXD

 ! length ! index !accum! INDEXi !
 +---------+---------+-----+-+---+---------------+
 ! gen ! gen ! reg !1! i !0 0 1 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The INDEXi instruction assists the programmer in accessing multidimensional
arrays by providing a 1-dimensional index which can subsequently be used directly
in an addressing mode with Scaled Indexing. The 1-dimensional index is calcu-
lated from the values of the indices along each dimension of the array.

This instruction is intended to be executed iteratively, as discussed in Section
3.9, once for each dimension except the first. Each iteration accumulates its
result into the general-purpose register specified as accum. The length operand
defines the length of the current dimension, giving the difference between the
upper and lower index bounds (this is the actual dimension length minus one).
The index operand is the zero-adjusted value along the current dimension. The
result placed in the accum register is.

 accum * (length + 1) + index .

The length and index operands are interpreted as unsigned integers, and are
zero-extended to 32 bits internally before use. The accum operand is interpreted
as an unsigned 32-bit integer.

Flags Affected: None.

Traps: None.

 5-77

INDEXi
Calculate Index (continued)

Example:

 INDEXB R0, 20(SB), -4(FP) 2E 04 D6 14 7C

This example performs one step of an index calculation. R0 is the accum operand,
memory location 20(SB) holds a byte defining the length of the current array
dimension, and memory location -4(FP) holds the index value along this
dimension.

The case below shows the application of the above instruction to calculate the
1-dimensional index of array element A[I,J], where A has been declared (in the
Pascal language) as being of dimensions [1..7, 0..16]. The array is assumed to
be stored in row major order (Section 3.9). Since it is an array of only two
dimensions, one INDEXi instruction serves to calculate the one-dimensional
index.

The value of index I (assumed to be 4) has been zero-adjusted to 3 by a CHECK
instruction (q.v.), and the result placed in register R0 as a double-word. The
value of index J, held in one byte at address -4(FP), is assumed to be 3. The
byte at location 20(SB) holds the length operand for the second dimension of the
array (16 - 0 - 16).

The result in R0, 54, is the final 1-dimensional index of element [4,3] of array
A. This value can be used directly in any addressing mode with a Scaled Indexing
modifier to access this array element.

 Operand Values: Hex (Dec)
 Operands Before After

 R0 00000003 00000036
 (+3) (+54)

 20(SB) 10 10
 (+16) (+16)

 -4(FP) 03 03
 (+3) (+3)

 5-78

 INSi
Insert Field

Syntax: INSi offset, src, base, length INSB
 reg gen gen disp INSW
 read.i regaddr INSD

 off-
 ! src ! base ! set ! INSi !
 +---------+---------+-----+-+---+---------------+
 ! gen ! gen ! reg !0! i !1 0 1 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The INSi instruction inserts the src operand into the bit field specified by
base, offset, and length. The src operand is right-justified in the field.
High-order bits are zero-filled if src is shorter than the field or discarded if
src is longer than the field.

The location of the field is taken as the position of its least-significant bit,
given by offset and base as follows:

If base is a register, then the field is within that register, starting at the
bit position given by offset. If base is a memory location, then the field
starts at bit position

 offset MOD 8

within the memory byte whose address is

 EA(base) + (offset DIV 8),

where EA(base) is the effective address of base. See Section 3.6 for defini-
tions of the operators MOD and DIV above.

Offset is interpreted as a 32-bit signed integer.

Length specifies the number of bits in the field. It must be in the range 1
through 32.

See Section 3.6 for further details of specifying bit fields.

NOTE: Although a bit field may contain up to 32 bits, an alignment restriction
 appears for fields containing more than 25 bits: a field may not span
 more than four bytes. See Section 3.6.

Flags Affected: None.

Traps: None.

 5-79

INSi
Insert Field (continued)

Example:

 INSW R0, R2, 0(R1), 7 AE 41 12 00 07

This example inserts seven bits from the low-order word of register R2 into a bit
field in memory. For specifying the location of the field, register R0 supplies
the bit offset, and 0(R1) is specified as the base address.

The instruction is illustrated below:

 Operand Values: Hex
 Operands Before After

 R0 0000004C 0000004C
 (offset) (+76) (+76)

 R1 00001000 00001000
 (+4096) (+4096)

 base 00001000 00001000
 address (+4096) (+4096)
 0(R1)

 R2 AAAAAA67 AAAAAA67

 00001009 * BBBB BE7B **
 (+4105)

 * The address 1009 (Hex) is the effective address of the byte containing the
 least-significant bit of the specified field. This address is computed as
 4096 + (76 DIV 8) = 4105, where 4096 is the address specified by 0(R1) and 76
 is the bit offset given by the contents of register R0.

** The bit field starts at bit position 4 (= 76 MOD 8) in the byte at address
 1009 (Hex) and is seven bits long as illustrated:

 ! 7-bit field !
 +-----------------+-------------+
 Low word of R2: !1 0 1 0 1 0 1 0 0!1 1 0 0 1 1 1!
 (Source) !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

 ! 7-bit field !
 +---------+-------------+-------+
 Bit field: !1 0 1 1 1!1 1 0 0 1 1 1!1 0 1 1!
 (Destination) !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 17 0!7 0!
 ! 100A ! 1009 !

 5-80

 INSSi
Insert Field Short

Syntax: INSSi src, base offset, length INSSB
 gen gen !-----imm------! INSSW
 read.i regaddr INSSD

 ! src ! base ! INSSi !
 +---------+---------+-------+---+---------------+
 ! gen ! gen !0 0 1 0! i !1 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The INSSi instruction inserts the src operand into the bit field specified by
base, offset, and length. The src operand is right-justified in the field.
High-order bits are zero-filled if src is shorter than the field or discarded if
src is longer than the field.

The offset and length operands are encoded together as an immediate byte appended
to the basic instruction. The offset is encoded as the high-order three bits of
this byte! the length operand, minus one, is encoded as the low-order five bits.
The byte has the following form:

 +--------+--------------+
 ! offset ! length - 1 !
 +--+--+--+--+--+--+--+--+
 7 6 5 4 3 2 1 0

The offset value must be in the range 0 through 7. The length value specifies
the number of bits in the field. It must be in the range 1 through 32.

The location of the field is taken from the position of its least-significant
bit. If base is a register, then the field is within that register, starting at
the bit position given by offset. If base is a memory location, then the field
starts at the bit position given by offset within the memory byte whose address
is given as base.

See Section 3.6 for further details of specifying bit fields.

NOTE: Although a bit field may contain up to 32 bits, an alignment restriction
 appears for fields containing more than 25 bits: a field may not span
 more than four bytes. See Section 3.6.

Flags Affected: None.

Traps: None.

 5-81

INSSi
Insert Field Short (continued)

Example:

 INSSW R2, 16(SB), 4, 7 CE 89 16 10 86

This example inserts seven bits from the low-order word of register R2 into a bit
field in memory. The bit field begins at bit position 4 in the byte at the
address specified by 16(SB) and is seven bits long.

The instruction is illustrated below:

 Operand Values: Hex
 Operands Before After

 R2 AAAAAA67 AAAAAA67

 16(SB) BBBB BE7B *

* The bit field starts at bit number 4 in the byte at address 16(SB) and is seven
 bits long as illustrated:

 ! 7-bit field !
 +-----------------+-------------+
 Low word of R2: !1 0 1 0 1 0 1 0 0!1 1 0 0 1 1 1!
 (Source) !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

 ! 7-bit field !
 +---------+-------------+-------+
 Bit field: !1 0 1 1 1!1 1 0 0 1 1 1!1 0 1 1!
 (Destination) !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 !7 0!7 0!
 ! 17(SB) ! 16(SB) !

 5-82

 JSR
Jump to Subroutine

Syntax: JSR dest
 gen
 addr

 ! dest ! JSR !
 +---------+---------------------+
 ! gen !1 1 0 0 1 1 1 1 1 1 1!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

The JSR instruction jumps to the procedure at the address specified by dest after
saving the return address on the stack. The return address is the address of the
next sequential instruction.

Flags Affected: None.

Traps: None.

Example:

 JSR 0(4(SB)) 7F 96 04 00

This example causes the program to jump to a procedure at the address held within
a double-word at address 4(SB). This is accomplished via the Static Memory
Relative addressing mode. The instruction saves the address of the next
sequential instruction on the stack.

The instruction is illustrated below:

 Operand Values: Hex
 Operand Before After

 PC 00009000 00001FFF

 4(SB) 00001FFF 00001FFF

 SP 0000FFD4 0000FFD0

 Stack:
 0000FFD0 xxxxxxxx 00009004
 0000FFD4 AAAAAAAA AAAAAAAA

 5-83

JUMP
Jump

Syntax: JUMP dest
 gen
 addr

 ! dest ! JUMP !
 +---------+---------------------+
 ! gen !0 1 0 0 1 1 1 1 1 1 1!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

The JUMP instruction jumps to the address specified by dest by loading the
effective address of dest into the PC register.

Flags Affected: None.

Traps: None.

Example:

 JUMP 0(-8(FP)) 7F 82 78 00

This example loads the address held in the double-word at address -8(FP) into the
PC register. This is accomplished via the Frame Memory Relative addressing mode.
Program execution continues at that address.

The instruction is illustrated below:

 Operand Values: Hex
 Operand Before After

 -8(FP) 00001004 00001004

 PC 0000909A 00001004

 5-84

 LFSR
Load Floating-Point Status Register (FSR)

Syntax: LFSR src
 gen
 read.D

 ! src ! LFSR !
 +---------+-------------------------------------+
 ! gen !0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The LFSR instruction copies the double-word specified by src to the Floating
Point Status register (FSR). See Section 2.4.2 for the format of the FSR.

Flags Affected: No PSR flags. All FSR flags are affected.
 All implemented FSR fields are loaded from the src operand.

Traps: Undefined Instruction Trap (UND) is activated if the F bit in
 the CFG register is clear.

Example:

 LFSR R0 3E 0F 00

This example copies the contents of register R0 into the FSR.

 Operand Values: Hex
 Operands Before After

 R0 00000028 00000028

 FSR xxx00129 xxx00028

 5-85

LMR
Load Memory Management Register

Syntax: LMR mmureg, src
 short gen
 read.D

 ! src !mmureg ! LMR !
 +---------+-------+-----------------------------+
 ! gen ! short !0 0 0 1 0 1 1 0 0 0 1 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The LMR instruction copies the src operand to the Memory Management register
specified by mmureg.

The LMR instruction may load the following registers. The short field of the
basic instruction holds a 4-bit value which addresses the corresponding Memory
Management register as shown below.

 short
 Register mmureg field

 Memory Management Control Register MCR 1000
 Memory Management Status Register MSR 1010
 Translation Exception Address Reg. TEAR 1011
 Page Table Base Register 0 PTB0 1100
 Page Table Base Register 1 PTB1 1101
 Invalidate Virtual Address 0 IVAR0 1110
 Invalidate Virtual Address 1 IVAR1 1111

Flags Affected: None.

Traps: Undefined Instruction Trap (UND) is activated if the M bit in
 the CFG register is clear. The instruction is not executed.

 Illegal Instruction Trap (ILL) is activated if the U flag is
 set. The instruction is not executed.

 5-86

 LMR
Load Memory Management Register (continued)

Example:

 LMR PTB0, R0 1E 0B 06

This example copies the contents of register R0 to the Page Table Register 0.

 Operand Values: Hex
 Operands Before After

 R0 00009000 00009000

 PTB0 AAAAAAAA 00009000

 5-87

LOGBf
Logarithm Binary Floating

Syntax: LOGBf src, dest LOGBF
 gen gen LOGBL
 read.f write.f

 ! src ! dest ! LOGBf !
 +---------+---------+---------+-+---------------+
 ! gen ! gen !0 1 0 1 0!f!1 1 1 1 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The LOGBf instruction moves the unbiased exponent from src to dest. The bias
value is 127 for single-precision and 1023 for double-precision.

Flags Affected: No PSR flags.
 The FSR TT field is set to reflect any exceptional conditions
 encountered in executing the instruction. If none is
 encountered, TT is set to all zeroes. See Sections 2.4.2 and
 3.3 for details of exceptional conditions and reporting.

Traps: Undefined Instruction Trap(UND) is activated if the F bit in
 the CFG register is clear.

 Floating-Point Trap (FPU) is activated if a floating-point
 exception is detected. See Section 3.3.

Example:

 LOGBF F3, F2 FE 95 18

This example computes the unbiased exponent from the number in the floating-point
register F3 and places the result in floating-point register F2.

The instruction is illustrated below:

 Operand Values: Hex (Dec)
 Operands Before After

 F2 C2250000 40800000
 (-41.25) (+4.00)

 F3 418c0000 418c0000
 (+17.50) (+17.50)

 5-88

LPRi
Load Processor Register

Syntax: LPRi procreg, src LPRB
 short gen LPRW
 read.i LPRD

 ! src !procreg! LPRi !
 +---------+-------+-------------+
 ! gen ! short !1 1 0 1 1! i !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

The LPRi instruction copies the src operand to the dedicated register specified
by procreg. See Section 2.2 for the formats of these registers.

The src operand value is right-justified in the register. In registers other
than PSR, the high-order bits are zero-filled if src is shorter than the
register. The "LPRB PSR" form loads only the low-order byte of the PSR, but is
privileged (see note 3 below). High-order src bits are discarded if src is
longer than the register.

The Load Processor Register instruction may load the following registers. The
specified procreg corresponds to the 4-bit short field in the basic instruction
as shown below.

 Register procreg short

 User PSR UPSR 0000 (Note 3)
 Debug Condition Register DCR 0001 (Note 4)
 Breakpoint Program Counter BPC 0010 (Note 4)
 Debug Status Register DSR 0011 (Note 4)
 Compare Address Register CAR 0100 (Note 4)
 Frame Pointer FP 1000
 Stack Pointer SP 1001 (Note 1)
 Static Base Register SB 1010 (Note 2)
 User Stack Pointer (SP1) USP 1011 (Note 4)
 Configuration Register CFG 1100 (Note 4)
 Processor Status Register PSR 1101 (Note 4)
 Interrupt Base Register INTBASE 1110 (Note 4)
 Module Register MOD 1111

NOTES: 1. If SP is specified in the instruction and the S flag in the PSR is
 set, the instruction copies the src operand to the SP1 register. If
 the S flag is clear, the instruction copies the operand to the SP0
 register.

 2. The SB register should not be loaded using LPRi except during system
 initialization after a Reset, because it is automatically reloaded
 from the current Module Table entry whenever an external procedure
 returns, or a trap or interrupt service procedure returns.

 3. Specifying UPSR as the procreg operand causes only the low-order byte
 of the PSR to be affected, regardless of the operation length.

 4. Specifying this register as the procreg operand is always a privileged
 operation, regardless of the operation length. See "Traps" below.

 5-89

 LPRi
Load Processor Register (continued)

Flags Affected: All PSR flags are affected if PSR is specified with operation
 length of W or D. The N, Z, F, L, T and C flags are affected
 when UPSR is selected, or PSR is selected with operation length
 B. No flags are affected otherwise.

Traps: Illegal Operation Trap (ILL) is activated if the U flag is set
 and PSR, INTBASE, USP, CFG or a Debug Register is specified.

Examples:

 1. LPRD FP, R0 6F 04
 2. LPRW MOD, 4(SB) ED D7 04

Example 1 loads the entire FP register from register R0.

Example 2 copies the word at address 4(SB) into the MOD register.

 Operand Values: Hex
 Operands Before After

 Ex. 1: FP AAAAAAAA 00543210

 R0 00543210 00543210

 Ex. 2: MOD AAAA 0030

 4(SB) 0030 0030

 5-90

LSHi
Logical Shift

Syntax: LSHi count, dest LSHB
 gen gen LSHW
 read.B rmw.i LSHD

 ! count ! dest ! LSHi !
 +---------+---------+-------+---+---------------+
 ! gen ! gen !0 1 0 1! i !0 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The LSHi instruction performs a logical shift on the dest operand in the manner
specified by the count operand. The sign of count determines the direction of
the shift. The absolute value of count gives the number of bit positions to
shift the dest operand.

The count operand value must be within the range -7 to +7 for the LSHB form,
-15 to +15 for the LSHW form, and -31 to +31 for the LSHD form. A positive count
specifies a left shift; a negative count specifies a right shift. In a logical
shift, all bits shifted out of dest are lost, and all bit positions emptied by
the shift are zero-filled.

The count operand is interpreted as a signed integer. The dest operand is inter-
preted as an unsigned integer.

Flags Affected: None.

Traps: None.

 5-91

 LSHi
Logical Shift (continued)

Examples:

 1. LSHB 4, 8(SB) 4E 94 A6 04 08
 2. LSHB -4(FP), 8(SB) 4E 94 C6 7C 08

Example 1 shifts the 1-byte operand at address 8(SB) four bit positions to the
left.

Example 2 shifts the operand at address 8(SB) according to the count given by the
byte at address -4(FP). This value, -1, causes a 1-bit logical right shift.

 Operand Values: Binary (Dec)
 Operands Before After

 Ex. 1: 4 00000100 --
 (immediate) (+4)

 8(SB) 11111110 11100000

 Ex. 2: -4(FP) 11111111 11111111
 (-1) (-1)

 8(SB) 11111110 01111111

 5-92

 MEIi
Multiply Extended Integer

Syntax: MEIi src, dest MEIB
 gen gen MEIW
 read.i rmw.2i MEID

 ! src ! dest ! MEIi !
 +---------+---------+-------+---+---------------+
 ! gen ! gen !1 0 0 1! i !1 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The MEIi instruction multiplies the src operand and the low-order half of the
dest operand and places the result in the entire dest operand location.

The src and dest operands are interpreted as unsigned integers.

The dest operand may be specified as an even-odd General-Purpose register pair.
In such cases, the instruction reads the even-numbered register of the pair and
places the low-order half (1, 2 or 4 bytes) of the result in the even register
and the high-order half in the next consecutive register. The register pair must
be specified in assembly language by the name of the even register of the pair.

If the Top of Stack (TOS) addressing mode is used for the dest operand, the Stack
Pointer contents do not change. Note that this is not the same as popping a
value of length "i" and pushing a result of length "2i". Space must already have
been allocated on the stack to accommodate the entire result.

Flags Affected: None.

Traps: None.

 5-93

MEIi
Multiply Extended Integer (continued)

Examples:

 1. MEIW R2, 10(SB) CE A5 16 0A
 2. MEIW R2, R0 CE 25 10

Example 1 multiplies the low-order word of register R2 and the word at the dest
operand address 10(SB) and places the double-word result at the dest operand
address 10(SB).

Example 2 multiplies the low-order word of register R2 and the low-order word of
register R0. The result is a double-word. The low-order word of the result is
written to the low-order word of register R0, the high-order word is written to
the low-order word of register R1.

These instructions are illustrated below:

 Operand Values: Hex (Dec)
 Operands Before After

 Ex. 1: R2 AAAA0020 AAAA0020
 (+32) (+32)

 10(SB) BBBB1001 00020020
 (+4097) (+131104)

 Ex. 2: R2 AAAA0020 AAAA0020
 (+32) (+32)

 R0 BBBB1001 BBBB0020
 R1 CCCCCCCC CCCC0002
 (+4097) (+131104)

 5-94

 MODi
Modulus

Syntax: MODi src, dest MODB
 gen gen MODW
 read.i rmw.i MODD

 ! src ! dest ! MODi !
 +---------+---------+-------+---+---------------+
 ! gen ! gen !1 1 1 0! i !1 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The MODi instruction places the value dest modulo src in the dest operand
location. The modulus is the remainder after division is performed as per the
DIVi instruction (q.v.). It is computed as

 dest - ((dest DIV src) * src)

where dest DIV src is rounded to the next integer less than or equal to the
exact quotient. The result of a MODi instruction always has the sign of the src
operand (i.e., the divisor) unless the result is zero, which is always positive.
Compare the REMi instruction (q.v.).

The src and dest operands are interpreted as signed integers.

Flags Affected: None.

Traps: Divide by Zero Trap (DVZ) is activated if src equals zero.

 5-95

MODi
Modulus (continued)

Example:

 MODB 4(SB), 8(SB) CE B8 D6 04 08

This example computes the modulus of the operands specified by 4(SB) and 8(SB)
and places the result in the byte at 8(SB).

The action of this instruction for four different cases is illustrated below:

 Operand Values: Hex (Dec)
 Operands Before After

 Case 1: 4(SB) 0A 0A
 (+10) (+10)

 8(SB) 1F 01
 (+31) (+1)

 Case 2: 4(SB) F6 F6
 (-10) (-10)

 8(SB) 1F F7
 (+31) (-9)

 Case 3: 4(SB) F6 F6
 (-10) (-10)

 8(SB) E1 FF
 (-31) (-1)

 Case 4. 4(SB) 0A 0A
 (+10) (+10)

 8(SB) E1 09
 (-31) (+9)

 5-96

 MOVf
Move Floating Point

Syntax: MOVf src, dest MOVF
 gen gen MOVL
 read.f write.f

 ! src ! dest ! MOVf !
 +---------+---------+---------+-+---------------+
 ! gen ! gen !0 0 0 1 0!f!1 0 1 1 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The MOVf instruction copies the src operand to the dest operand location.

Flags Affected: No PSR Flags.
 The FSR TT field is set to all zeroes.

Traps: Undefined Instruction Trap (UND) is activated if the F bit in
 the CFG register is clear.

Example:

 MOVF F0, 8(SB) BE 85 06 08

This example moves the single-precision number in register F0 to the operand at
address 8(SB).

 Operand Value: Hex (Dec)
 Operands Before After

 F0 3F800000 3F800000
 (+1.0) (+1.0)

 8(SB) AAAAAAAA 3F800000
 (+1.0)

 5-97

MOVi
Move

Syntax: MOVi src, dest MOVB
 gen gen MOVW
 read.i write.i MOVD

 ! src ! dest ! MOVi !
 +---------+---------+-------+---+
 ! gen ! gen !0 1 0 1! i !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

The MOVi instruction copies the src operand to the dest operand location.

Flags Affected: None.

Traps: None.

Example:

 MOVD R0, 8(SB) 97 06 08

This example copies the contents of register R0 to the double-word at the address
specified by 8(SB).

 Operand Values: Hex
 Operands Before After

 R0 12345678 12345678

 8(SB) AAAAAAAA 12345678

 5-98

 MOVif
Move Converting Integer to Floating Point

Syntax: MOVif src, dest MOVBF MOVBL
 gen gen MOVWF MOVWL
 read.i write.f MOVDF MOVDL

 ! src ! dest ! MOVif !
 +---------+---------+-----+-+---+---------------+
 ! gen ! gen !0 0 0!f! i !0 0 1 1 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The MOVif instruction converts the integer operand src to a single- or double-
precision floating-point number and places the result in the dest operand
location.

Rounding, if required, is controlled by the Rounding Mode bits in the FSR.

Flags Affected: No PSR flags. FSR flags are affected as follows:
 IF is set on an inexact result; unaffected otherwise.
 TT field is set to reflect any exceptional conditions
 encountered in executing the instruction. If none is
 encountered, TT is set to all zeroes.
 See Sections 2.4.2 and 3.3 for details of exceptional condi-
 tions.

Traps: Undefined Instruction Trap (UND) is activated if the F bit in
 the CFG register is clear.

 Floating-Point Trap (FPU) is activated if a floating-point
 exception is detected. See Section 3.3. Particularly relevant
 is the Inexact Result trap if it is enabled in the FSR. It can
 occur in the MOVDF form, because in this case there are fewer
 significant bits in dest than in src. The smallest integer
 values for which this will happen are +16,777,217 (01000001 Hex)
 and -16,777,217 (FEFFFFFF Hex).

 5-99

MOVif
Move Converting Integer to Floating Point (continued)

Examples:

 1. MOVBF 2, F0 3E 04 A0 02
 2. MOVDL 16(SB), F2 3E 83 D0 10

Example 1 converts the integer constant 2 to a single-precision number and copies
the number to the register F0.

Example 2 converts the double-word integer at the address specified by 16(SB) to
a double-precision number and places the number into the register F2.

 Operand Values: Hex (Dec)
 Operands Before After

 Ex. 1: 2 02 --
 (immediate) (+2)

 F0 AAAAAAAA 40000000
 (+2.0)

 Ex. 2: 16(SB) 20401110 20401110
 (+541069584) (+541069584)

 F2 AAAAAAAAAAAAAAAA 41C0200888000000
 (+541069584.0)

 5-100

 MOVFL
Move Floating to Long Floating

Syntax: MOVFL src, dest
 gen gen
 read.F write.L

 ! src ! dest ! MOVFL !
 +---------+---------+---------------------------+
 ! gen ! gen !0 1 1 0 1 1 0 0 1 1 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The MOVFL instruction converts the src operand to double-precision format and
places the result in the dest operand location.

Flags Affected: No PSR Flags.
 The FSR TT field is set to reflect any exceptional conditions
 encountered in executing the instruction. If none is
 encountered, TT is set to all zeroes.
 See Sections 2.4.2 and 3.3 for details of exceptional conditions
 and reporting.

Traps: Undefined Instruction Trap (UND) is activated if the F bit in
 the CFG register is clear.

 Floating-Point Trap (FPU) is activated if a floating-point
 exception is detected. See Section 3.3.

Example:

 MOVFL 8(SB), F0 3E 1B D0 08

This example converts the single-precision number at the address specified by
8(SB) to a double-precision number and places the number in the register F0.

 Operand Values: Hex (Dec)
 Operands Before After

 8(SB) 3F800000 3F800000
 (+1.0) (+1.0)

 F0 AAAAAAAAAAAAAAAA 3FF0000000000000
 (+1.0)

 5-101

MOVLF
Move Long Floating to Floating

Syntax: MOVLF src, dest
 gen gen
 read.L write.F

 ! src ! dest ! MOVLF !
 +---------+---------+---------------------------+
 ! gen ! gen !0 1 0 1 1 0 0 0 1 1 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The MOVLF instruction converts the src operand to a single-precision number and
places the result in the dest operand location.

Rounding is performed, if necessary, according to the rounding mode selected in
the FSR. See Section 3.3 for details of rounding modes.

Flags Affected: No PSR flags. FSR flags are affected as follows:
 UF is set if an underflow occurs; unaffected otherwise.
 IF is set on an inexact result; unaffected otherwise.
 TT field is set to reflect any exceptional conditions
 encountered in executing the instruction. If none is
 encountered, TT is set to all zeroes.
 See Sections 2.4.2 and 3.3 for details of exceptional conditions
 and reporting.

Traps: Undefined Instruction Trap (UND) is activated if the F bit in
 the CFG register is clear.

 Floating-Point Trap (FPU) is activated if a floating-point
 exception is detected. See Section 3.3. Particularly relevant
 cases are:

 * Overflow which occurs if the src operand is too great in
 absolute value to be represented as a single-precision
 number.

 * Underflow which, if enabled in the FSR, occurs if the src
 operand is too small in absolute value to be represented as
 a normalized single-precision number.

 * Inexact Result which, if enabled in the FSR, occurs if a
 loss of precision occurs in the conversion.

 5-102

 MOVLF
Move Long Floating to Floating (continued)

Example:

 MOVLF F0, 12(SB) 3E 96 06 0C

This example converts the double-precision number in register F0 to a single-
precision number and places the result at address 12(SB).

 Operand Values: Hex (Dec)
 Operands Before After

 F0 3FF0000000000000 3FF0000000000000
 (+1.0) (+1.0)

 12(SB) AAAAAAAA 3F800000
 (+1.0)

 5-103

MOVMi
Move Multiple

Syntax: MOVMi block1, block2, length MOVMB
 gen gen disp MOVMW
 addr addr MOVMD

 ! block1 ! block2 ! MOVMi !
 +---------+---------+-------+---+---------------+
 ! gen ! gen !0 0 0 0! i !1 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The MOVMi instruction copies the contents of block1 to block2. The instruction
copies consecutive integers from block1 to consecutive integer locations in
block2.

In assembly language, the length operand is specified as the number of integers
in each block. In the machine instruction, however, the length operand is
encoded according to the formula

 (num - 1) * i

where num is the number of integers in each block, and i is the number of bytes
per integer. A block may not be greater than 16 bytes in length.

Flags Affected: None.

Traps: None.

Example:

 MOVMW 10(R0), 16(R1), 4 CE 41 42 0A 10 06

This instruction copies four word-long integers from the block starting at the
address specified by 10(R0) to the block starting at the address specified by
16(R1).

 Operand Values: Hex
 Operands Before After

 R0 00002000 00002000

 R1 0000F000 0000F000

 0000200A * 1FBE 10A9 8729 6511 1FBE 10A9 8729 6511

 0000F010 ** AAAA AAAA AAAA AAAA 1FBE 10A9 8729 6511

 * The address of the first block, as specified by 10(R0).
** The address of the second block, as specified by 16(R1).

 5-104

 MOVQi
Move Quick Integer

Syntax: MOVQi src, dest MOVQB
 quick gen MOVQW
 write.i MOVQD

 ! dest ! src ! MOVQi !
 +---------+-------+---------+---+
 ! gen ! quick !1 0 1 1 1! i !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

The MOVQi instruction copies the src operand to the dest operand location.
Before the copy operation, src is sign-extended to the length of dest.

Flags Affected: None.

Traps: None.

Example:

 MOVQW 7, TOS DD BB

This example pushes the quick value 7 as a word onto the top of the stack. The
high-order bits of the result are zero-filled due to sign-extension.

 Operand Values: Hex
 Operands Before After

 7 0007 * --
 (quick)

 SP 0000FFEE 0000FFEC

 Stack:
 0000FFEC xxxx 0007
 0000FFEE AAAA AAAA

* This value is the internal representation of the Quick value 7, after sign-
 extension to Word length. The operand is encoded within the instruction as
 binary 0111.

 5-105

MOVSi
MOVST
Move String

Syntax: MOVSi options MOVSB
 MOVSW
 ! MOVSi ! MOVSD
 +---------+---+-+-+---------+---+---------------+ MOVST
 !0 0 0 0 0!UW !B!0!0 0 0 0 0! i !0 0 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

Syntax: MOVST options

 MOVST
 +---------+---+-+-+---------+---+---------------+
 !0 0 0 0 0!UW !B!1!0 0 0 0 0!0 0!0 0 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

Operands of the MOVSi and MOVST instructions are specified in General-Purpose
registers:

 R0 - Number of string elements to be processed.
 R1 - Address of current String 1 element.
 R2 - Address of current String 2 element.
 R3 - Address of translation table (MOVST form only).
 R4 - Match value (with Until Match or While Match option only).

The MOVSi instruction copies consecutive elements of String 1 (address in R1) to
consecutive element locations in String 2 (address in R2). After an element is
copied, the instruction sets register R1 to the address of the next element to
copy, sets register R2 to the address of the next location to receive an element,
and sets R0 to the number of elements remaining to be copied. See Section 3.7
for the exact sequences followed by String instructions.

The MOVST instruction copies one-byte elements from String 1, after translation,
to String 2. The translated value to be copied is found by adding the current
element from String 1 as an unsigned integer to the translation table address
found in register R3. The instruction copies elements and sets registers as
described above. See Section 3.7 for details of string translation.

Options may be specified by listing the letters B (Backward), U (Until Match) and
W (While Match) as operands. The U and W options are mutually exclusive. See
Section 3.7 for details of the options available in String instructions.

 5-106

 MOVSi
 MOVST
Move String (continued)

In the machine instruction, the options are encoded in the B and UW fields as
follows:

 B field = 0 Forward direction.
 1 Backward direction.

 UW field = 00 Neither Until Match nor While Match.
 01 While Match.
 10 (reserved)
 11 Until Match.

String instructions are interruptible. See Section 3.7.

Flags Affected: F is set if the U or W option is specified and the corresponding
 Until/While condition is met, otherwise it is cleared.

Traps: None.

Example:

 MOVST 0E 80 00

This example moves byte-long integers from the first string, after translation,
to the second string.

The instruction is as follows:

 5-107

MOVSi
MOVST
Move String (continued)

 Operand Values: Hex (Dec)
 Operands Before After

 R0 00000020 00000000
 (+32) (0)

 R1 00002000 00002020

 R2 0000F000 0000F020

 R3 00010000 00010000

 UPSR nzfvxltc nz0vxltc

 Translation Table Contents

 10000 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 String Contents Before

 2000 1E 04 05 1C 0A 14 0C 0B 09 07 1F 0F 17 01 00 11
 1F 1D 1A 09 01 12 14 0E 1E 0A 00 03 09 06 16 18

 F000 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA

 String Contents After

 2000 1E 04 05 1C 0A 14 0C 0B 09 07 1F 0F 17 01 00 11
 1F 1D 1A 09 01 12 14 0E 1E 0A 00 03 09 06 16 18

 F000 30 04 05 28 10 20 12 11 09 07 31 15 23 01 00 17
 31 29 26 09 01 18 20 14 30 10 00 03 09 06 22 24

This example translates 32 binary integers (in the range 0-31) into binary coded
decimal (BCD) values. Each integer is read from String 1 (address given by R1)
and used as an offset into the translation table at address 10000 (Hex). The BCD
value found at that address in the translation table is then copied to the cur-
rent location in String 2 (address in R2).

 5-108

 MOVSUi
Move Value from Supervisor to User Space

Syntax: MOVSUi src, dest MOVSUB
 gen gen MOVSUW
 addr addr MOVSUD

 ! src ! dest ! MOVSUi !
 +---------+---------+-------+---+---------------+
 ! gen ! gen !0 0 1 1! i !1 0 1 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The MOVSUi instruction copies the src operand in Supervisor space to the dest
operand location in User space. User Mode protection is applied to the User
space access.

Flags Affected: None.

Traps: Illegal Instruction Trap (ILL) is activated if the U flag is
 set.

Example:

 MOVSUB 5(SP), 9(SB) AE 8C CE 05 09

This example copies the byte at the operand address 5(SP) in supervisor space to
the operand address 9(SB) in user space.

The instruction is illustrated below:

 Operand Values: Hex
 Operands Before After

 5(SP) 10 10
 Supervisor

 9(SB) AA 10
 User

 5-109

MOVUSi
Move Value from User to Supervisor Space

Syntax: MOVUSi src, dest MOVUSB
 gen gen MOVUSW
 addr addr MOVUSD

 ! src ! dest ! MOVUSi !
 +---------+---------+-------+---+---------------+
 ! gen ! gen !0 1 1 1! i !1 0 1 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The MOVUSi instruction moves the src operand in User space to the dest operand
location in Supervisor space. User Mode protection is applied to the User space
access.

Flags Affected: None.

Traps: Illegal Instruction Trap (ILL) is activated if the U flag is
 set.

Example:

 MOVUSB 9(SB), 5(SP) AE 5C D6 09 05

This example moves the byte at the address specified by 9(SB) in user space to
the address specified by 5(SP) in supervisor space.

 Operand Values: Hex
 Operands Before After

 9(SB) 10 10
 User

 5(SP) AA 10
 Supervisor

 5-110

 MOVXii
Move with Sign-Extension

Syntax. MOVXBD src, dest MOVXBD
 gen gen MOVXWD
 read.B write.D MOVXBW

 ! src ! dest ! MOVXBD !
 +---------+---------+---------------------------+
 ! gen ! gen !0 1 1 1 0 0 1 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

Syntax: MOVXWD src, dest
 gen gen
 read.W write.D

 ! src ! dest ! MOVXWD !
 +---------+---------+---------------------------+
 ! gen ! gen !0 1 1 1 0 1 1 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

Syntax: MOVXBW src, dest
 gen gen
 read.B write.W

 ! src ! dest ! MOVXBW !
 +---------+---------+---------------------------+
 ! gen ! gen !0 1 0 0 0 0 1 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The MOVX instructions convert signed integers to any greater length while preser-
ving their signed values through sign-extension.

The MOVXBD instruction copies the byte-length src operand to the low-order byte
of the double-word dest operand and extends the src operand's sign bit through
the remaining high-order bits of the dest operand.

The MOVXWD instruction copies the word-length src operand to the low-order word
of the double-word dest operand and extends the src operand's sign bit through
the remaining high-order bits of the dest operand.

The MOVXBW instruction copies the byte-length src operand to the low-order byte
of the word dest operand and extends the src operand's sign bit through the
remaining high-order bits of the dest operand.

The src and dest operands are interpreted as signed integers.

 5-111

MOVXii
Move with Sign-Extension (continued)

Flags Affected: None.

Traps: None.

Example:

 MOVXBW 2(SB), R0 CE 10 D0 02

This example copies the byte at the address specified by 2(SB) to the
low-order byte of register R0 and extends the sign bit of the byte through the
next eight bits of R0. The instruction affects the low-order word of R0 only.

The instruction (for two cases) is as follows:

 Operand Values: Hex (Dec)
 Operands Before After

 Case 1: 2(SB) F0 F0
 (-16) (-16)

 R0 AAAAAAAA AAAAFFF0
 (-16)

 Case 2: 2(SB) 70 70
 (+112) (+112)

 R0 AAAAAAAA AAAA0070
 (+112)

 5-112

 MOVZii
Move with Zero-Extension

Syntax: MOVZBD src, dest MOVZBD
 gen gen MOVZWD
 read.B write.D MOVZBW

 ! src ! dest ! MOVZBD !
 +---------+---------+---------------------------+
 ! gen ! gen !0 1 1 0 0 0 1 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

Syntax. MOVZWD src, dest
 gen gen
 read.W write.D

 ! src ! dest ! MOVZWD !
 +---------+---------+---------------------------+
 ! gen ! gen !0 1 1 0 0 1 1 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

Syntax: MOVZBW src, dest
 gen gen
 read.B write.W

 ! src ! dest ! MOVZBW !
 +---------+---------+---------------------------+
 ! gen ! gen !0 1 0 1 0 0 1 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The MOVZ instructions convert unsigned integers to any greater length while
preserving their unsigned values through zero-extension.

The MOVZBD instruction copies the byte-length src operand to the low-order
byte of the double-word dest operand and zero-fills the remaining high-order bits
of the dest operand.

The MOVZWD instruction copies the word-length src operand to the low-order word
of the double-word dest operand and zero-fills the remaining high-order bits of
the dest operand.

The MOVZBW instruction copies the src operand to the low-order byte of the dest
operand and zero-fills the remaining eight bits of dest.

The src and dest operands are interpreted as unsigned integers.

 5-113

MOVZii
Move with Zero-Extension (continued)

Flags Affected: None.

Traps: None.

Example:

 MOVZBW -4(FP), R0 CE 14 C0 7C

This example copies the byte at the address specified by -4(FP) to the low-order
byte of register R0 and sets the next eight bits of register R0 to zero. The
instruction affects only the low-order word of R0.

 Operand Values: Hex (Unsigned Dec)
 Operands Before After

 -4(FP) FF FF
 (+255) (+255)

 R0 AAAAAAAA AAAA00FF
 (+255)

 5-114

 MULf
Multiply Floating

Syntax: MULf src, dest MULF
 gen gen MULL
 read.f rmw.f

 ! src ! dest ! MULf !
 +---------+---------+---------+-+---------------+
 ! gen ! gen !1 1 0 0 0!f!1 0 1 1 1 1 1 0!
 +-+
 23 15 7 0

The MULf instruction multiplies the src and dest operands and places the result
in the dest operand location. Results for normalized and zero operands are given
in the table below. The symbols "+n" and "-n" represent non-zero normalized
numbers, positive and negative, respectively. The symbols "+z" and "-z" repre-
sent positive and negative zero, respectively.

 dest: +n -n +z -z
 src !
 !
 +n ! * * +z -z
 !
 -n ! * * -z +z
 !
 +z ! +z -z +z -z
 !
 -z ! -z +z -z +z

* The result in these cases is the product of the two operands.

Flags Affected: No PSR flags. FSR flags are affected as follows:
 UF is set if an underflow occurs; unaffected otherwise.
 IF is set on an inexact result; unaffected otherwise.
 TT field is set to reflect any exceptional conditions
 encountered in executing the instruction. If none is
 encountered, TT is set to all zeroes.
 See Sections 2.4.2 and 3.3 for details of exceptional conditions
 and reporting.

Traps: Undefined Instruction Trap (UND) is activated if the F bit in
 the CFG register is clear.

 Floating-Point Trap (FPU) is activated if a floating-point
 exception is detected. See Section 3.3.

 5-115

MULf
Multiply Floating (continued)

Examples:

 1. MULF F0, F7 BE F1 01
 2. MULL -8(FP), 8(SB) BE B0 C6 78 08

Example 1 multiplies the single-precision numbers in registers F0 and F7 and
places the result in register F7.

Example 2 multiplies the double-precision numbers at addresses -8(FP) and 8(SB)
and places the double-precision result at address 8(SB).

 Operand Values: Hex (Dec)
 Operands Before After

 Ex. 1: F0 42250000 42250000
 (+41.25) (+41.25)

 F7 40A00000 434E4000
 (+5.0) (+206.25)

 Ex. 2: -8(FP) 409F440000000000 409F440000000000
 (+2001.0) (+2001.0)

 8(SB) 40F3218E00000000 41A2B128DDC00000
 (+78360.875) (+156800110.875)

 5-116

 MULi
Multiply

Syntax: MULi src, dest MULB
 gen gen MULW
 read.i rmw.i MULD

 ! src ! dest ! MULi !
 +---------+---------+-------+---+---------------+
 ! gen ! gen !1 0 0 0! i !1 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The MULi instruction multiplies the src and dest operands and places the product
in the dest operand location. If the product is longer than dest, the high-order
bits are truncated.

Flags Affected: None.

Traps: Integer Overflow Trap (OVF) is activated if the V flag is set
 and the result cannot be represented exactly in dest.

Examples:

 1. MULW 5, R0 CE 21 A0 00 05
 2. MULD 4(-4(FP)), 3(SB) CE A3 86 7C 04 03

Example 1 multiplies the constant 5 and the low-order word of register R0 and
places the result in the low-order word of register R0.

Example 2 multiplies the double-word at the memory address specified by 4(-4(FP))
by the double-word at the address specified by 3(SB). The instruction places the
result in the double-word at address 3(SB).

These instructions are illustrated below:

 Operand Values: Hex (Dec)
 Operands Before After

 Ex. 1: 5 0005 --
 (immediate) (+5)

 R0 BBBB000A BBBB0032
 (+10) (+50)

 Ex. 2: 4(-4(FP)) FFFFFFFE FFFFFFFE
 (-2) (-2)

 3(SB) FFFFFFF0 00000020
 (-16) (+32)

 5-117

NEGf
Negate Floating

Syntax: NEGf src, dest NEGF
 gen gen NEGL
 read.f write.f

 ! src ! dest ! NEGf !
 +---------+---------+---------+-+---------------+
 ! gen ! gen !0 1 0 1 0!f!1 0 1 1 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The NEGf instruction complements the sign bit of the src operand and places the
result in the dest operand location.

Flags Affected: No PSR flags.
 The FSR TT field is set to reflect any exceptional conditions
 encountered in executing the instruction. If none is
 encountered, TT is set to all zeroes.
 See sections 2.4.2 and 3.3 for details of exceptional conditions
 and reporting.

Traps: Undefined Instruction Trap (UND) is activated if the F bit in
 the CFG register is clear.

 Floating-Point Trap (FPU) is activated if a floating-point
 exception is detected. See Section 3.3.

Example:

 NEGF F0, F2 BE 95 00

This example complements the sign bit of the single-precision number in register
F0 and places the result in register F2.

 Operand Values: Hex (Dec)
 Operands Before After

 F0 42250000 42250000
 (+41.25) (+41.25)

 F2 AAAAAAAA C2250000
 (-41.25)

 5-118

 NEGi
Negate

Syntax: NEGi src, dest NEGB
 gen gen NEGW
 read.i write.i NEGD

 ! src ! dest ! NEGi !
 +---------+---------+-------+---+---------------+
 ! gen ! gen !1 0 0 0! i !0 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The NEGi instruction negates (takes the two's complement of) the src operand by
subtracting src from zero and places the result in the dest operand location.

Flags Affected: C is set on a borrow from subtraction, cleared if no borrow.
 (A borrow will always occur in this instruction unless the src
 operand is zero.)

 F is set on an overflow from subtraction, cleared if no
 overflow. This condition will occur if the src operand is the
 most negative number that can be represented in the operand
 length specified by the programmer. This value for bytes is
 -128 (Hex 80); for words it is -32768 (Hex 8000) and for
 double-words it is -2,147,483,648 (Hex 80000000). These values
 have no corresponding positive values in the same operand
 length. The result returned on an overflow is the original src
 operand.

 Integer borrow and overflow conditions are defined in
 Section 3.1.

Traps: Integer Overflow Trap (OVF) is activated if the V flag is set
 and the result cannot be represented exactly in dest.

 5-119

NEGi
Negate (continued)

Examples:

 1. NEGB R5, R6 4E A0 29
 2. NEGW 4(SB), 6(SB) 4E A1 D6 04 06

Example 1 negates the low-order byte of register R5 and places the result in the
low-order byte of register R6. The remaining bytes of registers R5 and R6 are
neither used nor affected.

Example 2 negates the word at the memory address specified by 4(SB) and places
the word result at the memory address specified by 6(SB).

 Operand Values: Hex (Dec)
 Operands Before After

 Ex. 1: R5 AAAAAAFF AAAAAAFF
 (-1) (-1)

 R6 BBBBBBBB BBBBBB01
 (+1)

 UPSR nzfvxltc nz0vxlt1

 Ex. 2: 4(SB) 0041 0041
 (+65) (+65)

 6(SB) xxxx FFBF
 (-65)

 UPSR nzfvxltc nz0vxlt1

 5-120

 NOP
No Operation

Syntax: NOP

 ! NOP !
 +---------------+
 !1 0 1 0 0 0 1 0!
 !-+-+-+-+-+-+-+-!
 7 0

The NOP instruction passes control to the next sequential instruction. No opera-
tion is performed.

Flags Affected: None.

Traps: None.

Example:

 NOP A2

 5-121

NOTi
Complement Boolean

Syntax: NOTi src, dest NOTB
 gen gen NOTW
 read.i write.i NOTD

 ! src ! dest ! NOTi !
 +---------+---------+-------+---+---------------+
 ! gen ! gen !1 0 0 1! i !0 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The NOTi instruction complements (inverts) the Boolean value of the src operand
and places the result in the dest operand location. The complement of a Boolean
value is that value with its least-significant bit complemented. The Boolean
value "True" (the integer value 1) thus becomes "False" (the integer value 0) and
vice versa. Boolean values are described in Section 3.4.

Flags Affected: None.

Traps: None.

Examples:

 1. NOTB R0, R0 4E 24 00
 2. NOTW 10(R1), TOS 4E E5 4D 0A

Example 1 complements the Boolean value in the low-order byte of register R0.
The remaining bytes of R0 are neither used nor affected.

Example 2 complements the 1-word Boolean value at memory address 10(R1) and
pushes the result as a word onto the top of the stack.

 Operand Values: Hex (Boolean)
 Operands Before After

 Ex. 1: R0 AAAAAA01 AAAAAA00
 (True) (False)

 Ex. 2: 10(R1) AAAA0000 AAAA0000
 (False) (False)

 Stack:
 0000FFE0 xxxx 0001 (True)
 0000FFE2 AAAA AAAA

 SP 0000FFE2 0000FFE0

 5-122

 ORi
Or

Syntax: ORi src, dest ORB
 gen gen ORW
 read.i rmw.i ORD

 ! src ! dest ! ORi !
 +---------+---------+-------+---+
 ! gen ! gen !0 1 1 0! i !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

The ORi instruction performs a bit-wise logical OR operation between the src and
dest operands and places the result in the dest operand location.

The instruction ORs each bit in src with the corresponding dest bit. If two
corresponding bits are both "0", the dest bit is set to "0"; otherwise, the dest
bit is set to "1".

Flags Affected: None.

Traps: None.

Example:

 ORB -6(FP), 11(SB) 98 C6 7A 0B

This example ORs the bytes at memory addresses -6(FP) and 11(SB), placing the
result at memory address 11(SB).

 Operand Values: Binary
 Operands Before After

 -6(FP) 11011000 11011000

 11(SB) 00001011 11011011

 5-123

POLYf
Polynomial Floating

Syntax: POLYf src1, src2 POLYF
 gen gen POLYL
 read.f read.f

 ! src1 ! src2 ! POLYf !
 +---------+---------+---------+-+---------------+
 ! gen ! gen !0 0 1 0 0!f!1 1 1 1 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The POLYf instruction multiplies src1 and floating-point register F0 and than
adds to the product src2. The result is placed in F0. (F0 := (F0*src1) + src2)

Flags Affected: No PSR flags.
 The FSR TT field is set to reflect any exceptional conditions
 encountered in executing the instruction. If none is
 encountered, TT is set to all zeroes. See Sections 2.4.2 and
 3.3 for details of exceptional conditions and reporting.

Traps: Undefined Instruction Trap(UND) is activated if the F bit in
 the CFG register is clear.

 Floating-Point Trap (FPU) is activated if a floating-point
 exception is detected. See Section 3.3.

Example:

 POLYF F2, F3 FE C9 10

This example multiplies the single-precision numbers in F2 and F0, places the
result in register F0 and finally adds the single-precision number in F3 to F0.

The instruction is illustrated below:

 Operand Values: Hex (Dec)
 Operands Before After

 F0 C2250000 C4323800
 (-41.250) (-712.875)

 F2 418C0000 418c0000
 (+17.500) (+17.500)

 F3 41100000 41100000
 (+9.000) (+9.000)

 5-124

QUOi
Quotient

Syntax: QUOi src, dest QUOB
 gen gen QUOW
 read.i rmw.i QUOD

 ! src ! dest ! QUOi !
 +---------+---------+-------+---+---------------+
 ! gen ! gen !1 1 0 0! i !1 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The QUOi instruction divides the dest operand by the src operand, returning as
the result the nearest integer whose absolute value is less than or equal to the
absolute value of the exact quotient. The result is placed in the dest operand
location.

The src and dest operands are interpreted as signed integers.

Flags Affected: None.

Traps: Divide by Zero trap (DVZ) is activated if src equals zero.
 Integer Overflow Trap (OVF) is activated if the V flag is set.
 It occurs only if the largest negative integer in a data format
 is divided by -1.

Examples:

 1. QUOB R0, R7 CE F0 01
 2. QUOW 4(SB), 8(SB) CE B1 D6 04 08

Example 1 divides the low-order byte of register R7 by the low-order byte of
register R0, placing the result in the low-order byte of register R7.

Example 2 divides the word at address 8(SB) by the word at address 4(SB), placing
the one-word result at address 8(SB).

 Operand Values: Hex (Dec)
 Operands Before After

 Ex. 1: R0 AAAAAA05 AAAAAA05
 (+5) (+5)

 R7 BBBBBB22 BBBBBB06
 (+34) (+6)

 Ex. 2: 4(SB) 0010 0010
 (+16) (+16)

 8(SB) FFE1 FFFF
 (-31) (-1)

 5-125

 RDVAL
Validate Address for Reading

Syntax: RDVAL loc
 gen
 addr

 ! src ! RDVAL !
 +---------+-------------------------------------+
 ! gen !0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The RDVAL instruction checks the protection level assigned to the user-mode
virtual memory address specified as loc. If the address is allowed to be read
while the CPU is in user mode, the F flag in the PSR is cleared. If the address
is not allowed to be read, the F flag in the PSR is set. An address which is
protected against reading is also protected against writing, and is therefore
inaccessible for any use by a user-mode program.

NOTE: Although the final effective address of loc is interpreted as a user-mode
 virtual address, any memory references required in order to calculate that
 effective address are interpreted as using supervisor-mode addresses.
 This will occur in using the Memory Relative and External addressing modes
 for loc.

Flags Affected: F is set if loc is inaccessible in user mode, cleared otherwise.

Traps: Undefined Instruction Trap (UND) is activated if the M bit in
 the CFG register is clear.

 Illegal Operation Trap (ILL) is activated if this instruction is
 attempted while the PSR U bit is set.

 Abort Trap (ABT) is activated if the Level 1 page table entry
 for loc is invalid (V bit = 0) and the Protection Level (PL)
 indicates that the access is allowed. No trap is issued for an
 invalid Level 2 page table entry, and the Protection Level field
 is assumed to be present regardless of the state of the V bit.

Example:

 RDVAL 512(R0) 1E 03 40 82 00

This example checks the protection level assigned to the address 512(R0) and sets
or clears the F flag to indicate the result.

 5-126

REMi
Remainder

Syntax: REMi src, dest REMB
 gen gen REMW
 read.i rmw.i REMD

 ! src ! dest ! REMi !
 +---------+---------+-------+---+---------------+
 ! gen ! gen !1 1 0 1! i !1 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The REMi instruction places the remainder from dividing dest by src into the dest
operand location. The remainder is computed as

 dest - src * (dest QUO src) ,

where dest QUO src is the result of dividing dest by src as per the QUOi instruc-
tion (q.v.).

The result of a REMi instruction always has the sign of the dest operand (i.e.
the dividend) unless the result is zero, which is always positive. Compare the
MODi instruction (q.v.).

The src and dest operands are interpreted as signed integers.

Flags Affected: None.

Traps: Divide by Zero trap (DVZ) is activated if src equals zero.

 5-127

 REMi
Remainder (continued)

Example:

 REMB 4(SB), 8(SB) CE B4 D6 04 08

This example computes the remainder from dividing the 1-byte operand at address
8(SB) by the 1-byte operand at address 4(SB) and places the result as a byte at
address 8(SB).

The action of this instruction for four different cases is as follows:

 Operand Values: Hex (Dec)
 Operands Before After

 Case 1: 4(SB) 0F 0F
 (+15) (+15)

 8(SB) 21 03
 (+33) (+3)

 Case 2: 4(SB) F1 F1
 (-15) (-15)

 8(SB) 21 03
 (+33) (+3)

 Case 3: 4(SB) F1 F1
 (-15) (-15)

 8(SB) DF FD
 (-33) (-3)

 Case 4: 4(SB) 0F 0F
 (+15) (+15)

 8(SB) DF FD
 (-33) (-3)

 5-128

RESTORE
Restore General Purpose Registers

Syntax: RESTORE reglist
 imm

 ! RESTORE !
 +---------------+
 !0 1 1 1 0 0 1 0!
 !-+-+-+-+-+-+-+-!
 7 0

The RESTORE registers instruction restores from the current stack the General
Purpose registers specified by reglist.

In assembly language, the reglist operand is specified as a list of zero or more
General-Purpose register names enclosed in brackets "[]". The instruction copies
to each register in the list a double-word popped from the stack. Register names
may appear in any order within reglist but must be separated by commas. Brackets
are required even if no register names are given.

In the machine instruction, the reglist operand is encoded in an 8-bit field as
shown below. Each bit in the field corresponds to one General-Purpose register.
When the instruction is executed, the instruction reads the bits in the field
from right to left beginning with bit 0. If a bit is "0", the instruction
ignores the corresponding register. If a bit is "1", it restores the correspond-
ing register from the stack. Note that the binary format of the reglist operand
is backward from the format of the reglist operand in the SAVE instruction; i.e.,
bit 0 corresponds to R7 instead of R0.

 +--+--+--+--+--+--+--+--+
 !R0!R1!R2!R3!R4!R5!R6!R7!
 !--+--+--+--+--+--+--+--!
 7 0

Flags Affected: None.

Traps: None

Example:

 RESTORE [R0, R2, R7] 72 A1

This instruction restores the contents of registers R0, R2, and R7 from the
stack. The registers are restored in order beginning with register R7 and ending
with R0.

 5-129

 RESTORE
Restore General Purpose Registers (continued)

The action of the instruction is illustrated below.

 Operand Values: Hex
 Operands Before After

 R0 BBBBBBBB 00000010

 R2 BBBBBBBB FFFFFFEF

 R7 BBBBBBBB FFFFF9AB

 SP 0000FFE0 0000FFEC

 Stack:

 0000FFE0 FFFFF9AB xxxxxxxx *
 0000FFE4 FFFFFFEF xxxxxxxx *
 0000FFE8 00000010 xxxxxxxx *
 0000FFEC AAAAAAAA AAAAAAAA

* The RESTORE instruction does not itself change the contents of these memory
 locations. However, information that is outside the stack should be considered
 unpredictable for other reasons. See Section 2.8.1.

 5-130

RET
Return from Subroutine

Syntax: RET constant
 disp

 ! RET !
 +---------------+
 !0 0 0 1 0 0 1 0!
 !-+-+-+-+-+-+-+-!
 7 0

The RET instruction returns execution control from a local procedure and removes
procedure parameters from the stack.

The instruction pops the return address as a 32-bit value from the currently-
selected stack. It then removes the number of bytes specified by the constant
operand from the stack by adding the constant operand to the current stack
pointer register. Finally, it transfers control by loading the return address
into the PC register.

Flags Affected: None.

Traps: None

 5-131

 RET
Return from Subroutine (continued)

Example:

 RET 16 12 10

This example pops a new address from the currently-selected stack into the PC and
adds 16 (H'10) to the stack pointer.

 Operand Values: Hex
 Operand Before After

 16 10 --
 (disp) (+16)

 PC 00009000 00009010

 SP 0000F000 0000F014

 Stack:
 0000F000 00009010 xxxxxxxx *
 0000F004 BBBBBBBB xxxxxxxx *
 0000F008 BBBBBBBB xxxxxxxx *
 0000F00C BBBBBBBB xxxxxxxx *
 0000F010 BBBBBBBB xxxxxxxx *
 0000F014 AAAAAAAA AAAAAAAA

* The RET instruction does not itself change the contents of these memory
 locations. However, information that is outside the stack should be considered
 unpredictable for other reasons. See Section 2.8.1.

 5-132

RETI
Return from Interrupt

Syntax: RETI

 ! RETI !
 +---------------+
 !0 1 0 1 0 0 1 0!
 !-+-+-+-+-+-+-+-!
 7 0

The RETI instruction returns control from an interrupt service procedure to the
program during which the interrupt was accepted, and informs any interrupt
control circuitry present in the system that this is being done.

The RETI instruction does the following:

 1. Performs either one or two "End of Interrupt" bus cycles in order to
 inform the appropriate Interrupt Controller(s) that this interrupt
 service procedure is ending. For details of this aspect of the RETI
 instruction, see the data sheets for the NS32202 Interrupt Control Unit
 and the appropriate CPU.

 2. Pops a 32-bit return address from the currently selected stack into the
 PC register.

 3. Pops a 16-bit value from the currently-selected stack. If Direct-Excep-
 tion mode is disabled the value is stored into the MOD register. Other-
 wise the value is discarded.

 4. Pops a 16-bit PSR value from the currently selected stack into the PSR.

 5. If Direct-Exception mode is disabled the instruction copies the double-
 word from the address contained in the MOD register into the SB
 register.

Program execution continues at the new address placed in the PC register.

NOTE: The RETI instructon must not be used to return from the Non-Maskable or
 Non-Vectored interrupts or from any traps (including the Abort trap).
 Such use can cause anomalies in prioritization of interrupts by Interrupt
 Control circuits. For these use instead the Return from Trap instruction
 (RETT, q.v.).

Flags Affected: All flag states are restored from the stack.

Traps: Illegal Instruction Trap (ILL) is activated if this instruction
 is attempted while the U flag is set.

 5-133

 RETI
Return from Interrupt (continued)

Example:

 RETI 52

This example returns control from an interrupt service procedure. Direct-Excep-
tion mode is disabled.

The action of this instruction is illustrated below. Note that the PSR S flag is
assumed to be zero at the beginning of the instruction, thus selecting SP0 as the
current Stack Pointer. However, note also that after the instruction is com-
pleted the CPU is in User mode, the currently-selected Stack Pointer has become
SP1, and interrupts are re-enabled.

 Operand Values: Hex
 Operands Before After

 PC 0000F033 00009005
 SB 0000F100 00009080
 MOD 0020 0010
 SP0 00001000 00001008 *
 PSR x000 xB20
 (xxxxipsu/nzfvxltc) (xxxx1011/0010x000)

 Stack:
 00001000 00009005 xxxxxxxx **
 00001004 0010 xxxx **
 00001006 0B20 xxxx **
 00001008 AAAA AAAA

 Module
 Table:
 00000010 00009080 (SB) 00009080 (SB)

 * The final Stack Pointer value is the initial address plus 8 as follows: 4
 (for double-word return address), 2 (for MOD address), and 2 (for PSR
 contents).

** The RETI instruction does not itself change the contents of these memory
 locations. However, information that is outside the stack should be
 considered unpredictable for other reasons. See Section 2.8.1.

 5-134

RETT
Return from Trap

Syntax: RETT constant
 disp

 ! RETT !
 +---------------+
 !0 1 0 0 0 0 1 0!
 1-+-+-+-+-+-+-+-!
 7 0

The RETT instruction returns control from a trap service procedure. It restores
the PC, MOD and PSR. registers from the currently-selected stack, updates the SB
register, and then removes any parameters passed by the procedure which caused
the trap.

The instruction does the following:

 1. Pops a 32-bit return address from the currently-selected stack into the
 PC register.

 2. Pops a 16-bit value from the currently-selected stack. If Direct-Excep-
 tion mode is disabled the value is stored into the MOD register. Other-
 wise the value is discarded.

 3. Pops a 16-bit PSR value from the currently-selected stack into the PSR.
 Note that this may switch stack pointers by changing the PSR S bit.

 4. If Direct-Exception mode is disabled the instruction copies the double-
 word from the address contained in the MOD register into the SB
 register.

 5. Adds the constant operand to the stack pointer newly selected in
 step 3.

Program execution continues at the new address placed in the PC register.

NOTE: When using the NS32202 Interrupt Control Unit, the RETT instruction must
 not be used to return from a vectored interrupt, since this instruction
 does not inform the Interrupt Control Unit that it is returning from an
 interrupt. To return properly from a vectored interrupt, use the RETI
 instruction.

Flags Affected: All flag states are restored from the stack.

Traps: Illegal Instruction Trap (ILL) is activated if the U flag is
 set.

 5-135

 RETT
Return from Trap (continued)

Example:

 RETT 16 42 10

This example returns control from a trap service procedure to a procedure which
invoked the trap deliberately after pushing 16 bytes of parameters onto its
stack. This instruction removes the 16 bytes from that stack as it returns
control.

In the following illustration, it is assumed that the trap service routine is
using the Interrupt Stack (with SP0 as its stack pointer) and is returning to a
procedure which is using the User Stack (with SP1). Direct-Exception mode is
disabled.

 Operand Values: Hex
 Operands Before After

 16 10 --
 (disp)

 PC 0000F033 00009005
 SB 0000F100 00009080
 MOD 0020 0010
 SP0 00001018 00001020
 SP1 0000FFE0 0000FFF0
 PSR x000 x320
 (xxxxipsu/nzfvxltc) (xxxx0011/0010x000)

Interrupt 00001018 00009005 xxxxxxxx *
Stack 0000101C 03200010 xxxxxxxx *
 00001020 AAAAAAAA AAAAAAAA

User Stack 0000FFE0 BBBBBBBB xxxxxxxx *
 0000FFE4 BBBBBBBB xxxxxxxx *
 0000FFE8 BBBBBBBB xxxxxxxx *
 0000FFEC BBBBBBBB xxxxxxxx *
 0000FFF0 CCCCCCCC CCCCCCCC

Module 00000010 00009080 (SB) 00009080 (SB)
Table 00000014 00002000 (LB) 00002000 (LB)
 00000018 00009000 (PB) 00009000 (PB)

* The RETT instruction does not itself change the contents of these memory
 locations. However, information that is outside the stack should be considered
 unpredictable for other reasons. See Section 2.8.1.

 5-136

ROTi
Rotate

Syntax. ROTi count, dest ROTB
 gen gen ROTW
 read.B rmw.i ROTD

 ! count ! dest ! ROTi !
 +---------+---------+-------+---+---------------+
 ! gen ! gen !0 0 0 0! i !0 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The ROTi instruction performs a rotation shift on the dest operand in the manner
specified by the count operand. The sign of count determines the direction of
the shift. The absolute value of count gives the number of bit positions to
shift the dest operand.

The count operand value must be within the range -7 to +7 for the ROTB form,
-15 to +15 for the ROTW form, and -31 to +31 for the ROTD form. A positive count
specifies a left shift; a negative count specifies a right shift. In a rotation,
each bit rotated off one end of dest is moved to the emptied bit position at the
other end of dest.

The count operand is interpreted as a signed integer. The dest operand is
interpreted as an unsigned integer.

Flags Affected: None.

Traps: None.

 5-137

 ROTi
Rotate (continued)

Examples:

 1. ROTB 4, R5 4E 40 A1 04
 2. ROTB -3, 16(SP) 4E 40 A6 FD 10

Example 1 rotates the least-significant byte of register R5 four bit positions to
the left. The remaining bytes of R5 are unaffected.

Example 2 rotates the operand at address 16(SP) three bit positions to the right.

 Operand Values: Binary (Dec)
 Operands Before After

 Ex. 1: 4 00000100 --------
 (immediate) (+4)

 R5 00001111 11110000
 (low byte)

 Ex. 2: -3 11111101 --------
 (immediate) (-3)

 16(SP) 00001111 11100001

 5-138

ROUNDfi
Round Floating to Integer

Syntax: ROUNDfi src, dest ROUNDFB ROUNDLB
 gen gen ROUNDFW ROUNDLW
 read.f write.i ROUNDFD ROUNDLD

 ! src ! dest ! ROUNDfi !
 +---------+---------+-----+-+---+---------------+
 ! gen ! gen !1 0 0!f! i 10 0 1 1 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The Round Floating to Integer instruction rounds the src operand to the nearest
integer and places the result in the dest operand location as a signed integer.
If src is exactly halfway between two integer values, it is rounded to the even
value (i.e. the value that is exactly divisible by two).

Flags Affected: No PSR flags. FSR flags are affected as follows:
 IF is set on an inexact result; unaffected otherwise.
 TT field is set to reflect any exceptional conditions
 encountered in executing the instruction. If none is
 encountered, TT is set to all zeroes.
 See Sections 2.4.2 and 3.3 for details of exceptional conditions
 and reporting.

Traps: Undefined Instruction Trap (UND) is activated if the F bit in
 the CFG register is clear.

 Floating-Point Trap (FPU) is activated if a floating-point
 exception is detected. See Section 3.3. Particularly relevant
 to this instruction is the Overflow exception, which is caused
 by attempting to convert a floating-point number that is too
 great in absolute value to be held in a signed integer of the
 size specified for dest.

 5-139

 ROUNDfi
Round Floating to Integer (continued)

Examples:

 1. ROUNDFB F0, R0 3E 24 00
 2. ROUNDLD F2, 12(SB) 3E A3 16 0C

Example 1 rounds the single-precision number in register F0 to a 1-byte integer
and places the result in the low-order byte of register R0. The remaining bytes
of R0 are unaffected.

Example 2 rounds the double-precision number in register F2 to a double-word
integer and places the result at address 12(SB).

 Operand Values: Hex (Dec)
 Operands Before After

 Ex. 1: F0 40180000 40180000
 (+2.375) (+2.375)

 R0 AAAAAAAA AAAAAA02
 (+2)

 Ex. 2: F2 41C0200888700000 41C0200888700000
 (+541069584.875) (+541069584.875)

 12(SB) AAAAAAAA 20401111
 (+541069585)

 5-140

RXP
Return from External Procedure

Syntax: RXP constant
 disp

 ! RXP !
 +---------------+
 !0 0 1 1 0 0 1 0!
 !-+-+-+-+-+-+-+-1
 7 0

The RXP instruction returns control from an externally-called procedure and
removes any procedure parameters from the stack.

The instruction does the following:

 1. Pops a 32-bit return address from the currently-selected stack into the
 PC register.

 2. Pops a 16-bit MOD address from the currently-selected stack to the MOD
 register and increments the stack pointer by two. The stack pointer is
 modified by a total of four in this step.

 3. Copies the double-word at address MOD+0 to the SB register.

 4. Adds the constant operand to the current stack pointer.

Program execution continues at the new address placed in the PC register.

Flags Affected: None.

Traps: None.

 5-141

 RXP
Return from External Procedure (continued)

Example:

 RXP 16 32 10

This example returns control from an externally-called procedure and removes 16
(H'10) bytes from the currently-selected stack.

 Operand Values: Hex
 Operands Before After

 16 10 --
 (disp) (+16)

 PC 0000F033 00009005

 SB 0000F100 00009080

 MOD 0020 0010

 SP 00001018 00001030 *

 Stack:
 00001018 00009005 xxxxxxxx **
 0000101C xxxx0010 xxxxxxxx **
 00001020 BBBBBBBB xxxxxxxx **
 00001024 BBBBBBBB xxxxxxxx **
 00001028 BBBBBBBB xxxxxxxx **
 0000102C BBBBBBBB xxxxxxxx **
 00001030 AAAAAAAA AAAAAAAA

 Module
 Table:
 00000010 00009080 (SB) 00009080 (SB)
 00000014 00002000 (LB) 00002000 (LB)
 00000018 00009000 (PB) 00009000 (PB)

 * The final Stack Pointer content is the initial address plus 4 (for double-word
 return address), 2 (for word MOD address), 2 (additional from step 3), and 16
 as specified by the constant operand.

** The RXP instruction does not itself change the contents of these memory
 locations. However, information that is outside the stack should be
 considered unpredictable for other reasons. See Section 2.8.1.

 5-142

Scondi
Save Condition as Boolean

Syntax: Scondi dest ScondB
 gen ScondW
 write.i ScondD

 ! dest ! cond ! Scondi !
 +---------+-------+---------+---+
 ! gen ! short !0 1 1 1 1! i !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

The Scondi instruction sets the dest operand to the integer value "1" if the
specified condition is true, and to "0" if false. These are the Boolean values
"True" and "False", respectively.

Cond is a 2-character condition name that specifies the state of a flag or flags
in the PSR. If the flag(s) have the specified state, the condition is true;
otherwise, the condition is false.

The Save Condition as Boolean instruction may specify the following conditions:

 Condition True Short
 Condition Name State Field

 Equal EQ Z flag set 0000
 Not Equal NE Z flag clear 0001
 Carry Set CS C flag set 0010
 Carry Clear CC C flag clear 0011
 Higher HI L flag set 0100
 Lower or Same LS L flag clear 0101
 Greater Than GT N flag set 0110
 Less Than or Equal LE N flag clear 0111
 Flag Set FS F flag set 1000
 Flag Clear FC F flag clear 1001
 Lower LO Z and L flag clear 1010
 Higher or Same HS Z or L flag set 1011
 Less Than LT Z and N flag clear 1100
 Greater than or Equal GE Z or N flag set 1101

The condition name must be embedded in the instruction mnemonic as illustrated in
the examples below. The name is translated at assembly time to the corresponding
Short Field of the basic instruction.

The interpretation of condition codes is such that the instruction sequence

 CMPB A,B
 SGTB RESULT

will store "1" in RESULT if operand A is greater than operand B in the CMPB
instruction.

 5-143

 Scondi
Save Condition as Boolean (continued)

Flags Affected: None.

Traps: None.

Examples:

 1. SEQB R0 3C 00
 2. SLOW 10(SB) 3D D5 0A
 3. SHID TOS 3F BA

Example 1 sets the low-order byte of register R0 to 1 if the Z flag is set, 0 if
the Z flag is clear.

Example 2 sets the word at the operand address 10(SB) to 1 if the Z and L flags
are clear, 0 otherwise.

Example 3 pushes a double-word value onto the stack: 1 if the L flag is set, 0
otherwise.

In the following illustration, the Z and L flags are assumed to be set.

 Operand Values: Hex (Boolean)
 Operands Before After

 Ex. 1: R0 AAAAAAAA AAAAAA01
 (True)

 UPSR n1fvx1tc n1fvx1tc

 Ex. 2: 10(SB) AAAA 0000
 (False)

 UPSR n1fvx1tc n1fvx1tc

 Ex. 3: Stack:
 00001000 xxxxxxxx 00000001 (True)
 00001004 AAAAAAAA AAAAAAAA

 SP 00001004 00001000

 UPSR n1fvx1tc n1fvx1tc

 5-144

SAVE
Save General Purpose Registers

Syntax: SAVE reglist
 imm

 ! SAVE !
 +---------------+
 !0 1 1 0 0 0 1 0!
 !-+-+-+-+-+-+-+-!
 7 0

The SAVE instruction saves the General-Purpose registers specified by reglist,
pushing them onto the currently-selected stack.

The reglist operand is a list of zero or more general purpose register names,
enclosed in brackets "[]". The instruction pushes the contents of each register
in the list as a double-word onto the stack. Register names may appear in any
order within reglist, but must be separated by commas. Brackets are required
even if no register names are given.

In the machine instruction, the reglist operand is encoded in an 8-bit field as
shown below. Each bit in the field corresponds to one general purpose register.
When the instruction is executed, the instruction reads the bits in the field
from right to left beginning with bit 0. If a bit is "0", the instruction
ignores the corresponding register. If a bit is "1", it pushes the corresponding
register.

 +-----------------------+
 !R7!R6!R5!R41R3!R2!R1!R0!
 !--+--+--+--+--+--+--+--!
 7 0

Flags Affected: None.

Traps: None.

Example:

 SAVE [R0, R2, R7] 62 85

This instruction saves the contents of registers R0, R2, and R7 on the stack.
The registers are stored in order beginning with register R0 and ending with R7.

 5-145

 SAVE
Save General Purpose Registers (continued)

 Operand Values: Hex
 Operands Before After

 R0 00000010 00000010

 R2 FFFFFFEF FFFFFFEF

 R7 FFFFF9AB FFFFF9AB

 SP 0000FFEC 0000FFE0

 Stack:
 0000FFE0 xxxxxxxx FFFFF9AB
 0000FFE4 xxxxxxxx FFFFFFEF
 0000FFE8 xxxxxxxx 00000010
 0000FFEC AAAAAAAA AAAAAAAA

 5-146

SBITi
SBITIi
Set Bit, Set Bit Interlocked

Syntax: SBITi offset, base SBITB SBITIB
 gen gen SBITW SBITIW
 read.i regaddr SBITD SBITID

 ! offset ! base ! SBITi !
 +---------+---------+-------+---+---------------+
 ! gen ! gen !0 1 1 0! i !0 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

Syntax: SBITIi offset, base
 gen gen
 read.i regaddr

 ! offset ! base ! SBITIi !
 +---------+---------+-------+---+---------------+
 ! gen ! gen !0 1 1 1! i !0 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The SBITi and SBITIi instructions set to 1 the register or memory bit specified
by base and offset after copying the bit value to the F flag in the PSR.

The SBITIB, SBITIW, and SBITID instructions, in addition, activate the Inter-
locked Operation output pin on the CPU, which may be used in multiprocessor
systems to interlock accesses to semaphore bits. See the applicable CPU data
sheet for further details.

The location of the bit is determined from offset and base. Offset is a general
operand, whose length is given by the operation length suffix. Base is an
addressing expression giving a byte address from which offset specifies a bit
position. See Section 3.5 for details of specifying bit positions.

If base is a register, then the bit is within that register, at the bit position
given by the offset operand. If base is a memory location, then the bit is at
bit position

 offset MOD 8

within the memory byte whose address is

 EA(base) + (offset DIV 8),

where EA(base) is the effective address of base. See Section 3.5 for defini-
tions of the operators MOD and DIV above, and for further details of bit
instructions.

Offset is interpreted as a signed integer.

 5-147

 SBITIi
Set Bit (continued)

Flags Affected: F is set to the original value of the specified bit.

Traps: None.

Example:

 SBITW R0, 1(R1) 4E 59 02 01

This example sets a bit in memory to 1 after copying the bit value to the F flag.
This performs the basic operation of a semaphore "Test and Set". In a multipro-
cessor system, the SBITIW instruction would have been used instead. For designa-
ting the location of the target bit, the low-order word of register R0 supplies
the bit offset, and 1(R1) is specified as the base address.

In the following illustration, the target bit is assumed to be 0 prior to
instruction execution.

 Operand Values: Hex (Dec) [Binary]
 Operands Before After

 R0 AAAA004C AAAA004C
 (offset) (+76) (+76)

 R1 00001000 00001000
 (+4096) (+4096)

 base 00001001 --
 address (+4097)
 1(R1)

 0000100A * EF FF
 (+4106) [11101111] [11111111]

 UPSR nzfvxltc nz0vxltc

 * The address 100A (Hex) is the effective address of the byte containing the
 desired bit. This address is computed from the offset and the base address as
 follows:

 base address + (offset DIV 8)
 4097 + 9
 4106, or 100A (Hex) .

 The bit number within this byte is calculated as:

 offset MOD 8
 76 MOD 8
 4 .

 5-148

SCALBf
Scale Binary Floating

Syntax: SCALBf src, dest SCALBF
 gen gen SCALBL
 read.f rmw.f

 ! src ! dest ! SCALBf !
 +---------+---------+---------+-+---------------+
 ! gen ! gen !0 1 0 0 0!f!1 1 1 1 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The SCALBf instruction multiplies the dest operand by 2 raised to the power of
src. Only the integral part of src is used.

Flags Affected: No PSR flags.
 The FSR TT field is set to reflect any exceptional conditions
 encountered in executing the instruction. If none is
 encountered, TT is set to all zeroes. See Sections 2.4.2 and
 3.3 for details of exceptional conditions and reporting.

Traps: Undefined Instruction Trap(UND) is activated if the F bit in
 the CFG register is clear.

 Floating-Point Trap (FPU) is activated if a floating-point
 exception is detected. See Section 3.3.

Example:

 SCALBF F3, F2 FE 91 18

This example multiplies the floating-point number in F2 by the unbiased exponent
of F3 raised to the power of 2.

The instruction is illustrated below:

 Operand Values: Hex (Dec)
 Operands Before After

 F2 C2250000 CAA50000
 (-41.25) (-5406720.00)

 F3 418C0000 418c0000
 (+17.50) (+17.50)

 5-149

SETCFG
Set Configuration

Syntax: SETCFG cfglist
 short

 ! !cfglist! SETCFG !
 +---------+-+-+-+-+-----------------------------+
 !0 0 0 0 0!C!M!F!I!0 0 0 1 0 1 1 0 0 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The SETCFG instruction loads the Configuration Register (CFG), enabling or
disabling optional system features.

In assembly language, cfglist is a list of zero or more configuration bit names.
The names are I, F, M and C. The names may appear in any order in the list, but
must be separated by commas. The list itself must be enclosed in brackets.
Brackets are required even if no bit name is given.

The cfglist operand is held in a 4-bit field in the basic instruction, as shown
above. Each bit corresponds to one bit in the CFG register.

If I is specified, the I bit in the CFG register is set and vectored interrupt
processing is enabled. Otherwise, the I bit is cleared and all maskable inter-
rupts are serviced as non-vectored interrupts.

If F is specified, the F bit in the CFG register is set and Floating Point
instructions are available. Otherwise, the F bit is cleared and Floating Point
instructions activate the Undefined Instruction Trap (UND).

If M is specified, the M bit in the CFG register is set and Memory Management
instructions are available. Otherwise, the M bit is cleared and Memory Management
instructions activate the Undefined Instruction Trap (UND).

If C is specified, the C bit in the CFG register is set and Custom Slave instruc-
tions are available. (System-dependent Custom Slave hardware must be present to
execute the instructions.) Otherwise, the C bit is cleared and Custom Slave
instructions activate the Undefined Instruction Trap (UND).

See Section 2.3 for further information about the CFG register.

NOTE: The SETCFG instruction is not recommended for new systems. Please use
 the LPRi instruction instead.

 5-150

 SETCFG
Set Configuration (continued)

NOTES: 1. A CFG bit name may only be specified if the corresponding device
 is present in the system.

 2. The state of the M bit in the CFG register does not directly
 affect address translation hardware or bus timing. It only
 enables or disables the Memory Management instruction set.

 3. When a Floating-Point, Memory Management, or Custom Slave instruc-
 tion activates an Undefined Instruction Trap (UND) (i.e, when the
 corresponding CFG register bit is 0), it is possible to intercept
 the trap and simulate the instruction in software.

Flags Affected: None.

Traps: Illegal Instruction Trap (ILL) is activated if this instruction
 is attempted while the U flag is set.

Example:

 SETCFG [I,M,F] 0E 8B 03

This instruction sets the I, M, and F bits in the CFG register, enabling vectored
interrupt processing and the Memory Management and Floating Point instruction
sets. The C bit is cleared, disabling the Custom Slave instruction set. The bits
8 through 13 are cleared. The bits 4 through 7 are always "1".

 Bit Values
 Operands Before After

 CFG xxxxxx1111cmfi 00000011110111

 5-151

SFSR
Store Floating-Point Status Register (FSR)

Syntax: SFSR dest
 gen
 write.D

 ! SFSR ! dest ! SFSR !
 +---------+-------------------------------------+
 !0 0 0 0 0! gen !1 1 0 1 1 1 0 0 1 1 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The SFSR instruction copies the contents of the Floating-Point Status Register
(FSR) to the dest operand location. The FSR is treated as a 32-bit value. See
Section 2.4.2 for the format of the FSR.

Flags Affected: None.

Traps: Undefined Instruction Trap (UND) is activated if the F bit in
 the CFG register is clear.

Example:

 SFSR TOS 3E F7 05

This example pushes the contents of the FSR onto the top of the currently
selected stack as a double word.

 Operand Values: Hex
 Operands Before After

 FSR xxx00028 xxx00028

 SP 0000FFDE 0000FFDA

 Stack:
 0000FFDA xxxxxxxx xxx00028
 0000FFDE AAAAAAAA AAAAAAAA

 5-152

 SKPSi
 SKPST
Skip String

Syntax: SKPSi options SKPSB
 SKPSW
 ! SKPSi ! SKPSD
 +---------+---+-+-+---------+---+---------------+ SKPST
 !0 0 0 0 0!UW !B!0!0 0 0 1 1! i !0 0 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

Syntax: SKPST options

 ! SKPST !
 +---------+---+-+-+---------+---+---------------+
 !0 0 0 0 0!UW !B!1!0 0 0 1 1!0 0!0 0 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

Operands of the SKPSi and SKPST instructions are specified in General-Purpose
registers:

 R0 - Number of string elements to be processed.
 R1 - Address of current String 1 element.
 R2 - (not used)
 R3 - Address of translation table (SKPST form only).
 R4 - Match value (with Until Match or While Match option only).

The SKPSi instruction examines and skips over consecutive elements in String 1
until either an Until/While condition is met or register R0 is decremented to 0
(i.e., the string is exhausted). After each element is examined, the CPU sets
register R1 to the address of the next element to be examined and register R0 to
the number of integers remaining to be examined. Register R2 is not used or
affected.

The SKPST instruction causes the CPU to internally replace the current String 1
element value with a corresponding translated value before performing its
examination. The translated value to be examined is found by adding the current
element from String 1 as an unsigned integer to the translation table address
found in register R3. The instruction examines elements and sets registers as
described above. The SKPST instruction operates on byte-long elements only.

Options may be specified by listing the letters B (Backward), U (Until Match) and
W (While Match) as operands. The U and W options are mutually exclusive. See
Section 3.7 for details of the options available in String instructions.

 5-153

SKPSi
SKPST
Skip String (continued)

In the machine instruction, the options are encoded in the B and UW fields as
follows:

 B field = 0 Forward direction.
 1 Backward direction.

 UW field = 00 Neither Until Match nor While Match.
 01 While Match.
 10 (reserved)
 11 Until Match.

String instructions are interruptible. See Section 3.7.

Flags Affected: F is set if the U or W option is specified and the corresponding
 Until/While condition is met, otherwise it is cleared.

Traps: None.

Example:

 SKPSB U 0E 0C 06

This example examines and skips over byte-long elements in String 1 until the
current integer and the contents of the low-order byte of register R4 are equal
or until register R0 contains zero.

In the following illustration, the underlined string element shows the point at
which the instruction terminates.

 Operand Values: Hex (Dec)
 Operands Before After

 R0 00000020 00000016
 (+32) (+22)

 R1 00002000 0000200A

 R4 AAAAAA1F AAAAAA1F
 (+31) (+31)

 UPSR nzfvxltc nz1vxltv

 Starting String Contents
 Address

 2000 1E 04 05 1C 0A 14 0C 0B 09 07 1F 0F 17 01 00 11

 1F 1D 1A 09 01 12 14 0E 1E 0A 00 03 09 06 16 18

 5-154

 SMR
Store Memory Management Register

Syntax: SMR mmureg, dest
 short gen
 write.D

 ! dest ! mmureg! SMR !
 +---------+-------+-----------------------------+
 ! gen ! short 10 0 0 1 1 1 1 0 0 0 1 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The SMR instruction copies the contents of the Memory Management register
specified by mmureg to the dest operand location.

The Store MMU Register instruction may store the following registers. The short
field of the basic instruction holds a 4-bit value which relates to the corre-
sponding mmureg specifications as follows:

 short
 Register mmureg field

 Memory Management Control Register MCR 1000
 Memory Management Status Register MSR 1010
 Translation Exception Address Reg. TEAR 1011
 Page Table Base Register 0 PTB0 1100
 Page Table Base Register 1 PTB1 1101
 Invalidate Virtual Address 0 IVAR0 1110 *
 Invalidate Virtual Address 1 IVAR1 1111 *

* This register are write-only. If they are read the result is undefined.

Flags Affected: None.

Traps: Undefined Instruction Trap (UND) is activated if the M bit in
 the CFG register is clear. The instruction is not executed.

 Illegal Instruction Trap (ILL) is activated if the U flag is
 set. The instruction is not executed.

 5-155

SMR
Store MMU Register (continued)

Example:

 SMR PTB0, R0 1E 0F 06

This example copies the contents of the Page Table Register 0 in the MMU to reg-
ister R0.

 Operand Values: Hex
 Operands Before After

 PTB0 00009000 00009000

 R0 AAAAAAAA 00009000

 5-156

 SPRi
Store Processor Register

Syntax: SPRi procreg, dest SPRB
 short gen SPRW
 write.i SPRD

 ! dest !procreg! SPRi !
 +---------+-------+-------------+
 ! gen ! short !0 1 0 1 1! i !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

The SPRi instruction stores the contents of the dedicated processor register
specified by procreg in the dest operand location.

The register contents are right-justified in dest. High-order dest bits are
zero-filled if the register is shorter than dest. High-order register bits are
discarded if the register is longer than dest. See Section 2.2 for the formats
of the dedicated registers.

The Store Processor Register instruction may store the following registers. The
specified procreg corresponds to the 4-bit short field in the basic instruction
as shown below.
 short
 Register procreg field

 User PSR UPSR 0000 (Note 3)
 Debug Condition Register DCR 0001 (Note 2)
 Breakpoint Program Counter BPC 0010 (Note 2)
 Debug Status Register DSR 0011 (Note 2)
 Compare Address Register CAR 0100 (Note 2)
 Frame Pointer FP 1000
 Stack Pointer SP 1001 (Note 1)
 Static Base Register SB 1010
 User Stack Pointer (SP1) USP 1011 (Note 2)
 Configuration Register CFG 1100 (Note 2)
 Processor Status Register PSR 1101 (Note 2)
 Interrupt Base Register INTBASE 1110 (Note 2)
 Module Register MOD 1111

NOTES: 1. If SP is specified in the instruction and the S flag in the PSR is
 set, the instruction copies the SP1 register to the dest operand
 location. If the S flag is clear, the instruction copies the SP0
 register to the dest operand location.

 2. Specifying this register as the procreg operand is privileged,
 regardless of the operation length specified.

 3. If UPSR is specified only the low-order eight bits of the PSR are
 stored, regardless of the operation length specified. It is
 zero-extended as necessary to fill the dest operand.

Flags Affected: None.

Traps: Illegal Instruction Trap (ILL) is activated if the U flag is set
 and PSR, INTBASE, USP, CFG or a Debug Register is specified.

 5-157

SPRi
Store Processor Register (continued)

Examples:

 1. SPRD FP, R0 2F 04
 2. SPRW MOD, 4(SB) AD D7 04

Example 1 copies the entire FP register to register R0.

Example 2 copies the contents of the MOD register to a word at the address speci-
fied by 4(SB).

 Operand Values: Hex
 Operands Before After

 Ex. 1: FP 00000021 00000021

 R0 AAAAAAAA 00000021

 Ex. 2: MOD 0030 0030

 4(SB) AAAA 0030

 5-158

 SUBf
Subtract Floating

Syntax: SUBf src, dest SUBF
 gen gen SUBL
 read.f rmw.f

 ! src ! dest ! SUBf !
 +---------+---------+---------+-+---------------+
 ! gen ! gen !0 1 0 0 0!f!1 0 1 1 1 1 1 01
 +-+
 23 15 7 0

The SUBf instruction subtracts the src operand from the dest operand and places
the result in the dest operand location. Subtraction can be modelled as negating
the src operand and adding the result to the dest operand. For details of the
addition step see the ADDf instruction.

Flags Affected: No PSR flags. FSR flags are affected as follows:
 UF is set if an underflow occurs; unaffected otherwise.
 IF is set on an inexact result; unaffected otherwise.
 TT field is set to reflect any exceptional conditions
 encountered in executing the instruction. If none is
 encountered, TT is set to all zeroes.
 See Sections 2.4.2 and 3.3 for details of exceptional conditions
 and reporting.

Traps: Undefined Instruction Trap (UND) is activated if the F bit in
 the CFG register is clear.

 Floating-Point Trap (FPU) is activated if a floating-point
 exception is detected. See Section 3.3.

 5-159

SUBf
Subtract Floating (continued)

Examples:

 1. SUBF F0, F7 BE D1 01
 2. SUBL F2, 16(SB) BE 90 16 10

Example 1 subtracts the single-precision number in register F0 from the single-
precision number in register F7 and places the result in register F7.

Example 2 subtracts the double-precision number in register F2 from the double-
precision number at the address 16(SB) and places the double-precision result
at the address 16(SB).

 Operand Values: Hex (Dec)
 Operands Before After

 Ex. 1: F0 40840000 40840000
 (+4.125) (+4.125)

 F7 41F50000 41D40000
 (+30.625) (+26.500)

 Ex. 2: F2 4114C86300000000 4114C86300000000
 (+340504.750) (+340504.750)

 16(SB) 41C022A194900000 41C0200888300000
 (+541410089.125) (+541069584.375)

 5-160

 SUBi
Subtract

Syntax: SUBi src, dest SUBB
 gen gen SUBW
 read.i rmw.i SUBD

 ! src ! dest ! SUBi !
 +---------+---------+-------+---+
 ! gen ! gen !1 0 0 0! i !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

The SUBi instruction subtracts the src operand from the dest operand and places
the result in the dest operand location.

Flags Affected: C is set on a borrow from subtraction, cleared if no borrow.
 F is set on an overflow from subtraction, cleared if no
 overflow.

 Integer carry and overflow conditions are defined in
 Section 3.1.

Traps: Integer Overflow Trap (OVF) is activated if the V flag is set
 and the result cannot be represented exactly in dest.

 5-161

SUBi
Subtract (continued)

Examples:

 1. SUBB R0, R1 60 00
 2. SUBD 4(SB), 20(SB) A3 D6 04 14

Example 1 subtracts the low-order byte of register R0 from the low-order byte of
register R1 and places the result in the low-order byte of register R1. The
remaining bytes of R1 are not affected.

Example 2 subtracts the double-word at the memory address specified by 4(SB) from
the double-word at the memory address specified by 20(SB). The instruction
places the result at memory address 20(SB).

 Operand Values: Hex (Dec)
 Operands Before After

 Ex. 1: R0 AAAAAA01 AAAAAA01
 (+1) (+1)

 R1 BBBBBB7F BBBBBB7E
 (+127) (+126)

 UPSR nzfvxltc nz0vxlt1

 Ex. 2: 4(SB) FFFFFFFE FFFFFFFE
 (-2) (-2)

 20(SB) 00010000 00010002
 (+65536) (+65538)

 UPSR nzfvxltc nz0vxlt1

 5-162

 SUBCi
Subtract with Carry [Borrow]

Syntax: SUBCi src, dest SUBCB
 gen gen SUBCW
 read.i rmw.i SUBCD

 ! src ! dest ! SUBCi !
 +---------+---------+-------+---+
 ! gen ! gen !1 1 0 0! i !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

The SUBCi instruction subtracts the sum of the src operand and the C flag from
the dest operand and places the result in the dest operand location.

Flags Affected: C is set on a borrow from subtraction, cleared if no borrow.
 F is set on an overflow from subtraction, cleared if no
 overflow.

 Integer carry and overflow conditions are defined in
 Section 3.1.

Traps: Integer Overflow Trap (OVF) is activated if the V flag is set
 and the result cannot be represented exactly in dest.

 5-163

SUBCi
Subtract with Carry [Borrow] (continued)

Examples:

 1. SUBCB 32, R1 70 A0 20
 2. SUBCW TOS, -8(FP) 31 BE 78

Example 1 subtracts the sum of 32 and the C flag value from the low-order byte of
register R1 and places the result in the low-order byte of register R1. The
remaining bytes of R1 are not affected.

Example 2 subtracts the sum of the word at the top of the stack and the C flag
value from the word at the memory address specified by -8(FP). The instruction
then places the 2-byte result at the memory address specified as -8(FP).

In the following illustration, the C flag value is assumed to be 1.

 Operand Values: Hex (Dec)
 Operands Before After

 Ex. 1: 32 20 --
 (immediate) (+32)

 R1 00000050 0000002F
 (+80) (+47)

 UPSR nzfvxlt1 nz0vxlt0

 Ex. 2: -8(FP) CB99 9286
 (-13415) (-28026)

 UPSR nzfvxlt1 nz0vxlt0

 Stack:
 0000FFEE 3912 (+14610) xxxx *
 0000FFF0 AAAA AAAA

 SP 0000FFEE 0000FFF0

* The instruction has not itself changed the contents of these memory locations.
 However, information that is outside the stack should be considered unpredict-
 able for other reasons. See Section 2.8.1.

 5-164

 SUBPi
Subtract Packed Decimal

Syntax: SUBPi src, dest SUBPB
 gen gen SUBPW
 read.i rmw.i SUBPD

 ! src ! dest ! SUBPi !
 +---------+---------+-------+---+---------------+
 ! gen ! gen !1 0 1 1! i !0 1 0 0 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The SUBPi instruction subtracts the src operand from the dest operand and then
subtracts the C flag. The instruction places the result in the dest operand
location as a packed decimal (BCD) integer.

The src and dest operands are interpreted as unsigned packed decimal (BCD)
integers. If either operand contains invalid digits, the result is undefined.
See Section 3.2 for details of packed decimal arithmetic.

Flags Affected: C is set on a borrow from subtraction, cleared if no borrow.
 F is cleared.

Traps: None.

 5-165

SUBPi
Subtract Packed Decimal (continued)

Examples:

 1. SUBPD H'99, R1 4E 6F A0 00 00 00 99
 2. SUBPB -8(FP), 16(FP) 4E 2C C6 78 10

Example 1 subtracts the packed decimal integer 99 from the contents of register
R1 and then subtracts the C flag. The result is placed in register R1.

Example 2 subtracts the packed decimal integer at memory address -8(FP) from the
packed decimal integer at memory address 16(FP) and then subtracts the C Flag.
The instruction places the result at memory address 16(FP).

In the following illustration, the C flag value is assumed to be 0.

 Operand Values: Hex *
 Operands Before After

 Ex. 1: H'99 00 00 00 99 --
 (immediate)

 R1 00000187 00000088

 UPSR nzfvxlt0 nz0vxlt0

 Ex. 2: -8(FP) 10 10

 16(FP) 01 91 **

 UPSR nzfvxlt0 nz0vxlt1

 * The hexadecimal representation also expresses the decimal interpretation of
 the value.

** In Example 2, subtraction results in a borrow.

 5-166

 SVC
Supervisor Call

Syntax: SVC

 ! SVC !
 +---------------+
 !1 1 1 0 0 0 1 0!
 !-+-+-+-+-+-+-+-!
 7 0

The SVC instruction activates the Supervisor Call Trap (SVC). The Supervisor
Call Trap passes program execution control to the SVC service procedure. The
return address pushed onto the Interrupt Stack is the address of the SVC instruc-
tion itself.

Flags Affected: None.

Traps: Supervisor Call Trap (SVC) is activated.

Example:

 SVC E2

 5-167

TBITi
Test Bit

Syntax: TBITi offset, base TBITB
 gen gen TBITW
 read.i regaddr TBITD

 ! offset ! base ! TBITi !
 +---------+---------+-------+---+
 ! gen ! gen !1 1 0 1! i !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

The TBITi instruction copies the register or memory bit specified by base and
offset to the F flag.

The location of the bit is determined from offset and base. Offset is a general
operand, whose length is given by the operation length suffix. Base is an
addressing expression giving a byte address from which offset specifies a bit
position. See Section 3.5 for details of specifying bit positions.

If base is a register, then the bit is within that register, at the bit position
given by the offset operand. If base is a memory location, then the bit is at
bit position

 offset MOD 8

within the memory byte whose address is

 EA(base) + (offset DIV 8),

where EA(base) is the effective address of base. See Section 3.5 for defini-
tions of the operators MOD and DIV above, and for further details of bit
instructions.

Offset is interpreted as a signed integer.

Flags Affected: F is set to the value of the specified bit.

Traps: None.

 5-168

 TBITi
Test Bit (continued)

Example:

 TBITW R0, 0(R1) 75 02 00

This example copies a bit from memory to the F flag. The low-order word of
register R0 supplies the bit offset, and 0(R1) is specified as the base address.

In the following illustration, the target bit is assumed to be 1.

 Operand Values: Hex (Dec) [Binary]
 Operands Before After

 R0 AAAA004C AAAA004C
 (offset) (+76) (+76)

 R1 00001000 00001000
 (+4096) (+4096)

 base 00001000 --
 address (+4096)
 0(R1)

 00001009 * 10 10
 (+4105) [00010000] [00010000]

 UPSR nzfvxltc nz1vxltv

* The address 1009 (Hex) is the effective address of the byte containing the
 desired bit. This address is computed from the offset and the base address as
 follows:

 base address + (offset DIV 8)
 4096 + 9
 4105, or 1009 (Hex) .

 The bit number within this byte is calculated as:

 offset MOD 8
 76 MOD 8
 4 .

 5-169

TRUNCfi
Truncate Floating to Integer

Syntax: TRUNCfi src, dest TRUNCFB TRUNCLB
 gen gen TRUNCFW TRUNCLW
 read.f write.i TRUNCFD TRUNCLD

 ! src ! dest ! TRUNCfi !
 +---------+---------+-----+-+---+---------------+
 ! gen ! gen !1 0 1!f! i !0 0 1 1 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The TRUNCfi instruction truncates the src operand to the nearest integer which is
less than or equal to it in absolute value and places the result in the dest
operand location as a signed integer.

Flags Affected: No PSR flags. FSR flags are affected as follows:
 IF is set on an inexact result; unaffected otherwise.
 TT field is set to reflect any exceptional conditions
 encountered in executing the instruction. If none is
 encountered, TT is set to all zeroes.
 See Sections 2.4.2 and 3.3 for details of exceptional conditions
 and reporting.

Traps: Undefined Instruction Trap (UND) is activated if the F bit in
 the CFG register is clear.

 Floating-Point Trap (FPU) is activated if a floating-point
 exception is detected. See Section 3.3. Particularly relevant
 to this instruction is the Overflow exception, which is caused
 by attempting to convert a floating-point number which is too
 great in absolute value to be held in a signed integer of the
 size specified for dest.

 5-170

 TRUNCfi
Truncate Floating to Integer (continued)

Examples:

 1. TRUNCFB F0, R0 3E 2C 00
 2. TRUNCLD F2, 8(SB) 3E AB 16 08

Example 1 truncates the single-precision number in register F0 to a one-byte
integer and copies the integer to the low-order byte of register R0.

Example 2 truncates the double-precision number in register F2 to a double-word
integer and copies the integer to address 8(SB).

 Operand Values: Hex (Dec)
 Operands Before After

 Ex. 1: F0 C0280000 C0280000
 (-2.625) (-2.625)

 R0 AAAAAAAA AAAAAAFE
 (-2)

 Ex. 2: F2 41C0200888700000 41C0200888700000
 (+541069584.875) (+541069584.875)

 8(SB) AAAAAAAA 20401110
 (+541069584)

 5-171

WAIT
Wait

Syntax: WAIT

 ! WAIT !
 +---------------+
 !1 0 1 1 0 0 1 0!
 !-+-+-+-+-+-+-+-!
 7 0

The WAIT instruction suspends program execution until an interrupt occurs. An
interrupt restores program execution by passing it to an interrupt service
procedure. When the WAIT instruction is interrupted, the return address saved is
the address of the instruction following the WAIT instruction.

Flag Affected: None.

Traps: None.

Example:

 WAIT B2

 5-172

 WRVAL
Validate Address for Writing

Syntax: WRVAL loc
 gen
 addr

 ! dest ! WRVAL !
 +---------+-------------------------------------+
 ! gen !0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0!
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 23 16 15 8 7 0

The WRVAL instruction checks the protection level assigned to the user-mode
virtual memory address specified as loc. If the address can be written to while
in user mode, the F flag in the PSR is cleared. If the address cannot be written
to (i.e., if loc is write-protected), the F flag in the PSR is set. See
Section 3.12 for details of Memory Management instructions.

NOTE: Although the final effective address of loc is interpreted as a user-mode
 virtual address, any memory references required in order to calculate that
 effective address are interpreted as using supervisor-mode addresses.
 This will occur in using the Memory Relative and External addressing modes
 for loc.

Flags Affected: F is set if loc is write-protected, cleared otherwise.

Traps: Undefined Instruction Trap (UND) is activated if the M bit in
 the CFG register is clear.

 Illegal Operation Trap (ILL) is activated if this instruction is
 attempted while the PSR U flag is set.

 Abort Trap (ABT) is activated if the Level 1 page table entry
 for loc is invalid (V bit = 0) and the Protection Level (PL)
 indicates that the access is allowed. No trap is issued for an
 invalid Level 2 page table entry, and the Protection Level field
 is assumed to be present regardless of the state of the V bit.

Example:

 WRVAL 512(R0) 1E 07 40 82 00

This example checks the protection level assigned to the user-mode virtual
address 512(R0) and sets or clears the F flag to indicate the result.

 5-173

XORi
Exclusive Or

Syntax: XORi src, dest XORB
 gen gen XORW
 read.i rmw.i XORD

 ! src ! dest ! XORi !
 +---------+---------+-------+---+
 ! gen ! gen !1 1 1 0! i !
 !-+-+-+-+-+-+-+-!-+-+-+-+-+-+-+-!
 15 8 7 0

The XORi instruction performs a bit-wise Exclusive-OR operation on the src and
dest operands and places the result in the dest operand location.

The instruction XORs each bit of src with the corresponding dest bit. If two
corresponding bits are equal, the dest bit is set to "0"; otherwise, the dest bit
is set to "1".

Flags Affected: None.

Traps: None.

Example:

 XORB -8(FP), -4(FP) 38 C6 78 7C

This example XORs the bytes at the addresses specified by -8(FP) and -4(FP) and
places the result in the byte at address -4(FP).

 Operand Values: Binary
 Operands Before After

 -8(FP) 11110000 11110000

 -4(FP) 10010101 01100101

 5-174

 APPENDIX A

 INSTRUCTION SET LISTED BY FUNCTIONAL GROUPS

 Instruction Mnemonic Forms Index

INTEGER

 Arithmetic

 Add ADDB, ADDW, ADDD ADDi
 Add Quick ADDQB, ADDQW, ADDQD ADDQi
 Add with Carry ADDCB, ADDCW, ADDCD ADDCi
 Subtract SUBB, SUBW, SUBD SUBi
 Subtract with Carry [Borrow] SUBCB, SUBCW, SUBCD SUBCi
 Negate NEGB, NEGW, NEGD NEGi
 Absolute Value ABSB, ABSW, ABSD ABSi
 Multiply MULB, MULW, MULD MULi
 Multiply Extended Integer MEIB, MEIW, MEID MEIi
 Divide DIVB, DIVW, DIVD DIVi
 Modulus MODB, MODW, MODD MODi
 Quotient QUOB, QUOW, QUOD QUOi
 Remainder REMB, REMW, REMD REMi
 Divide Extended Integer DEIB, DEIW, DEID DEIi

 Movement and Conversion

 Move MOVB, MOVW, MOVD MOVi
 Move Quick MOVQB, MOVQW, MOVQD MOVQi
 Move with Sign-Extension MOVXBD, MOVXWD, MOVXBW MOVXii
 Move with Zero-Extension MOVZBD, MOVZWD, MOVZBW MOVZii

 Comparison

 Compare CMPB, CMPW, CMPD CMPi
 Compare Quick CMPQB, CMPQW, CMPQD CMPQi

PACKED DECIMAL

 Add Packed Decimal ADDPB, ADDPW, ADDPD ADDPi

 Subtract Packed Decimal SUBPB, SUBPW, SUBPD SUBPi

 A-1

 Instruction Mnemonic Forms Index

FLOATING POINT

 Add Floating ADDF, ADDL ADDf
 Subtract Floating SUBF, SUBL SUBf
 Multiply Floating MULF, MULL MULf
 Divide Floating DIVF, DIVL DIVf
 Dot Product Floating DOTF, DOTL DOTf
 Polynomial Floating POLYF, POLYL POLYf

 Negate Floating NEGF, NEGL NEGf
 Absolute Value Floating ABSF, ABSL ABSf

 Compare Floating CMPF, CMPL CMPf

 Move Floating MOVF, MOVL MOVf

 Logarithm Binary Floating LOGBF, LOGBL LOGBf
 Scale Binary Floating SCALBF, SCALBL SCALBf

 Move Long Floating to Floating MOVLF
 Move Floating to Long Floating MOVFL MOVFL

 Move Integer to Floating MOVBF, MOVWF, MOVDF, MOVif
 MOVBL, MOVWL, MOVDL
 Round Floating to Integer ROUNDFB, ROUNDFW, ROUNDFD, ROUNDfi
 ROUNDLB, ROUNDLW, ROUNDLD
 Truncate Floating to Integer TRUNCFB, TRUNCFW, TRUNCFD, TRUNCfi
 TRUNCLB, TRUNCLW, TRUNCLD
 Floor Floating to Integer FLOORFB, FLOORFW, FLOORFD, FLOORfi
 FLOORLB, FLOORLW, FLOORLD

 Load FSR LFSR LFSR
 Store FSR SFSR SFSR

LOGICAL

 Arithmetic

 Logical AND ANDB, ANDW, ANDD ANDi
 Logical OR ORB, ORW, ORD ORi
 Bit Clear BICB, BICW, BICD BICi
 Exclusive OR XORB, XORW, XORD XORi
 Complement COMB, COMW, COMD COMi

 Shift

 Arithmetic Shift ASHB, ASHW, ASHD ASHi
 Logical Shift LSHB, LSHW, LSHD LSHi
 Rotate ROTB, ROTW, ROTD ROTi

 Boolean

 Complement Boolean NOTB, NOTW, NOTD NOTi
 Save Condition as Boolean ScondB, ScondW, ScondD Scondi

 A-2

 Instruction Mnemonic Forms Index

BIT

 Test Bit TBITB, TBITW, TBITD TBITi

 Set Bit SBITB, SBITW, SBITD, SBITi,
 SBITIB, SBITIW, SBITID SBITIi

 Clear Bit CBITB, CBITW, CBITD, CBITi,
 CBITIB, CBITIW, CBITID CBITIi

 Invert Bit IBITB, IBITW, IBITD IBITi

 Find First Set Bit FFSB, FFSW, FFSD FFSi

 Convert to Bit Pointer CVTP CVTP

BIT FIELD

 Extract Field EXTB, EXTW, EXTD EXTi

 Extract Field Short EXTSB, EXTSW, EXTSD EXTSi

 Insert Field INSB, INSW, INSD INSi

 Insert Field Short INSSB, INSSW, INSSD INSSi

STRING

 Move String MOVSB, MOVSW, MOVSD MOVSi
 Move String, Translating MOVST MOVST

 Compare Strings CMPSB, CMPSW, CMPSD CMPSi
 Compare Strings, Translating CMPST CMPST

 Skip String SKPSB, SKPSW, SKPSD SKPSi
 Skip String, Translating SKPST SKPST

BLOCK

 Move Multiple MOVMB, MOVMW, MOVMD MOVMi

 Compare Multiple CMPMB, CMPMW, CMPMD CMPMi

ARRAY

 Bounds Check CHECKB, CHECKW, CHECKD CHECKi

 Calculate Index INDEXB, INDEXW, INDEXD INDEXi

 A-3

 Instruction Mnemonic Forms Index

PROCESSOR CONTROL

 Branches

 Jump JUMP JUMP
 Conditional Branch Bcond Bcond
 Unconditional Branch BR BR
 Case Branch (Multiway) CASEB, CASEW, CASED CASEi
 Add, Compare and Branch ACBB, ACBW, ACBD ACBi

 Local Procedure Calls/Returns

 Jump to Subroutine JSR JSR
 Branch to Subroutine BSR BSR
 Return from Subroutine RET RET

 External Procedure Calls/Returns

 Call External Procedure CXP CXP
 Call External Procedure CXPD CXPD
 with Descriptor
 Return from RXP RXP
 External Procedure

 Explicit Trap Instructions

 Breakpoint Trap BPT BPT
 Trap on Flag (conditional) FLAG FLAG
 Supervisor Call Trap SVC SVC

 Trap/Interrupt Returns

 Return from Trap* RETT RETT
 Return from Interrupt* RETI RETI

* Privileged instruction.

 A-4

 Instruction Mnemonic Forms Index

PROCESSOR SERVICE

 Effective Address

 Calculate Effective Address ADDR ADDR

 Context Instructions

 Save General Purpose Registers SAVE SAVE
 Restore General Purpose Registers RESTORE RESTORE
 Enter New Procedure Context ENTER ENTER
 Exit Procedure Context EXIT EXIT

 Register/Stack Manipulation

 Adjust Stack Pointer ADJSPB, ADJSPW, ADJSPD ADJSPi
 Bit Clear in PSR* BICPSRB, BICPSRW BICPSRB
 BICPSRW
 Bit Set in PSR* BISPSRB, BISPSRW BISPSRB
 BISPSRW
 Load Processor Register* LPRB, LPRW, LPRD LPRi
 Store Processor Register* SPRB, SPRW, SPRD SPRi
 Set Configuration Register* SETCFG SETCFG

 Miscellaneous

 No Operation NOP NOP
 Wait for Interrupt WAIT WAIT
 Diagnose DIA DIA
 Cache Invalidate* CINV CINV

* Privileged, or having privileged forms.

MEMORY MANAGEMENT

 Load Memory Management LMR LMR
 Register
 Store Memory Management SMR SMR
 Register

 Validate Address for Reading RDVAL RDVAL
 Validate Address for Writing WRVAL WRVAL

 Move Value from Supervisor
 to User Space MOVSUB, MOVSUW, MOVSUD MOVSUi
 Move Value from User
 to Supervisor Space MOVUSB, MOVUSW, MOVUSD MOVUSi

 A-5

