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1 Introduction

-- Concurrent programming is an intense area of research in computer science. There are

two types of concurrent programming. Multiprogramming refers to multiple processes

executing on a single processor in the same time period by using a method called "Time-

slicing'. Multiprocessing refers to multiple processes which execute at the same time each

on its own processor. This paper deals with the issues of multiprocessing. A process is

defined as a section of code which is executed sequentially. -.

Concurrent programming has become popular for two primary reasons. First, the computer
hardware industry has been building more and more complex multiprocessing systems at

cheaper and cheaper costs. Second, multiprocessing systems enable programmers to build

software systems which run at a speed unobtainable on most single processor systems.

New complex applications which require such speed involve database systems, large-scale

scientific applications, and real time, embedded systems.

However, there is a problem with these new multiprocessing systems. The problem centers

around the fact that the software industry has failed to keep pace with the multiprocessing

enhancements produced by the hardware industry., A great amount of research has been

accomplished and many models of concurrent processing have been developed that deal

with the issues of concurrent programming. However, few working systems have been 4

produced which allow the programmer to effectively use the multiprocessing environment.

Those which have been produced provide little or no standardization. The main issues of

concurrent programming are process creation, synchronization, and communication.

This paper has two objectives. The first objective is to investigate and document the

mechanisms for process creation and control on a commercial multiprocessing system. The

Texas A&M Sequent Balance 8000 Multiprocessing System is the target of this objective.

The second objective is to add a new mechanism to this existing system that easily and "

clearly expresses process creation. ,
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Section 2 of this paper discusses the hardware of the Sequent Balance 8000 Multiprocessing

System. Section 3 introduces the DYNIX Operating System and discusses the mechanisms

provided for process creation and control. Examples are included for each mechanism in

order to clearly demonstrate the functionality. Section 4 discusses the implementation

of a precompiler for the C programming language which provides programmers with the
"cobegin-coend" construct. This construct allows programmers to easily create concur-

rent processes. Section 5 discusses the problem of synchronization and provides software

solutions to the mutual exclusion problem.
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1 Introduction

Concurrent programming is an intense area of research in computer science. There are

two types of concurrent programming. Multiprogramming refers to mu!tiple processes

executing on a single processor in the same time period by using a method called "Time-

slicing". Multiprocessing refers to multiple processes which execute at the same time each

on its own processor. This paper deals with the issues of multiprocessing. A process is

defined as a section of code which is executed sequentially.

Concurrent programming has become popular for two primary reasons. First, the computer

hardware industry has been building more and more complex mulLiprocessing systems at

cheaper and cheaper costs. Second, multiprocessing systems enable programmers to build

software systems which run at a speed unobtainable on most single processor systems.

New complex applications which require such speed involve database systems, large-scale

scientific applications, and real time, embedded systems.

However, there is a problem with these new multiprocessing systems. The problem centers

around the fact that the software industry has failed to keep pace with the multiprocessing

enhancements produced by the hardware industry. A great amount of research has been

accomplished and many models of concurrent processing have been developed that deal

with the issues of concurrent programming. However, few working systems have been

produced which allow the programmer to effectively use the multiprocessing environment.

Those which have been produced provide little or no standardization. The main issues of

concurrent programming are process creation, synchronization, and communication.

This paper has two objectives. The first objective is to investigate and document the

mechanisms for process creation and control on a commercial multiprocessing system. The

Texas A&M Sequent Balance 8000 Multiprocessing System is the target of this objective.

The second objective is to add a new mechanism to this existing system that easily and

clearly expresses process creation.
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Section 2 of this paper discusses the hardware of the Sequent Balance 8000 Multiprocessing V.

System. Section 3 introduces the DYNIX Operating System and discusses the mechanisms

provided for process creation and control. Examples are included for each mechanism in

order to clearly demonstrate the functionality. Section 4 discusses the implementation

of a precompiler for the C programming language which provides programmers with the
"cobegin-coend" construct. This construct allows programmers to easily create concur-

rent processes. Section 5 discusses the problem of synchronization and provides software

solutions to the mutual exclusion problem.
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2 Sequent Balance 8000 Architecture

The Sequent Balance 8000 is a tightly coupled, symmetric, multiprocessor computer with

a common pool of shared memory. Sequent Computer Systems, Inc. released the

Balance 8000 in 1984. The Balance 8000 supports both general purpose, multiuser ap-

plications and dedicated parallel applications. The Balance 8000 is based on a Shared

Memory Architecture. This means that processes communicate by reading and writing

to shared data structures. Processes can execute on any CPU, independent of any other

process. The processes use shared memory to communicate and to synchronize activities.

The Balance 8000 operating system, DYNIX, is a version of UNIX 4.2bsd that has been

enhanced to provide features of UNIX System V and to exploit the features of the parallel

architecture. DYNIX includes a Parallel Programming Library that simplifies the use of

shared memory and the system's hardware-based mutual exclusion mechanisms. It also

distributes the responsibility of scheduling, handling interrupts, and housekeeping duties

among the CPUs.

The Balance 8000 is an expandable, high performance parallel computer. The Balance 8000

has a chassis which can contain 12 card slots into which component boards are placed and

configured. The following boards can be used: MULTIBUS adapter board, CPU, Memory

module, or a SCED board. The Balance 8000 includes three buses, one system bus and

two I/O buses.

2.1 SB8000 Bus V

The Balance 8000 is built around a 32 bit wide bus called the SB8000. This bus links

the system's CPUs, system memory, and I/O subsystems as shown in Figure 1. The
SB8000 supports data packets of 1, 2, 3, 4, or 8 bytes and has a channel bandwidth of 40-

Mbytes per second with a sustained data transfer rate of 26.7 Mbytes per second. Optimal

performance is obtained by using data packets of 4 or 8 bytes. This common data bus

greatly simplifies the addition of system components.

3I-
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2.2 Processor Boards

V

The Balance 3000 can have from two to twelve NS32032 CPUs (packaged two to a board).

The CPUs run at 10MHz and include a floating point unit, a memory management unit. an

8 Kbyte local memory, and an 8 Kbyte cache. Each CPU shares memory via the SB8000

(see Figure 2). Each CPU is identical and can execute both user code and kernel code.

Each CPU issues a 24 bit virtual address (every process can access up to 16 Mbytes). The

CPU's Memory Management Unit translates that address into a 25 bit physical address.

The SB8000 supports a 28 bit address and uses the higher order bits to address the different

1 /0 subsystems. The local memory holds highly used kernel code and data structures to

decrease contention on the SB8000. The cache memory also reduces the contention for the

SB8000 bus. Cache data is organized into 512 rows each with two eight byte blocks. If

a read miss occurs on a processor's cache, a new block of data is read from memory and

replaces the least recently used block of cache. If a CPU wishes to write to memory, it will

first update its cache if the block resides in the cache. It will then send a write request
to the SB8000 bus to update the block in memory. Each processor monitors all writes to

memory. If write to memory from another processor addresses a block in cache, the block

is marked as out-of-date and a read miss will occur next time it is accessed. The Computer

Science Department's system currently cont&'ns 10 CPUs.

2.3 Memory Modules

The system can support up to four memory modules with a total of 28 Mbytes of physi-

cal memory. An individual process can access up to 16 Mbytes of virtual memory. Each

memory module consists of a memory controller (which contains 2 Mbytes of RAM). and

optionally, a memory expansion board with 2-6 Mbytes. A memory controller and expan-

sion board occupy one slot in the Balance 8000 chassis. Each memory module can respond

to a read request in 300 ns (3 cycles, 2 cycles for a 4 or 8 byte read or write request).

Multiple operations are pipelined to enhance performance. Memory modules can also be

interleaved if equal sized memory modules are used. It would appear that the Balance

8000 can access up to 32 Mbytes of memory (25 bit physical address and four memory
modules with 8 Mbytes each). However, one Mbyte of memory is leserved for each of a

possible four MULTIBUS adapter boards.

5
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2.4 SCED Board

The Balance 8000 requires at least one SCED board and can contain up to four. The SCED

board supports many functions. It connects to the Small Computer Systems Interface

(SCSI) bus. This bus is designed to support high speed, high volume data transfers
between memory and peripherals such as disk and tape drives. The SCED board allows

the Balance 8000 to connect to other systems in the local area using Ethernet. It is used to

perform system startup and system diagnostics. The SCED board also provides a RS232-C

interface to connect the system console. The SCED board packages data into eight byte

blocks to efficiently use the SB8000 bus.

2.5 MULTIBUS Adapter Board

The Balance 8000 can include up to four MULTIBUS adapter boards. The MULTIBUS

adapter board connects to MULTIBUS, a general purpose bus protocol that supports a

wide variety of terminals, printers, disk units, and tape drives. Peripherals can include

RS232-C compatible devices such as a one-half inch tape drive or a 396 Mbyte disk drive.
These peripherals can be connected via one or more terminal multiplexors on the MULTI-

BUS. -.

2.6 SLIC Bus

The SB8000 includes an independent one bit data path called the System Link and In-

terrupt Controller (SLIC). This bus is for low level communication (interrupts) between

system components. The SLIC bus supports a high speed, synchronous, bit serial, proto- .
col. Every component board on the Balance 8000 includes a Sequent designed XLSI SLIC

chip. All SLIC chips are connected to the SLIC bus to manage interprocessor communi-

cation, access to kernel data structures, interrupts, diagnostics, and configuration control.

Only one operation can be performed on the SLIC bus at a time. If two CPUs both try
to use the SLIC bus at the same time, the one with the lowest priority will wait. If both

CPUs have the same priority, the one with the highest CPU number succeeds. The CPU
priority is based on the priority of the process currently executing on the CPU. To ensure

that a CPU will eventually access the SLIC bus, priorities are updated once every second. S.

Processes which have been idle longest receive higher priorities.

7t



2.7 Mutual Exclusion

In any multiprocessor system based on a shared memory architecture, mutual exclusion

is an issue. Mutual exclusion ensures that a sequence of operations acts as an indivisible

operation. Any operation on a shared variable should be completed before another process

accesses that shared variable. The Balance 8000 solves the mutual exclusion problem by

providing programmers with a set of hardware locks. The Balance 8000 can have up to 64K

hardware locks (16K locks for each MULTIBUS configured). These locks are physically lo-

cated on the MULTIBUS Adapter Boards and are known as Atomic Lock Memory (ALM).

Each time a lock is accessed, a test-and-set operation is performed. This operation is an

atomic operation which will test the state of the lock (LOCKED or UNLOCKED), LOCK

the lock if it is UNLOCKED, and return its state. The main purpose of the hardware locks

is to ensure mutual exclusion on a set of virtual software locks. The software locks are

created by the programmer and placed in an application's shared memory. An application

can create as many software locks as will fit in its shared memory. These software locks

ensure the mutual exclusion needed by an application for its critical sections. The soft-

ware locks work the same as the hardware locks, except their operations are not atomic.

A process must first obtain a hardware lock before accessing its software locks to ensure

that the software lock's operations are atomic. After a process has obtained a hardware

lock, it may perform an operation on its software lock. The process will then release the

hardware lock for other processes to access. To ensure that multiple processes attempting

to obtain the same software lock first obtain the same hardware lock, a relationship must

be set up between the two types of locks. DYNIX accomplishes this through a hashing

algorithm, where the address of the software lock is hashed to an address of a hardware

lock. This implies that many unrelated applications may try to obtain the same hardware

lock. Although, this may slightly effect the run time of an application, mutual exclusion

is still ensured. The routines found in the DYNIX Parallel Programming Library enable

programmers to create and use software locks. By using these routines the operations on

the hardware locks become transparent.

'.
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3 Parallel Programming Library

This section introduces the routines which comprise the Parallel Programming Library.

These routines support multitasking in C, Pascal, and FORTRAN. The library is located in

/usr/lib/libpps.a. These routines can be linked to a program from the library by including

the -ipps option in the cc command for C programs, the -mp option when compiling Pascal,

or the -F option when compiling FORTRAN programs. The following discussion and

examples are limited to the C programming language. Not every routine in the Parallel

Programming Library is covered, but most of the routines are discussed and examples

are included to illustrate their use. In addition to the routines found in the Parallel

Programming Library, the fork, exit, and wait routines are explained. These three

routines are found in any current version of Unix and provide a simple mechanism to

create multiple concurrent processes.

DYNIX includes two C header files which contain declarative statements for the Par-

allel Programming Library routines. Both of these header files reside in the directory

/usr/include/parallel. The header files are named microtask.h and paralle.h. Refer to

Section 3P in the DYNIX Programmer's Manual and Appendix C in this document for

information on which file to include for each routine. These files are included in each of

the examples that illustrate routines from the Parallel Programming Library.

DYNIX uses two terms to describe parallel programming, microtasking and multitasking.

The terms relate to two different methods which are used to partition a program for parallel

execution. Microtasking refers to the idea of "Data Partitioning". In this method, a set of

data is partitioned into subsets where separate identical processes are created to perform

the desired work on each subset of data. The key word is "identical". Each process is an

exact duplicate of every other process. The only difference is that each process will work

on different data. The classic example is an iterative loop, where each iteration accesses a

different set of data. Almost all of the routines in the Parallel Programming Library seem to

be geared for this technique. Multitasking refers to the idea of "Functional Partitioning".

In this method, functions are separated instead of data. This usually requires a more

flexible and dynamic approach. The fork routine is used for this type of partitioning. It is

a misconception to think that the Parallel Programming Library routines can handle every

type of multiprocessing application. The new DYNIX parallel programming routines were

never meant to replace the basic fork, but to extend its capabilities in certain contexts.

9
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The use of shared memory is also often misunderstood. In the C programming language,

a global variable is not shared between separate processes (however, in Pascal, global

variables are shared). Any variable or structure which is to be shared between processes

must be declared as shared. The key word shared must proceed the type of a variable

within its declaration. You must link a program with the Parallel Programming Library

to use shared memory, even if you do not use any routine from the library. Remember,

it is your responsibility to provide for any synchronization needed between processes to

ensure correctness.

3.1 Fork

The fork creates a new process. The new process's instructions, user-data, and system-

data segments are almost exact copies of those of the old process. The old process which

issued the fork is called the "parent" and the newly created process is called the child.

The only difference between the two processes is that the child has a unique process id

(PID) and a different parent process id (the PID of the old process). The fork returns an

integer. After the fork, both processes (the parent and the child) receive a return. The .

parent process will receive the PID of the newly created child. The child will receive a 0.

Example 1 shows a process which issues a fork to create a child. Both processes then

print out what was returned by the fork. The output of the example follows and shows

two numbers returned by the fork, 12538 and 0. 12538 is the PID of the child and was

returned to the parent. 0 was returned to the child.

Notice the system call setbuf. This command sets the size of the buffer which writes to

a file. I used the command to set the buffer size of the standard output file (terminal) to

zero (NULL). When a parent creates a child, the child gets a copy of the parent's open file

descriptors. This means that each can overwrite what the other has written by writing to F.

the same buffer. The buffer size is set to zero, so that what ever is written by parent or

child immediately goes to the terminal. To fully ensure that no output is lost, one must

perform I/O within mutually exclusive areas called critical regions. Mutual exclusion will

be demonstrated later.

10
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/* Example 1 /

#include <stdio.h>

/* This program demonstrates the Fork system call. Fork will create a

/* new process known as the child process. The parent process is the a/

/* process which executed the Fork. The child process is almost on

/* exact copy of the parent. Both the child and parent process will */
/. resume execution after the Fork. Fork will return the value of 0 to a!
/* the child process and will return the Process ID (pid) of the child */

/* to the Parent process. In this example both processes print out the */
/* value returned from the Fork. 0/

man ()

int pid;

setbuf (stdout, NULL);

printf ("Start of Test\n");

pid = fork ();

printf ("pid returned is: %d\n", pid);

Start of Test
pid returned is: 12538

pid returned is: 0

L L



3.2 Getpid

Any process may find out its PID by issuing a call to getpid. The following example

shows how to issue the call to getpid and print a process's PID. In example 2, the parent

first calls getpid and prints out its PID. The parent then issues a fork. Notice that the

fork is within an if statement. If the fork returns a zero, getpid is used to obtain and

print the PID. This is the normal method of designating the child and the section of code

the child is to execute. The parent, who receives a nonzero response, skips that section of

code and terminates.

21
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/* Example 2 */

#include <stdio.h>

/e This program will use the system call "getpid" to find out the ./
/. process's ID. After printing the P D, the process will Fork a

new process. The new child process will also cclI "getpid" and '/
/. print the result. Each process created under UNIX has a unique ./
/ PIO .

main () ,

int pid-

pid = getpid 0
printf ("Parent Process is %d\n", pid);

if (fork () == 0)

pid = getpid (;

printf ("Child Process is %d\n", pid);

p.l

Parent Process is 10844

Child Process is 10845

oi

e e or
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3.3 Exit and Wait

The exit routine terminates a process. A process which performs an exit may pass (as

a parameter) a short integer value back to the parent which acts as a termination code.

The value zero is usually returned to the parent to indicate a normal termination. If the

process finds an error, it may wish to exit with a termination code (such as -1) which

indicates to the parent process that an error occurred. One may fork a child process to

execute some segment of code embedded within the program. To accomplish this task,

fork the child and test for a return of zero as done previously. The child should execute

the section of code within the if statement. Place an exit statement at the end of the if

statement to terminate the child process. Otherwise, the child process will continue past

the if statement and execute code which the parent is executing.

The wait routine is used by a parent process to wait until a child process has terminated.

The wait returns the PID of the child which terminated. It also returns the termination

code of the child process (normally passed back by the child using exit). This code is

placed in an integer variable which is passed to the wait routine in a parameter. If a

process issues a call to wait and has no children processes executing, wait immediately

returns a -1 as the PID. A parent process can not wait for a specific child to terminate. If

any child terminates, the wait is satisfied. If the parent knows the PID of the child, it can

test the PID returned by wait to find out which child terminated. The parent may have to

wait through several terminations to find a specific termination. There is no requirement

that a parent must wait for a child process, but the parent may choose to wait if it is

dependent on some action taken by the child process. In this capacity, the wait acts as a N

synchronization mechanism.

Example 3 uses both exit and wait. status is used to hold the returned termination code

of a terminating process. This aspect of wait and the Union statement is discussed in the

next example. This program also demonstrates the capability to nest fork calls. In this

program, the parent process gets and prints its PID (by use of getpid). It then forks a

child process, prints the message "Parent Running", and issues a wait for the child. The

child process also gets and prints its PID; forks a child process (the grandchild); prints

the message "Child Running"; and waits for the grandchild. The graxaichiid process gets

and prints its PID, prints the message that it is terminating, and then terminates. After

the grandchild terminates, the child prints the PID of the grandchild that terminated. It

14



then prints a message that it is terminating and does so. The parent process then prints

the PID of the child that terminated and terminates.

This program has two interesting points. The first is the order of the output. Notice

that the parent is still executing as the child executes and the child is still executing

as the grandchild executes (concurrency). However, the child blocks execution until the

grandchild has terminated and the parent blocks un" ' the child has terminated. The

second point is that the termination of a process is only seen by its immediate parent. In

other words, the parent process did not notice the creation, execution, or termination of

the grandchild process.

15

- V V 0 V- --- - % *" % , %....



/* Example 3 .// *.6, * ...... * o*

#include <stdio.h>

#include <sys/wait.h>

/* This program creates three processes. The main process will print */
/* its PID and Fork a new process. The child process prints its P]D 6/

/6 and Forks a new process. The Grandchild process prints its PID 6/

/* and Exits. Both the parent and child process print a message to 6/

/6 show that they are executing concurrently with their children. 6/

/. The Parent then performs a Wait on the Child and the Child 6/

/6 performs a Wait on the Grandchild. When a process terminates with */
j/6 an Exit system call, the termination status is returned to the 6/

/6 parent process. The Wait system col also returns the PID of the 6/

/* terminating child process. In this example the Parent prints the 6/

/. PID of the terminating child process. 6/

main ()

union wait status;

int pid;

setbuf (stdout, NULL);

pid = getpid ();

pr'ntf ("Parent Process is d\n", pid);

if (fork () == 0) /* Fork the Child 6/

pid = getpid ();
printf ("Child Process %d\n", pid);

if (fork () == 0) /* Fork the Grandchild 6/

pid = getpid ();
printf ("Grandchifd Process is Xd\n", pid);

printf ("Grandchild Exits\n");

exit (0); /* Grandchild Terminates 6/

printf ("Child Running\n");

pid = wait (&status); /* Wait for the Grandchild ./
printf ("Grandchild %d Finished\n", pid);

printf ("Child Exits\n");

exit (0); /* Child Terminates */

printf ("Parent Running\n");
pid = wait (&status); /* Wait for the chi Id */

printf ("Child %d Finished \n", pid);

printf ("Parent Exits\n");

N.

Parent Process is 10857

Parent Running

Child Process 10858

Child Running

Grandchild Process is 10859

Grandchild Exits

Grandchild 10859 Finished

Child Exits

Child 10858 Finished

Parent Exits
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3.3.1 Detecting Errors using Exit and Wait

How does one use the wait routine to catch a bad termination code? Study example

4. In this example a process forks a child process and immediately waits for that child

to terminate. The child process gets and prints its PID and then terminates with an

abnormal termination code of 3 (remember that 0 is a normal termination). After the

child terminates, the parent tests the status for normal termination. The variable status

is used to hold the termination code returned by wait.

There are two ways for a process to terminate. It can call exit or it can receive a fatal signal
from the system. Although status is just an integer, its bits indicate how it terminated.

If the rightmost byte of status is zero, then the byte to its left is the child's argument to t

exit. If both are zero, the child terminated normally. If the rightmost byte is nonzero,

the first seven bits are the signal number that terminated the child. If the eighth bit is 1,

a core dump was taken. The bits of status are counted right to left (15, 14, ... 2, 1, 0).

In this example, status is declared as type union wait. This union has a structure of

the three bit fields just described. This allows one to check and print the different codes

without performing shift operations. In order to use this union declaration, include the

header file sys/wait.h. This header file defines the union of status. In the example, the

parent checks status.w-status. This is declared in union wait as the entire integer. If it is
zero, the child terminated normally. If it is not zero, the parent prints a message that the

child terminated abnormally and then checks status.w-termsig. If this is zero, the child

placed the termination code in exit and the parent prints this code. If it is nonzero, the

child terminated from a fatal signal and the parent prints the signal number. The parent

will also check for a core dump. Notice in the output that the termination code of 3 was

printed. The man command can be used to reference the DYNIX Programmers Reference

Manual. The command "man 2 wait" can be used to gather more information on the wait

routine.

17



/* Example 4 /!

#include <stdio.h>

# #include <sys/wait.h"

/* This program illustrates the use of the Status value returned a/ P

/* by the Wait system call. Once again, you must include the *'

/* header file <sys/wait.h>. The Status returned is actually an /!

/* unsigned short integer. The rightmost 8 bits are set if the /!

/* operating system terminated the process. Bits 0 - 6 give the.!

/a terminating code. Bit 7 is set if a core dump was taken. if */

/. the rightmost byte is 0 and the process still terminated ,!

/, abnormally, then bits 8 - 15 contain the status code returned /!

/* by the process through the Exit system call. In this example */

/* the child process returns a value of 3. This allows a user */

I. to set up his own terminotion codes. The Bits of the Status /!

/* are counted right to left (15, 14 ... 3. 2, 1. 0). a/

main ()

union wait status; /* bit field set up by <sys/woit.h> a!

int pid;

setbuf (stdout, NULL);

pid = getpid ();

printf ("Parent Process is %d\n", pid);

if (fork () == 0) /* Fork the Child a/

pid = getpid (;
printf ("Child Process %d\n", pid);

exit (3); /* Child Terminates Abnormally a/

pid = wait (&status); /* Wait for the child a/

if (status.w status != 0) /* Abnormal Termination? ,/

printf ("\n\nProcess %d had Abnormal Termination\n". pid);

if (! status.wtermsig) /* Terminated by System? a/

printf ("Exit Code: %u\n", stotus.w_ retcode); %

else

printf ("Terminated by System Error: %u\n", status.w _termsig);

if (-totus.w-coredump) /* Core Dump Token? a/

printf ("Core Dump Taken\n");

Parent Process is 10874

Child Process 10875

a.

Process 10875 hod Abnormal Termination

Exit Code 3 a%

a-
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3.3.2 Detecting Errors on Forks

When a process forks another process. it would be nice to know whether the fork was

successful. Also, how many processes can one user have executing at one time and how

does one detect an error? Example 5 shows how many forks can be performed successfully

and how to catch an unsuccessful fork. In this program. the parent process will print its

PID and then stdrt forking new children. Each child goes into an infinite loop. This is

done to ensure that no child terminates while the parent is still creating new children. The
parent keeps count of the number of children created and prints each child's PID. When

a fork does not succeed, it returns a -1 instead of a new PID. When the parent receives a

-1 from a fork, it breaks out of the loop. The next problem is to determine why the fork

was unsuccessful.

Notice the two external variables sysanerr and systerrlist. sysaerrist is an array of error

messages kept by the system. syssnerr is the highest index into the array sys-errlist. The

external variable errno is declared in the header file errno.h and will hold the error message

number of the unsuccessful fork. In this example, when the parent process finds a bad

fork, it prints the number of children created. It then checks errno for an error code. If an
error code is found and it is less than sytnerr, errno is used as an index into systerrlist to

print the error message. The output of this example shows that a user is able to create 25

processes (including the parent). The command kill at the bottom of the program allows

the parent to terminate all related processes. The kill will also terminate the parent

process. The command "man 3 svsnerr" can be used to read about system error messages

and the command "man 2 intro" can be used to list every possible error message.

isi

I,
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/. Example 5 *

#inlclude <stdio.h>
#include <errno.h>

/ * This program demonstrates the use of the external variables *
/* errno, sys-nerr~sys..erri st to capture an unsuccessful Fork. .

1* In this program, as many processes are created as the system *
/* will al low one user to cre-+e. When the system does nat *
/* allow any more Forks by a uber, it returns a -1 in place of .

/. the PID and puts the error code into the global variable 4

/* errno. errno can be used as an index into the array 4

/* sys.,errl ist. This array holds error messages for each error
/. produced by the system. This program counts the number of 0/
/ * processes created and then prints the error message returned *

/4 from the bad Fork. Each Ch ilId process goes into an infinite 4

/* loop to ensure that no-one terminates while I am testing for 4

/4 the error condition. The system call to Kill is used to
/4 terminate all children processes. The 0 says to signal all *

/* processes in my user's goup (including myself), the 9 is the *
/ terminate signal .

main (

e xt e rn nt sys-_nerr,
extern char *sys..errl ist[];
int count. ppid. pid;

setbuf (stdout, NULL);
coau nt 0 0;

*pp id =ge tp id )
printf ("Parent Process is%d\n", ppid);
print f ("\n\nCount Process\n") do
fa0r ( ;;) 1 .1

p id = f or k .0

if (pid ==0) /* child spins .
fo ( r I ) I

if (pid > 0) /. Increment count and .
count +;/* print PID of child .
printf ('%d %d\n', count, pid);

else if (pd < 0) /* Error on Fork *
b reak.

printf ("\nTotal Processes Created: %d'\rn", count);
p r in tf ('"\nEr r or on Fo rk\n") ;
i f (e r rno > 0) & (er r n < sy sn er r)

printf ("%s \n", sys _errl ist[errno]);
kill (0,9); / kill the children 0/ S

%.

% %4



Parent Process is 10857

Count Process

1 10888 4

2 10889 '

3 10890
4 10891
5 10892
6 10893
7 10894
8 10895
9 10896
10 10897
1 1 10898
12 10899
13 10900
14 10901
15 10902
16 10903
17 10904
18 10905
19 10906
20 10907
21 10908
22 10909 '

23 10910
24 10911

Total Processes Created: 24

Error on Fork
No more processes



3.4 MFork and MKillProcs

The mfork routine creates a number of child processes and assigns the same subprogram
to each of them. The number of children created will be the number of processors available

divided by two. Each of the child processes will execute the subprogram passed to mlfork

as a parameter. After a child has executed the subprogram, it spins waiting for the parent

to assign it another subprogram via a new r-fork. The mkillprocs routine terminates

all child processes which were previously created by an mlfork.

In example 6, the main procedure creates five child processes (the system had 10 avail-
able processors). Each child executes the function "sayhi". After each child process has A

executed the function, the parent terminates them with a call to mkill-procs. In the
function "sayhi", each child process prints the message "Hello from process PID". Notice

that the example includes the two header files parallel/microtask.h and parallel/parallel.h.

Remember that each child process has a copy of its parent's open file descriptors and can
thus overwrite another's output. To ensure that no output is lost, a critical region is used.

Only one process can enter the critical region at a time. This is accomplished by using
the milock and flush routines. The milock routine sets up a hardware lock which only

one process at a time can access. Once a process obtains the lock, it can enter its critical

region. If it does not obtain the lock, it spins and continues to try to access the lock.

A process which has access to the lock releases it by calling the routine rmunlock. The
routine flush is used to flush the output buffer so that no process will overwrite any
previous output. rnlock is used at this time only to print output. It is discussed in more

detail later.
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/* Example 6 0/

#include <stdio.h>
#include <paral lel/microtask.h>

#include <parallel/parallel.h>

/* This program creots a number of child processes, each executing 4/

/* the procedure "Sayhi". The procedure "soyhi" prints out the ./
/* message "Hello from Process PID. 4/

/* Mfork will create N processes where N is (the number of */

/ avai lable processors) / 2. The mki I llprocs system call will

/* terminate any processes created by m-fork. 4/

/4 The use of m-lock and m-unlock are used here to ensure mutual /

/* exclusion when each process is printing. Each process shares the */

/* some file pointer to stdout, so one process may overwrite another */
/* process's output. The ffiush routine is used to empty the buffer */
/4 to stdout before another process can overwrite the buffer. 4/

soyhi ()

int pid;

m_l ock ( ;

pid = getpid ();

printf ("Hello from Process %d\n", pid);

fflush (stdout);

m_unlock (;

main C)

m-fork (sayhi);
m ki IIprocs ()

printf ("Program Over\n);

Hello from Process 10944

Hello from Process 10948

Hello from Process 10947

Hello from Process 10945

Hello from Process 10946

Program Over

N!



3.4.1 Fork versus MFork

It is a misconception to think that the call to mrkill-procs sets up a barrier that the

parent will not pass until each child has terminated. Example 7 is exactly as the previous

one except for a print statement between the calls to remfork and m-kill-procs. Actually,

the mifork itself sets up a barrier. After an remfork has been issued, the parent will not

continue until each child has executed the designated function. In the output, we see that

the message "Program Over" is not printed until after each child has printed the message

"Hello from process PID". This is a major difference between fork and mfork. The

fork routine allows the parent to continue executing while the children execute. In fact,

with m..fork the parent does execute while the children are executing, but as one of the

children! In the previous examples, five new processes were not created. Four processes

were created and the fifth execution of "sayhi" was performed by the parent. This will

become important when the mrsingle and mmulti routines are discussed. To show that

the parent process actually performs as a child when using remfork, notice that the parent's

PID, 10977, is also the PID of one of the child processes.

24
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/. Example 7 ./
#include <stdio.h>

#include <par l lel/microtask.h>

#include <paral lel/para lel .h>

/* This program creates a number of processes which print out the ,/

/* message "Hello". mlock and munlock are used to ensure mutual ,/

/* exclusion while each process is printing. In this program, 4/

/* notice that a call to printf is made before the created child */
/* processes are terminated by m .kill-procs. This shows a basic q/

/* difference between fork and m-fork. When on m fork is made. /

/* the parent process becomes one of the child processes and 4/

/* prints one of the "Hello's". The parent process does not ,/

/* continue executing after the mfork call until all the created ./
/* child processes have completed execution of the m-forked 4/ t

/* procedure. Also notice that one of the children processes has 4/

/* the same PID as the parent process. 4/

sayhi I)

int pid 

m_,I ock ();
pid = getpid ();
printf ("Hello from Process %d\n", pid);

ff lush (stdout);

m_unlock ();

main )

int pid;

pid = getpid 0;
printf ("Parent's PID is %d\n", pid);

fflush (stdout);

m_fork (sayhi);

printf ("Program Over\n");

m-ki tlprocs 0;

Parent's PID is 10977

Hello from Process 10977

Hello from Process 10981
Hello from Process 10978

Hello from Process 10979
Hello from Process 10980
Program Over

"x Ai
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3.5 MSet-Procs and CPUSOnline

When a mfork is executed, the number of processes which execute the designated subpro-

gram is the number of available processors divided by two. In fact, this is only the default

value and the programmer has more control than just using this default. The cpus-online

routine returns the number of available processors on the system. The mset-procs rou-

tine declares the number of processes to execute a designated subprogram in parallel on

subsequent calls to mfork. The total number of processes which can be running in parallel

using the rnfork routinC is the number of processors online mnus one. If a programmer

tries a higher number, the default is used.

In example 8, the main process finds out the number of processors online using cpus-online

and prints the value. It then uses m-set-procs to set the number of processes which can

execute in parallel to this value minus one. Again, the function "sayhi" is executed by

calling rAfork. The output shows that ten processors were online at the time and that
"sayhi" was executed nine times.
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/* Example 8 */

linclude <stdio.h>

include <paral lel/microtask.h>

finclude <porol lel/porol lel.h>

/* This program is identical to the previous programs except 0/

/ * it sets the number of processes to create. The cpusonl ine /

/* system call returns the number of available CPUs. The

/* m-set-procs system call will set the number of processes to */
/. create on each mfork. In this example, one less than the */
/* number of CPUs available are created. ,/

sayhi ()

int pid;

m-lock (;

pid = getpid (;
printf ("Hello from Process %d\n", pid);

ff lush (stdout);

m-unlock 0;

main ()

int num.cpus;

numcpus = cpus.onl ine ()
print f ("Number of Available CPUs is %d\n", numcpus);

fflush (stdout);

m-set-procs (numcpus - 1);

m-fork (sayhi);
m-ki I lIprocs ();

printf ("Program Over\n");

4

PC

Number of Available CPUs is 10

Hello from Process 11001

He lo from Process 11007

Hello from Process 11002

Hello from Process 11004

Hello from Process 11005

Hello from Process 11008

Hello from Process 11003
Hello from Process 11006

Hello from Process 11009

Program Over

V"C



3.6 MGetMyid

Processes created by a call to m-fork also have a version of getpid. The m-get-myid

routine returns the PID of the calling process. The PIDs are not the same PIDs that are

found using the getpid routine. When N processes are created using m-fork to execute

a svbprogram, the PIDs range from 0,1,2 ... N-1. The parent process (which also executes

the subprogram) has the PID of 0. The fact that these PIDs are not always unique between

different users implies that they are not the real PIDs seen by the system kernel, but PIDs

used by some executive module which oversees the execution of m-fork and the other

microtasking routines. The PIDs become quite useful when partitioning a program by the

iterations of a loop.

Example 9 shows a process which executes the function "getpid" three times. Each process

will get their PID using the mget-myid routine and print its value. Each process also

gets their PID using getpid. Notice the output shows the PIDs from m-get-myid to run

from 0 to 2. Notice that the PIDs from getpid are different from those using m-get-myid.

Also, the PID of the parent process matches the getpid PID (12617) of the process with

the m-get-myid PID of 0.

t

I'
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/ *. *... ... . *,

/° Example 9.!

#include <ztdio.h>

#include <paral lel/microtosk.h>

#include <parallel/parallel.h> 

#define NPROCS 3

/* This program creates three child processes. Each process will
/* get its process id by using the system call m-get myid. Each s/
/* process prints out its PID. The mlock and munlock is used to */
/* ensure mutual exclusion for printing. The number of processes *'
/* created by the system call m-set-procs. When a mfork is
/, executed, NPROCS copies of the procedure "getid" are executed. °/
/* Actual ly, only NPROCS - 1 new processes are created. The

/* parent process will act as one of the new processes and execute */
/* one copy of "get id". The parent process will have the PID of 0 */
/* and the other processes will hove P]Ds of 1,2,3, .... NPROCS-1. ,/

/* Each child process will also get its PID using the getpid

/s routine. Notice that the two are different. 5/

getid ()

int pidl, pid2;

pidl = m-get-myid (; /* Get my process ID s/
pid2 = getpid 0;
m_ lock );
printf ("My process ID using m-get-myid is: %d\n", pidl);

printf ("My process ID using getpid is: Xd\n", pid2);
ff lush (stdout);

m_unlock 0.

main ()

int pid;

pid = getpid 0;
printf ("Parent process is %d\n\n", pid);

ff lush (stdout);
m-set-procs (NPROCS); /* Set the number of processes to NPROCS */

m-fork (get id);
mkill _ procs 0) /* Terminate all processes except the parent */

Parent process is 12617

My process ID using m-get-myid is: 0
My process ID using getpid is: 12617

My process ID using m-get-myid is: 1

My process ID using getpid is: 12618
My process ID using m-get-myid is: 2

My process ID using getpid is: 12619

-q~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~W .5 ~ *~IC~ ' .. 's~*~ F ~' 
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3.7 MLock and MUnlock

The routines r-lock and r-unlock have already been shown to ensure mutual exclusion.

The mutual exclusion is not just for printing output, but for any section of code which

could produce incorrect results if executed concurrently. The r-lock routine creates and

initializes a hardware lock. This same lock is used in every copy of the subprogram being

executed. When a process calls milock, a type of test-and-set operation is performed on

the lock. If no-one is using the lock, the calling process obtains the lock and may proceed.

If the lock is in use, the calling process spins, trying to obtain the lock. A process releases

the lock by calling munlock.

Example 10 illustrates the use of r-lock and munlock. This program increments a

counter which is shared between three processes. Remember the counter must bc dcared

as shared for it to be placed in shared memory and accessible by each process. The main

process creates three copies of the subprogram "counts" to be executed in parallel. Each

process will attempt to increment the counter three times. The processes use r-lock to

ensure that only one process can increment the counter at a time. A process will print

its PID and the value of the counter after increasing the counter. The output shows the

counter was incremented nine times. Notice the increments of the counter were printed in

order. This demonstrates the mutual exclusion. However, notice that the order a specific

process obtained the lock, incremented and printed the counter, and released the lock was

arbitrary.

3.
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/* Example 10 a/

#include <stdio.h>

#include <parallel/microtask.h>

#include <parallel/parallel.h>

#defiine NPROCS 3

shared int count;

/a This program illustrates the use of m lock. The program counts a/

/a by increasing the value of a variable in parallel. The program a/

/a maintains mutual exclusion with a call to m-lock. Each copy of a/

/ * the procedure increments the shored variable "count"

concurrently, and therefore, mutual exclusion is required.

counts ()

int me, i

me = m-get-myid ); /* Get my PID *!

for (i=0; i < NPROCS; i++) '

mlock ();

count += 1

printf ("process %d says count is %d\n", me, count);

ff lush (stdout);

munlock ();

main ()

count = 0;

m-set-procs (NPROCS); /* Create NPROCS processes 0/ %

m fork (counts);

m_kill _ procs(; /* Terminate all Processes except Parent a!

printf ("counter over\n");

process 0 says count is 1

process 2 says count is 2

process 1 says count is 3

process 0 says count is 4

process 2 says count is 5

process 1 says count is 6

process 2 says count is 7

process 0 says count is 8

process 1 says count is 9

counter aver
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3.7.1 The Fairness of Locks

A locking mechanism is called "Fair" if a process eventually enters its critical region af-

ter trying to obtain the lock. The best example might be a queuing semaphore, which

maintains the order of processes trying to obtain the lock in a FIFO fashion. However,

rnlock does not block and queue a process. On the Sequent, a process simply spins in

its processor and repetitively attempts to obtain the lock. This means that if process 1,

2, and 3 each try to obtain a busy lock, there is no way of knowing which process will be

the first to enter its critical region.

Example 11 performs the same counting function as the previous example, however, a

timing routine has been added to test when a process attempts to obtain a lock and-

when it actually obtains the lock. The header file sys/time.h must be included to use this

routine. The structures timeval and timezone are used with the gettimeofday routine to

get the desired information. The gettimeofday routine returns a timing counter which is

incremented every 10 milliseconds. In the function "counts", each process will get its PID

and enter a loop to increment count. In the loop, each process will call gettimeofday

before attempting the call to nlock. After a process has enter its critical region, it again

calls the gettimeofday routine for the time. The process then enters a second loop which

performs no service except to waste time. This is done to ensure that more than one

process is waiting to enter the critical region. The counter is then incremented and both

the counter and times are printed. The process then releases the lock for another process "'-

to enter its critical region.

The output shows the counter is incremented in correct order. It also shows the time
that each process attempted to enter'its critical region and the time it entered the critical .

region. Notice that process 0 on count 8, attempted to enter the critical region before a'

process 1 at count 7, yet process 1 entered the region first. Both had issued a call to

rilock. It is just by chance that process 1 obtained the lock first. The reason for this is

both timing and hardware. It may be that process 1 noticed the lock was released before

process 0. However, if two processes attempt to obtain the same lock simultaneously, the

process with the lowest priority will wait. If both processes have the same priority, the

process with the lowest processor number will wait. Starvation results when one process .

never obtains the lock. On the Balance 8000, starvation will not occur because the priority

of a waiting process is increased over time. This is called "Weak Fairness". The command
"man 2 gettimeofday" can be used to read about this function further.

,C,
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/* Example 11 s/
/ ................* /

, p

#include <sys/time.h>

#include <stdio .h>

#include <parallel/microtosk.h>

#include <p rol lel/parallel.h>

#define NPROCS 3

shared i nt count; r

/. This program illustrates the use of mlock. The program counts */
/, by increasing the value of a variable in parallel. The program '/

/, maintains mutual exclusion with a call to mlock. The system's 5/

/. calls to gettimeofday are to show when the process attempted ,/
/, to access the lock and when the process obtained the lock.

/. Although not conclusive, it would appear that the mlock call is ./
/* not fair.

counts ()

struct timeval t, r; /* Timing Variables */
struct t imezone t1, rl

int me, i, j, k;

k = 0;

me = m-get-myid 0 ; /* Get my PID ,/

for (i=0; i < NPROCS; i++) /* Increment Count NPROCS times /

gett imeofday (&t, &tl); /* Time before Access ,/

m_ lock ;
gettimeofday (&r, &rl); /* Time after Access ,/

for (j = 0; j < 10000; j++) /, Waste some time ./
k = j + k;

count += 1;

printf ("process %d count is %d ", me, count);

printf (" Tried %d %d Obtained %d %d\n", t.tv_sec,
t.tv usec, r tv sec r.tv usec);

f f ush (stdout);

munlock 0;

main ()

count = 0;

m_set-procs (NPROCC., /* Create NPROCS processes ./
m-fork (counts);
m _kill _ procs (; /* Terminate all processes except Parent ./

printf ("counter over\n");

process 0 count is 1 : Tred 549147970 510000 Obtained 549147970 510000

process I count is 2 : Tried 549147970 510000 Obtained 549147970 670000
process 2 count is 3 Tried 549147970 510000 Obtained 549147970 820000
process 0 count is 4 Tried 549147970 670000 Obtained 549147970 970000
process 1 count is 5 Tried 549147970 820000 Obtained 549147971 110000

process 2 count is 6 Tried 549147970 970000 Obtaired 549147971 240000
process 1 count is 7 Tried 549147971 240000 Obtained 549147971 380000

process 0 count is 8 Tried 549147971 110000 Obtained 549147971 520000
process 2 count is 9 Tried 549147971 380000 Obtained 549147971 650000

counter over
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3.7.2 Multiple Locks 'p

How many times can milock be called within a process? It was thought that it should I

only be called once for one critical region. However, this is entirely up to the programmer. %

relock sets up one lock to be used by the programmer. The programmer is free to use

the lock as he wishes. The following program executes a new "counts" function. The new

function increments two counters. Each process will call milock, increment and print a

counter value, and call m-unlock to release the lock. The process then attempts the same

procedure for the other lock. Each process increments each lock three times.

The output shows that each lock was incremented to the value of nine and that the in-

crements were all in order from 1 to 9. However, notice that near the end of the output, C

process 0 increments count2 before process 1 has incremented countl. In other words, you

can not predict which counter will be incremented next. This is because the same lock is

used for both critical regions. This is a rather inefficient method since the counters are

independent of each other.
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I. Example 12 *1

#include <stdio.h>

#include <parollel/microtas'.h>

#include <parallel/parallel .h>
#def ine NPROCS 3

shared int count1, count2;

/s This program illustrates the use of m-lock. In this program o/

I. m_lock is used twice. Mlock uses just one lock. However, s/

/. You con have multiple occurrences of mlock in a routine. '1
/, In this program two shored counters are incrementec by 0l I */

/s copies of "counts", however, only one lock is used for both ./

/. count variables.

counts ()

int me, i;
me = mget-myid ();

for (i=01 i < NPROCS; i++)

m_ lock (; 

count1 += 1;
printf ("process %d says counti is %d\n", me, counti);

ff lush (stdout);

munlock ();

m_lock C);
count2 += 1;

printf ("process %d says count2 is %d\n", me, count2);

ff lush (stdout);

munlock (;

main ()

count1 = 0;

count2 = 0;

m-setprocs (NPROCS);
m fork (counts);

m-kill-procs ( ;

printf ("counter over\n");

process 0 says counti is 1

process 2 says count 1 is 2

process 1 says counti is 3

process 0 says count2 is 1

process 2 says count2 is 2

process 1 says count2 is 3

process 0 says count1 is 4

process 2 says counti is 5
process 1 s ays count1 is 6
process 2 says count2 is 4

process 0 says count2 is 5

process 1 says count2 is 6

process 0 says count1 is 7

process 2 says count1 is 8

process 0 says count2 is 7

process 1 says count1 is 9

process 2 says count2 is 8

process 1 says count2 is 9

counter over

%



3.7.3 Omission and Commission Errors

The last example showed how a programmer can use the calls to milock and m-unlock

for his own purposes. This can become a very dangerous situation. What would happen

if a process tried to nest calls to mlock. In other words, tried to obtain a lock it already

had. Would the system allow the process to continue? No! The system does not care

which process has obtained a lock and who will get it next. It only ensures that only one

process at a time can use the lock. The following example is the original "counts" program

minus a call to m-unlock after leaving the critical region. This is an inherent problem

with locks and semaphores. The program deadlocks right away. After the first process

obtains the lock, no other process can continue. The process which first obtained the lock

also waits when it calls mlock on the second iteration. The output shows that process

0 obtained the lock, incremented and printed the counter. However, now every process is

waiting for the lock because process 0 forgot to release it. Hit CTRL-C to kill a program

which has deadlocked.
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/. Example 13 *// ............... * . /

#include <stdio.h>

#include <paral lel/microtask.h>

#include <paral lel/parallel .h>

#define NPROCS 3

shored int count;

/* This program attempts to increment a counter within a critical */

/° region. However, the program forgets to unlock the critical */
/* region and deadlocks the program.

counts ()

int me. i

me = mget-myid (;

for (i=0; i < NPROCS; i++)

m- I ock ();
count += 1

printf ("process %d says count is %d\rr'. me. count);

ff lush (stdout);

main )

count = 0;

m_setprocs (NPROCS);

mfork (counts);

mkill _procs 0;

printf ("counter over\n");

process e says count is 1

if



3.8 MSync

The msync routine causes a process to spin until all processes which were mforked

have reached the same point and have called rnsync. The routine is used to synchronize

all processes which were created by a call to m-fork. The best way to explain m-sync is

by example. Example 14 again increments a shared counter. Each process which executes
"4counts", will increment the counter N times, where N is the number of processes created

multiplied by the process's PID + 1 (PID obtained by m-get-myid). Each process will

execute an outer loop three times (three processes are created). Each process will then

enter another loop and will increment and print the shared counter. This next loop is

executed PID + 1 times. This varies with each process and better demonstrates m-sync.

The output shows the three iterations imposed by the outer loop. Within each iteration,

the count is incremented six times (once by process 0, twice by process 1, and thrice by

process 2). Notice that all of iteration 0 is performed before iteration 1 begins, even though

process 0 is finished and ready to continue. Process 0 waits for the other two processes to

finish and synchronize before continuing to the next iteration.
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lelmiroas/* Exml 14*

#include <stdio.h>
I #include <pardi lel/microtosk.h>

#include <poral lel/parat el.h>
= #def ine NPROCS 3

shored int count;

/s This program creates NPROCS processes to execute the procedure */

/* "counts". Each process will increment a shored counter N times

where N is NPROCS * (PID + 1). m.sync is used to synchronize */
all processes before each outer loop iteration.

counts C)

int me, i, j, iterations;

me = m-get-myid ();

iterations = me + 1;

for (i=0; i < NPROCS; i++)

for (j=0; j < iterations; j++)
m_lock ();

count += 1;
printf ("iteration %d process %d says count is %d\n", i, me, count);

fflush (stdout);

m-unlock Q;

m sync (); /* Synchronize all processes */

main ()

count = 0;

m_set_procs (NPROCS);

mfork (counts);

mkillprocs ();

printf ("counter over\n");

iteration e process 0 says count is 1

iteration 0 process 1 says count is 2

iteration 0 process 2 says count is 3

iteration 0 process 1 says count is 4

iteration 0 process 2 says count is 5

iteration 0 process 2 says count is 6

iteration 1 process 1 says count is 7

iteration 1 process 2 says count is 8

iteration 1 process 0 says count is 9

iteration 1 process 1 says count is 10

iteration 1 process 2 says count is 11

iteration 1 process 2 says count is 12

iteration 2 process 2 says count is 13

iteration 2 process 0 says count is 14

iteration 2 process 1 says count is 15

iteration 2 process 2 says count is 16
iteration 2 process I says count is 17
iteration 2 process 1 says count is 17
iteration 2 process 2 says count is 18

counter over

I N



3.9 MParkProcs and MReleProcs

A process created by m fork will spin waiting for more work after it has executed the

subprogram named by the mifork. If no more work is to be done, then the process can

be terminated by a call to mkill-procs. What if there is more work for each process

to do, but the parent process must do some initial work sequentially? You could leave

the processes spinning while the parent executes. This is very wasteful of processor time.

You could terminate the processes and then recreate them when needed. This solution is

wasteful of processing time due to the amount of overhead needed to recreate the processes.

Each mifork requires a certain amount of time to copy the named subprogram to different

processors for execution.

The m.park-procs routine suspends execution of each process which was previously cre-

ated by a call to mifork. These processes still exist at the different processors, but they

are no longer spinning. They have been blocked and are not active. The m-releprocs

routine resumes the execution of processes which have been blocked by a previous call

to mpark-procs. These two routines are very useful and allow a programmer to reuse

processes without wasting processor time or processing time. '

Example 15 executes the original "counts" procedure. The main process creates three

processes to execute "counts" in parallel. After the processes are finished, the parent

process calls mpark-procs to block the processes from execution. The parent prints the

message "Take a Rest". It then unblocks the processes with a call to msrele-procs and
I

calls rnfork to create three processes to again execute "counts". mifork is smart and
will not create new processes if they already exist. The output shows that the counter was

incremented nine times. The processes took a rest and then the counter was incremented

nine times again. Notice that the counter was incremented to the value of nine on the first

rnfork and then was incremented to the value of 18 on the second mfork. This shows

that the counter does not lose its value between rnforks and suggests that the processes

only receive a pointer to shared variables. If the processes were terminated between the

two calls to mfork, the results would be the same. If you need a shared variable to be

reset between calls to rnfork, you must do it yourself.
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/* Example 15 */

#include <stdio.h>
#include <porol lel/microtask.h>
#include <parallel/parallel.h>
#define NPROCS 3

shared int count;

/* This program illustrates the use of the m-pork.procs call.
/. Three processes ore created which count by incrementing a 4/

/. shored counter. After NPROCS iterations of counting, the 4/

/* parent process parks each process and prints a message. 4/

/. After the message is printed the parent releases the
/* processes and continues counting. 4/

counts ()

int me, i
me = mget-myid ); /* Who am I °/

for (i=O; i < NPROCS; i++)
m-lock ();
count += 1
printf ("process %d says count is %d\n", me, count);
ff lush (stdout)
m-unlock ();

main ()

count = 0;

m-set procs (NPROCS);
mfork (counts);

m.park-procs (; /* Park all children ./

printf ('\n\n Take a Rest \n\n");
fflush (stdout);

m-rele-procs ); /* Release the children */
mfork (counts); /* Put children to work 4/

mki I Iprocs (;

printf ("counter over\n");

process 0 says count is 1
process 1 says count is 2
process 2 says count is 3
process 2 says count is 4
process 1 says count is 5
process 2 says count is 6
process 1 says count is 7

process 1 says count is 8
process 2 says count is 9

Take o Re st -

process 2 says count is 19

process 2 says count is 11
process I says count is 12
process 0 says count is 13
process 2 says count is 14
process 1 says count is 15
process 0 says count is 16
process 2 says count is 17
process I says count is 18
counter over



3.9.1 The Inflexible MParkProcs

There is one major problem with m.park-procs. If you want to execute -counts" three

times and then execute it later only two times, you must terminate the original pro-

cesses and create two new ones. This problem goes back to the call to mset-procs.

mset-procs not only tells how many processes can execute in parallel, but also tells

remfork how many processes to create. DYNIX will not allow you to reset the number of

processes you need for the next m-fork without first calling m-kill-procs to terminate

the current processes.

Example 16a illustrates this point. The main process creates three children to execute
"counts". After they are finished, the main process terminates them with a call to

mckill-procs. The main process resets the counter, prints a message, and then resets

the number of processes needed to two by calling m-set-procs. These two processes are

then created by a call to mfork and execute "counts". The output verifies the program.

If the number of processes had not been reset to two using m-set-procs, the r-fork

would have created three (due to the previous value of mset-procs). If the original

processes had not been terminated by a call to m-kill-procs before resetting the number

needed to two, DYNIX would have ignored the call to mset-procs. This is illustrated by

example 16b. In this example, the original processes were not terminated before resetting

rmnset-procs. Notice that three processes were used to execute "count" after the message

"Take a Rest".
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/* Example 160 *

include <stdi0. h>
#include <poral lel/microtask.h>
#include <para lie /pora lieI. h>
#define TWO 2
ifd etfire NP R r"; 3

shared i nt count;

/. This program illust rates the use of the m-park-procs call.
/~Three processes are created which count by incrementing a
I. shared counter. After NPROCS iterations of counting, the *
/5parent process kills each process and prints a message.
I. After, the message is printed the parent creates two new '
/. processes and continues counting. 5

counts (

i t me ,
me = m-get-myid ;/.Who am I *

for (i=O; i < NPROCS; i-s+)
mio 0c k (0);
count += 1;
printf ("process Xd says count is %d\n'. me, count);
fflush Cstdout);
m-uniock 0

ma in C

ount 0

m-set-prr'(s (NPROCS);
m f )ik Icounts);

n- k i p rac s ()/* Kill all children s

Pr nt f ("\n\n Take a Rest \n\n")

Counft -0; / reset counter .

tt,.-et-procs ikTWO);/ Create two processes *
m-fork (counts).I Put children to work 1i

m k i 'I roc

p r in tf ("cou-'ter over\n");

L

process 0 says count is 1
process 2 says coau nt i s 2
process 1 says count is 3
process 0 says coau nt i s 4
process 2 says coau nt i s 5
process 1 says coau nt i s 6
process 0 says count is 7
process 2 says coau nt i s 8
process 1 says count is 9 .

op

Take a Rest

process 0 says count is 1 0
process 1 says count is 2
process 0 says count is 3
process 1 says count is 4
process 0 says count is 5
process 1 says count is 6
counter over
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Ia Example 16b a/

#include <stdio.h>
#include <parallel/microtask.h>
#include <paral lel/paral lel .h>
#define TWO 2
#define NPROCS 3

shared in (.Cull,

/* This program illustrates the use of the m-park-procs call.
/, Three orocesses are created which count by incramenting a ,/
/. shared counter. After NPROCS iterations of counting, the a/
/ * parent process prints a message.
/ * After, the message is printed the parent resets the number ./
/, processes to two. Notice that three processes are created. a/
/a The system ignored the m-set.procs routine because the
/, parent process did not kill all the children processes
/° first. 4/

counts ()

int me, i;
me = m-get-myid () /, Who am I */

for (i=0; i < NPROCS; i+4)
mlock ();

count += 1

printf ("process %d says count is %d\n", me, count);
f flush (stdout);
m_unlock );

main ()

count = 0;

m-set-procs (NPROCS);
m_fork (counts);

printf ("\n\n Take a Rest \n\n");
ff Ilush (stdout);
count = 0; /, reset counter a/

m-set procs (TWO); /* Create two processes */
mfork (counts); /* Put children to work ,/
mkill procs (;

printf ("counter over\n");

process 0 says count is 1
process 2 says count is 2

process 0 says count is 3
process 1 says count is 4
process 2 says count is 5
process 0 says count is 6
process 1 says count is 7
process 2 says count is 8
process I says count is 9

Take a Rest

process 2 says count is 1
process 1 says count is 2
process 0 says count is 3
process 2 says count is 4
process 1 says count is 5.
process 0 says count is 6
process 2 says count is 7
process 1 says count is 8
process 0 says count is 9
counter over



3.9.2 The Efficiency of MParkProcs and MReleProcs

When remfork is called, what is copied to the new processors? Does mfork only copy

the subprogram named in the parameter? Or does mfork give each new processor an

entire copy (data segment, instruction segment, and system data segment) of the process

which calls it (like fork)? This is an important question. If you execute the function
"counts" three times and then wish to execute the function "sayhi" three times, should

you terminate the original processes before ruforking "sayhi" or should you just block

them and release them when needed? If you do not terminate them, will the r-fork
expect the function "sayhi" to be on each of the processors or will it have to copy the

function to them? If the r-fork must copy the function "sayhi" to the processors, do you

save any time by using m-park-procs instead of m-kill-procs?

The answer is that mfork copies the entire environment of the calling process to the new

processors. Therefore, on bubseouelt calls to n-fork, no new data or instructions need

to be copied. This means that time is saved by using mpark-procs and mrele-procs

instead of mkill-procs.

Three examples are used to demonstrate this point. Again, the gettimeofday ioutine is

used to test times. The first two examples have a main process and two functions, "counts"

and "sayhi". Example 17a executes three copies of "counts" using rnfork and then

terminates the processes with mikill-procs. The main process calls gettimeofday to

find the time before it executes "sayhi". It then miforks "sayhi" and calls gettimeofday

again. The output shows that it took approximately .14 seconds to create and execute the

three copies of "sayhi".

Example 17b is exactly like the first except that after "counts" is executed, the processes

are blocked with a call to m.park-procs. gettimeofday is called and then the pro-

cesses are released to execute "sayhi". After each process is finished executing "sayhi",

gettimeofday is called again. In this case the output shows that the time to release the

processes and execute "sayhi" was approximately .02 seconds. This shows that blocking

the processes is much quicker. This program was run several times to cnsure consistent

results.

4.5
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However, were both subprograms ("counts" and "sayhi") copied in the initial m-fork?

Maybe the creation of the processes using r-fork has more overhead than copying the

additional function ("sayhi"). Example 17c has a main process and one function, "sayhi".

This program creates and executes "sayhi" three times. It then blocks the processes, gets

the time, releases the processes, executes the same function "sayhi", and again gets the

time. In this program nothing needs to be copied on the second execution of "sayhi". The

output shows the time to still be approximately .02 seconds. This shows that the entire

parent process is copied to each new processor on an initial mifork.
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/* Example 17o .

#inc lude <sys/time.h>
#include <stdio. h>
#include <paral lel/microtask.h>
#include <parall el/parallel .h>
#define NPROCS 3

shared int count;

/* This program is used to show the time it takes to
/* create processes. Two routines are used in the program. %1
/* First, a number of proceses are created to run the first *

I.routine and then they are killed. Then, the time it
/*takes to create new processes to do the other simple
/ r rou t ine is recorded.

counts (

i t me ,
me = m...getmyid / Who am I *

for (i-.; i < NPROCS; i+-m)
m I lock U
c ou n t+1
printf ("process %d says count is %d\n", me, count);
fflush (stdout);
m-_unlock U

i t me;
* me =m..get-myid /* 1 who am I*

ml Iock U
print f ("Process 7.d says He I Io\n" . me);
ft lush (stdout);
m-_unlock U

s t ruc t t i mevalI t r;
s t r uc t t imezone ti1 r 1

coun t =

mset-procs (NPROCS);
m-fork (counts),

M-k lI .. procs ;/.Kill all children *

g et t ir~eofdoy (&t ,&t 1)
n f o r i ( sa yh _ h / P ut c h -I dr en t o w or k

gettimeofday (&r, &rl )
rr k I ! j)racs 5 :

p)rmrtf ("Time before say-.hi is. %d %d\n-, t tv..sez, tv-_usec).

printf ("Time ofter say hi is: %d 7%d\n'. r tv-sec. r tvusec).



process 0 says count is 1

process 2 says count is 2

process 1 says count is 3

process 0 says count is 4

process 1 says count is 5

process 2 says count is 6

process 0 says count is 7

process 2 says count is 8

process 1 says count is 9

Process 0 says Hello

Process 2 says Hello

Process 1 says Hello

Time before say-hi is: 549149061 530000

Time after say hi is: 549149061 670000
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/* Example 17b 4

# include <sys/time h>
#include <stdic.h>
#include <paral IlelI/microtask.h>
#include <parallel/parallel .h>
#define NPROCS 3

shared i nt count,

/* This program is used to record the time it takes to execute a
/. routine on existing processes. First, the processes are created *
/* to execute a separate counting routine. Then they are parked .

/* and then released to execute a simple routine which 4

/v prints a message. The "gettimeofda system call is used to 4

/. record t he t ir-.es .

counts 0)

i t me.,
me = m..get-miyid ~;/4 Who am 1I /

foar ( i=0 ; i < NPROCS; i-r+)

m Ioc k ( );
count += 1;
printf ("process %d says count is %d\n", me, count);
f l Iush ( stdcout)
m-_unlock U 5

i t me;
me = m-get-myid ~;/* who am 1.

m-lIock U
printf ("Process %d says Hello\n", me);
f flIu sh ( stdout);
m-_unlock U

struct timevol t, .
s tr u ct timezone t1 . rl

count=0,-

m-set-procs (NPROCS),
m-fork (counts);

m-porkprc /* Park 0a chldenl

ge t imec'do v &t &
m r reIe _ pr oc s e ) e4 Peleoe oi C hi I d r er
rm f or~ (sayhIni R / u t chIniId r en t o w o r

get' imeofdo v (&r. &rl-
rm~k ! procs ( )

* printf ("'Time before say-h is 7d %d\n . t tv-sec. t.t _ usec)

prirmtf (''Time atter s.oy hi im 7d %d\n', r tv-_sec, r tvusec) 4

V~



process 0 says count is 1

process 2 says count is 2

process 1 says count is 3

process 2 says count is 4

process 0 says count is 5

process 1 says count is

process 2 says count is 7

process 0 says count is 8

process 1 says count is 9

Process 1 says Hello

Process 0 says Hello

Process 2 says Hello

Time before say-hi is. 549149378 500000

Time after say-hi is: 549149378 520000
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/, Example 17c °/
*9 ....... ° ... ../

#include <sys/t me.h>
#include <stdio.h>
#include <paral lel/microtask.h>
#include <paraliel/parallel.h>
#def ine NPROCS 3

shared int count;

/* This program is used to record the time it takes to execute a */

/. routine on existing processes. First, the processes are created 9/ -

/9 to execute the routine "say.hi". Then, they are parked, 9/ r

/° released, and then they re-execute "soy_hi". J am interested in.!

/* the time to reexecute the processes. 9/
I

soy_hi ()

int me;
me = m-get-myid (; /* who am 1 */

mIock ();
printf ("Process %d says Hello\n", me);

ff lush (stdout);
m-unlock 0 ;

main ()

struct timeval t, r; L
struct timezone t1, rl

W*

91

m set procs (NPROCS); 'i
m-fork (soy.hi);

m pork procs () /9 Park all children */

gettimeofdoy (&t, &tl);
m-rele-procs (); /* Release all Children ./
m-fork (soy- hi ) ; /* Put children to work %/

gettimeofday (&r, &rl); %,

m-killprocs (; 9

printf ("Time before soy-hi is: %d %d\n", t.tv_sec, t.tv-usec); I

printf ("Time after soy-hi is: %d %d\n". r.tvsec, r. tv_usec);

Process g says He I I a
Process 1 says H e I I a
Process 2 says Hello
Process 1 says Hello
Process 2 says He lo
Process 2 says Hello

Time before soy_hi is. 549149628 780000
Time after say-hi is: 549149628 790000

%-9t
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3.10 StLock and SUnlock

The silock and s-unlock routines are very similar to the r-lock and r-unlock routines i

except they give the programmer the flexibility of using more than one lock. A lock is

created by declaring a variable to be of type slockt. The lock must also be declared as

shared. The s-initilock routine initializes a memory-based lock. Both of these actions

were done for the programmer when using mnlock. After a lock is created and initialized,

a programmer may use the lock to ensure mutual exclusion using the silock and s-unlock

routines. This is done exactly as before using milock and rmunlock. However, now a

process can create multiple locks and use them in different contexts.

The following program increments two different shared counters. Three processes are

created and each will increment the two counters three times. The main process begins

by initializing two locks locki and lock2. The main process then calls mfork to create

the processes and execute "counts". Each process gets its PID and then enters a loop

to increment counti. lock1 is used to ensure mutual exclusion while incrementing count1.

After a process is finished with the first loop, it enters a second loop and begins to increment

count2. lock2 is used to ensure mutual exclusion while incrementing countS. Notice that
the addresses of the locks are used as parameters to the routines s-initlock, s-lock, and

s-unlock. The DYNIX programmer's manual says to declare a lock to be a pointer to

type slockt and to pass these pointers. This does not work. However, if you declare the

variables to be of type slockt and pass their addresses, everything works just fine.

The output shows that each counter was incremented nine times. Notice that the value

of 7 is not printed for counti. This is because process 2 had entered the second loop to

increment count2 and had overwritten the output buffer before counti's value of 7 could

be printed. The counters are independent between the two loops and were incremented

correctly, but the output buffer is shared between the two loops. Since lockl has no effect

on lockS, there is no mutual exclusion between the two loops and output can be lost. Both

counters could be placed in one loop using both locks.
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/* Example 18 ./

#include <stdio . h>

#include <paral lel/microtask.h>

#include <porallel/paral lel .h>

#define NPROCS 3

shored int count1, count2;
shored slock _t lock1, lock2; /* Declare the Locks */

/* This program illustrates the use of locking variables to */

/* ensure mutual exclusion. Two locks are created by the */

/, declaration of type "slack t" and the initialization call */
/, "s initlock". This program increments two counters in 9/

/* parallel. Each of three processes will concurrently */
/, increment the counter and print its value. Two critical */
/* regions ore implemented with the two locks to ensure that */
/* the incrementing of a counter and printing its value
/* appear as atomic instructions. ,/

counts ()

int me, i

me = m-get-myid (; /* Who am I 9/

for (i=O; i < NPROCS; i++) I
s lock (&lockl); /* Lock the critical region ./

caunt1 += 1;
printf ("process %d says count1 is Xd\n", me, counti);

f flush (stdout);

s _unlock (&lockl); /* Unlock the critical region 9/

for (i=6; i < NPROCS; i++)

s-lock (&Iock2); /* Lock the critical region */
count2 += 1;
printf ("process %d says count2 is %d\n", me, count2);

f flush (stdout);

s_unlock (&lock2); /* Unlock the critical region */

main ()

s init lock (&lockl,&lock2), /* initial ize the locks */
count1 0;

count2 0;

m.setprocs (NPROCS);

m-fork (counts);
m-ki I I procs ();

pr r t f f"counter over\n")

*9
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process 2 says count1 is 1

process 1 says count 1 is 2

process 0 says count1 is 3

process 2 says count1 is 4
process 1 says count1 is 5

process 2 says counti is 6

process 2 says count2 is 1
process 1 says count1 is 8
process 2 says count2 is 2

process e says count2 is 9

process 1 says count2 is 3

process 2 says count2 is 4

process 0 says count2 is 5

process 0 says count2 is 6

process 1 says count2 is 7 op
process 0 says count2 s 8

process 1 says count2 is 9

counter over

1
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3.11 S nit-Barrier and SWaitBarrier

The s-inittbarrier routine initializes a barrier as a rendezvous point for N processes, where I

N is passed as a parameter to s-init-barrier. The s-wait-barrier routine delays each calling

process in a busy-wait spin until exactly N processes have called s-waittbarrier. In C,

a barrier is declared as a shared data structure of type sbarrierAt. The function of the

s-wait-barrier routine is exactly like the msync routine with the added flexibility of

specifying the number of processes to synchronize. It also allows the creation of multiple

barriers.

The following program again increments two shared counters, counti and count2. The

main process will create and initialize two locks and two barriers; one for each counter.

The main process creates three processes to execute "counts". Each process gets its PID

and enters an outer loop. The outer loop is designed to demonstrate the use of the barriers.

Again, I have two inner loops to increment each counter separately. lock1 and lockt provide

mutual exclusion for counti and count2, respectively. The main process has initialized each

barrier to wait for three processes (the number created). Each process calls s-wait-barrier

between each inner loop. All processes synchronize on barrier1 after incrementing countl.

All processes synchronize on barrier2 after incrementing count2.

The output shows that each counter was incremented 27 times, nine times per outer loop.

Notice that each counter is fully incremented and printed before the next loop has begun.

This time no output is lost.

-a
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/s Example 19 */

#include <stdio.h>

#include <paral lel/microtask.h>

#include <paraliel/parallel.h>

*dcfine NPROCS 3

shored int count1, count2;

shored sbarrier_t barrier1, barrier2; /o Declare the Barriers a/

shored slockt locki , lock2; /P Declare the Locks ./

/. This ; rogram illustrates the use of locking variables to */
/o ensure mutual exclusion. Two locks are created by the ./
/ declaration of type "slockt" and the initialization call ./
/4 "sinit-lock". This program increments two counters in */
/s parallel. Each of three processes will concurrently 4/

/. increment the counter and print its value. Two critical */
/s reg;.ns are implemented with the two locks to ensure that s/
/. the incrementing of a counter and printing its value

/. appear as atomic instructions. 4/

/* Two barriers are declared by the type "sborrier-t" and */
/4 initialized by the call to "sinitbarrier". The two

/. barriers are used to synchronize all the processes after ./
/4 incrementing each counter. The call to s-waitL barrier */

/* will block the calling process until NPROCS processes */

/. have made the call. */

counts ()

int me, i,
me = m-getmy id () /* Who am I */

for (j=O; j < NPROCS; j++) $
for (i=0; i < NPROCS; i++) 1 /r

slock (&lockl); /. Lock the critical region ./

count + 1; I+,

print f ("process %d says count1 is %d\n", me, count1);

f f lush (stdout); d.

s unlock (&lockl); /. Unlock the critical region o/ ;?K

swait barrier (&barrierl); /s All processes synchronize s/

for (i=0; i < NPROCS; i++)

s-lock (&lock2); /* Lock the critical region */

count2 += 1;
printf ("process %d says count2 is %d\n", me, count2),

fflush (stdout);

st unlock (&lock2); /. Unlock the critical region */

s-waitbarrier (&barrier2); /o All processes synchronize 4/

main () '

s in t_bor r ier (&barrierl, NPROCS); /* initialize the barriers o/ '4

s int _barrier (&bo'rier2, NPROCS),

sir.t lock &loc 1i /. initiol,ze the lock *,

s_init_ lock (&Iock2)

counti = t ; 1,4..
count2 = 0.

m-set procs (NPROCS).

nfork (counts;,

', , %' , ,.. , .. ,.,, .. ,...,, ..,, .,.,, ..-....., . . ,.. .......... ,,...,.....4.
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m-kil l.procs ()

printf ("counter over\n");

process 0 says count1 is 1
process 2 says count1 is 2

process 1 says count1 s 3

process 0 says count1 is 4

process 2 says count1 is 5
process 1 says counti is 6

process 0 says count1 is 7
process 2 says count1 is 8

process 1 says count1 is 9

process 0 says count2 is 1

process 2 says count2 s 2

process 1 says count2 is 3
process 0 says count2 is 4

process 1 says count2 is 5

process 2 says count2 is 6
process 1 says count2 is 7

process 0 says count2 is 8

process 2 says count2 is 9

process 1 says counti is 10

process 2 says coun i is 11
process 1 says countl is 12

process 0 says count1 is 13

process 2 says count1 is 14

process 1 says counti is 15

process 0 says count1 is 16

process 2 says count1 is 17

process 0 says count1 is 18

process 1 says count2 is 10

process 0 says count2 is 11 4

process 2 says count2 is 12

process 1 says count2 is 13

process 0 says count2 is 14
process 2 says count2 is 15

process 1 says count2 is 16

process 0 says count2 is 17

process 2 says count2 is 18
process 1 says count1 is 19

process 2 says counti is 20
process 0 says count1 is 21

process 1 says count1 is 22

process 0 says count1 is 23 4,

process 2 says counti is 24 N

process 1 says count1 s 25 .,.
process 0 says count1 is 26

process 2 says count1 is 27

process 0 says count2 is 19

process 2 says count2 is 20 S.
process I says count2 is 21,
process 1 says count2 is 22
process 2 says count2 is 23 
process 2 says count2 is 24

process 0 says count2 is 25

process 2 says count2 s 26

process 1 says count2 is 27

counter over
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3.12 MSingle and MMulti

How can a programmer print out a message within a miforked subprogram? Not every

process should print the message. How can you perform any type of I/0 only once (such

as reading a counter value)? The subprogram could be written so that only a specific

process (based on PID) performs the read while the others wait. The msingle and

mmulti routines suspend the execution of all child processes while the parent (process

0) performs some sequential task (I/O). The msingle places the children in a spin while

the parent continues execution. The parent calls mmulti to resume the execution of the

children. The children do not execute the code between the call to msingle and the call

to m-multi.

Example 20 performs the same function as the previous program. It increments two shared

counters. Again two locks and two barriers are used to ensure mutual exclusion and

synchronization. However, this program prints a message between each iteration of the

outer loop. Only one process should print the message (the parent). The print command is

encapsulated within an r-single / rmnulti block. The output shows that the iteration

number was printed only once (by the parent) after each iteration of the outer loop.

.1'
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/* Example 20 */
/ ... *0 *...* ..... 0.* .0 /

#include <stdio.h>

#include <paral lel/microtask.h>

#include <parallel/parallel .h>

#define NPROCS 3

shared int countl. count2;

shared sbarrier-t barrier1, barrier2; /o Declare the Barriers ./
shared slockt lotkl, lock2; /. Declare the Locks */

/* This program illustrates the use of locking variables to ./
/* ensure mutual exclusion. Two locks are created by the ./
/* declaration of type "slock-t" and the initialization call
/0 "sinitlock". This program increments two counters in s/

/* parallel. Each of three processes will concurrently s/

/s increment the counter and print its value. Two critical ./
/, regions are implemented with the two locks to ensure that s/

/. the incrementing of a counter and printing its value

/s appear as atomic instructions. 0/

/* Two barriers ore declared by the type "sbarriert" and s/

/0 initialized by the call to "sinit-barrier". The two

/0 barriers are used to synchronize all the processes after 0/

/, * incrementing each counter. The call to s waitbarrier 0/

/* will block the calling process until NPROCS processes 0/

/* have mode the call. 0/

/* The m-single and mmulti system cal Is ore used to allow s/

/. the parent process to print a message. These calls */

/* suspend all processes except the parent and only the

/* parent is allowed into this critical region. */

counts ()

int me, i, j

me = m-get-myid (; /* Who am I */

for (j=0; j < NPROCS; j++) )

for (i=O; i < NPROCS; i++)
slock (&lockl); /. Lock the critical region 0/

count I += 1;
printf ("process %d says count1 is %d\n", me, count1);
ff lush (stdout);

sunlock (&lockl); /. Unlock the critical region o/

s_wait _barrier (&barrierl); /* All processes synchronize s/

for (i=0; i < NPROCS; i++)
slock (&lock2); /* Lock the critical region 0/

count2 += 1;

printf ("process %d says count2 is %d\n". me, count2);

f flush (stdout);

sunlock (&lock2); /* Unlock the critco: region s/

s wait_.torrier (&barr,er2 . /. All processes synchronize 0/

/. Parent process prints a message 0/

m srInge Q :
print' ("\nlterat on %d Completed\n\n". 1+1),

f flush (stdout),

m mul j,

mar



s _init-_barrier (&barrierl. NPROCS); /a initialize the barriers a

s _ nit-_barrier (&barrier2. NPROCS);
s _init _lock (&lockl); /a initialize the locks a

s _init _lock (&lock2);

counti1 = 0;
count2 = 0;

fllbet..pracs (NPROCS):
m..tork (counts);
m k ilIIprocs U

printf ("counter over\n");

16
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process 0 says count1 is 1
process 1 says countI i s 2
process 2 says count1 is 3
process 0 says count1 is 4

process 1 says count 1 is 5

process 2 says count1 is 6
process 0 says countl is 7
process 1 says count1 is 8

process 2 says counti is 9

process 2 says count2 is 9
process 0 says count2 is 2

process 1 says count2 is 3

process 2 says count2 is 4

process 1 says count2 is 5

process 1 says count2 is 6

process 2 says count2 is 7

process 1 says count2 is 8

process 1 says count2 is 9

ptero t ion 1 Completed

process 1 says count i s 1

process 1 says count1 s 11
process 2 says count1 is 12

process 1 says counti is 13
process 2 says counti is 14
process 2 says count1 is 15

process 1 says count1 is 16
process 2 says counti is 17

process 2 says count1 is 18process 1 says count2 is 10

process 2 says count2 is 11
process 1 says count2 is 12

process 1 says count2 is 11 3

process 2 says count2 is 14
process 1 says count2 is 15

process 2 says count2 is 16

process 2 says count2 is 17

process 0 says count2 is 18

Iteration 2 Completed

process 8 says count2 is 19

process 2 says countd is 20
process 1 says count 1 is 21
process 2 says count 1 is 22
process 2 says count 1 is 23

process 0 says counti is 24
process 0 says counti is 25

process 2 says count1 is 26
process 1 says count I is 27

process 2 sys count 2 is 19

process 1 says count2 is 27
process 1 says count2 is 21
process 2 says count2 is 22
process 1 says count2 is 23
process 2 says count2 is 22

process 1 says count2 is 24 "

process 2 says count2 is 25

pr c ess 0 says count2 is 26

process 1 says count2 is 27

I terat ,on 3 Completed

counter over
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3.13 MNext

The m-next routine increments a global counter. The counter is initialized to zero each

time the mfork, insingle, or m-sync routines are called. You may obtain the value of

the counter simply by calling mrenext which returns its integer value. Each time m.next

is called, it returns its current value and then increments the counter. These two steps

are accomplished atomically to ensure that no two processes will see the same value of the

counter.

Example 21 illustrates the use of the m-next routine. In this example, "counts" is called

to increment a shared counter nine times. The main routine creates three processes to

execute "counts" in parallel. In this particular example, the main routine does not care

how many times a process increments the counter, just as long as the counter is incremented

nine times. Each process does not know how many times it should increment the ct anter.

It only knows the number of times the counter should be incremented, nine. By calling

rnnext before incrementing the counter, each process can see if the counter has been

incremented the correct number of times. If the counter has not been incremented nine

times, increment the counter, otherwise return. The output shows that the counter was

incremented nine times. However, each process did not increment the counter three times

as in previous examples. Process 1 incremented the counter four times. The mrenext

routine is most useful for dynamic applications. For example, an application where each

process performs the same task on a set of data, but the amount of data is not known until

run time.
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/* Example 21 */

#include <stdio.h>

#include <porol lel/microtask.h>

#include <parallel/parallel.h>

#define NPROCS 3

#define N 9

shared nt count;

/* This program illustrates the use of mlock. The program counts */

/* by increasing the value of a variable in parallel. The program */

/* maintains mutual exclusion with a call to m lock. Each copy of */

/* the procedure increments the shared variable "count"

/* concurrently. and therefore, mutual exclusion is required.

/. The program also shows how to use the global counter mnext. */

/* Each time mnext is called, its valua is incremented. Each

/* process will increment count until it has been incremented

/* nine times.

counts ()

int me;

me = m-get-myid 0; /o Get my PIE */

while (m-next () <= N)

m_ lock ;
count += 1

printf ("process %d says count is %d\n", me, count);

f flush (stdout);

munlock (;

main ()

count

m set-procs (NPROCS). /* Create NPROCS processes ./

n fork (counts); 

m k I llprocs () / Terminate all Processes except Parent ./

pr int f ("counter over\n");

process 0 says count is 1

process 1 says count is 2

process 2 says count is 3

process I says count is 4

process 0 says count is 5

process 1 says courl is 6

process 0 sayr count is 7

process says court is 8

process says count is 9

counter over

:k1
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3.14 Matrix Multiply

So far only very simple (and somewhat useless) programs have been used to illustrate the I

function of the Parallel Programming Library. Example 22 demonstrates "Data Partition-

ing". The program is to multiply two six by six matrices. Each row of matrix A will be

multiplied by every column of matrix B to produce a new row in matrix C. It appears very

natural to partition the data by rows. Therefore, "row" is a routine that will multiply one

row of matrix A by every column in matrix B to produce a new row in matrix C.

The program declares each matrix A, B, and C to be shared. The main process then calls F

init-matrices to read in matrix A and B. It sets the number of processes to be created
to six by using the call to m-set-procs. It then calls m.fork to create the processes and

to have each execute the function "row". Six processes were created, one for each row in

Matrix C.

Upon executing "row", each process immediately gets its PID using m-get-myid. Re-

member that the PIDs range from 0 to 5. The row indices of matrix C also run from 0

to 5. This is more than a coincidence. Each process i will produce row i in matrix C by

multiplying row i in matrix A by every column in matrix B.

After each process is finished, the main process terminates all the child processes (executing

"row") and prints out the results. It would not have accomplished anything to have each

process print out its own results, since the output must be sequential.

vi.
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** ** ** 5* 5 * ***** *

/* Example 22

/* Matrix Multiply ./ I
/ . ... .. ... ..... * *5/ c.

#include <stdio.h> 'a

#include <paral lel/microtask.h>
#include <parallel/parallel h>
#define N 6

shared int c[N][N], a[N][N], b[N][N];

t/'. This procedure multiplies ro, i of matrix A by a/

-;/s each column of matrix B and stores the result */ /

/5 in row i of matrix C.

void

row (

mnt i.j~k;

i = m-get-myid (; /s Which row do I multiply s/

Ior(j= ; j<N; j++) +
c[i][j] = 0;
for(k=e; k<N; k++)

C[i][j] += o[i][k] * b[k][j];

/. This procedure reads in two N by N matrices s/

void

init motrices ()

int ij;

for (i=0; i<N; i++)

sconf ("%dddddddddddd", &O[i][0], &O[i][1], &O[i][2], I
&a[i][3], &a[ i][4], &a[ i][5], &b[ ][O], &b[ i ][I], &b[ , ][2],
&b[i][3], &b[i][4], &b[i][])

/* This program multiplies two N by N matrices, A and B to get ./
/. matrix C The program is executed in paral el by creating /-

/. N processes with m fork Each child process will mul t iply */

row i of matrix A by each column of matri), B to get row i of */ 5.

/* matrix C, where s the P10 of the process Ali three 4'

/a Matrices are in shared memory for each process to access-
/a Since each process is writing to a separate row in C. no

/* 'ynchronizat ion to access memory is necessary ./

mao n( ..

void ni t _matrices ( row
r)t I.j

r, tmat r ices ( /. read in mat r ices

m setprocs (N)
m _for (row). /. create , processes */

m I I I-procs ( )

/ p pr nt out each matr */

'-i



printf (" MATRIX A MATRIX B MATRIX C\n");

pr i n t f (- - ......... \n\n )

for (i=O; i<N; i++)

for (j=O; j<N; j++)

printf ("%3d". o[i][j]
printf ( .. . );
for (j=O; j<N; j++)

print f ("%3d " ~ ] j

printf (". ..)

printf("%3d c [

printf("\n");

J I

MATRIX A MATRIX B MATRIX C

2 2 2 2 2 2 3 3 3 3 3 3 66 66 66 66 66 66

3 3 3 3 3 3 4 4 4 4 4 4 99 99 99 99 99 99
4 4 4 4 4 4 5 5 5 5 5 5 132 132 132 132 132 132

5 5 5 5 5 5 6 6 6 6 6 6 165 165 165 165 165 165

6 6 6 6 6 6 7 7 7 7 7 7 198 198 198 198 198 198

7 7 7 7 7 7 8 8 8 8 8 8 231 231 231 231 231 231

ON



3.15 Shared Memory t-

Shared memory is a very effective and efficient mechanism for communication. Any variable p

which is shared between processes and changed by those processes is a type of communi- 4
cation. The difficulty of shared memory is mutual exclusion. This means that only one

process should update a shared data item at one time. Otherwise, the processes could v
produce incorrect results. Example 23 illustrates how shared memory can be used for a

more explicit type of communication. t _

This program creates three processes. The three processes are arranged logically in a circle.

In other words, process i can only talk to process i + 1 and i - 1 (the process on its left 4

and right). The process index will be its PID. Each process will have a mailbox. A process

can only write to its mailbox, but can read from any mailbox. The processes are to pass a ,

number from one process to another around the circle. After the number has been passed

in a complete circle, the parent will print the number out.

The main program begins by initializing each mailbox to 0 which designates an empty

mailbox. The mailboxes are declared as an array in shared memory, so that each process

can use indices to read the mailboxes. The main process then creates three processes to

execute "nodes". In "nodes", each process immediately gets its PID and computes its

neighbor's indices. The parent process (my-node = 0) reads in the value of the number to

pass. It then places the number in its mailbox for its left neighbor to read. The parent

process then spins while its right neighbor's mailbox is empty (0). Each child process does

the same. Once a process can read its neighbor's mailbox, it places the number in its own

mailbox for another process to read. When the parent receives the number, it prints the

value. Each process prints the PID of the process which will read the number next.

This program shows that not only can a shared variable be used to pass information, but

that it can be the foundation for synchronization (the busy-waits).
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/* Example 23 *
/* Mailboxes *

#include <std 10.h
#i nclIude <paral lel/microtask. h>

#inclIude <parallel/parallel .h>
#define NPROCS 3

shared int mbox[NPROCS];

/a Each process runs this routine. The node (process) will pass a
/a the Card by placing it in its mailbox. Each Node will read 0/
/. the card from the mailbox on its left. Node 0 which is
/a actually the parent process, starts by reading in the card to .
/. pass around the circle.
/a Synchronization is accomplished by each Node busy-waiting *
/a until its neighbor's mailbox is not empty. a

nodes (

int card;
int my~node, neighbor, next _node;W

my-node = m-get-myid U;/* get my process id a
neighbor =(my-.node + (NPROCS - 1)) % NPROCS; /* who is my neighbor a
next _node =(my-.node + 1) % NPROCS; /* who reads my mailbox a

if (my-node == 0)
p r in tf ("Enter the Card to Pass (1-10): )

sconf ("Ud", &card);
printf ("\nCord to pass is %d\n", card); ~
ft lIush ( stdout)

/* Place card in my mailbox for my neighbor to read a

printf ("Node %d passes %d to Node %d\n", my~node, card, next _node,;
ft lIush (s t dou t) ;

mbox[my node) = card; I

while (mbox~neighbor] == 0) ; /* Busy-Wait until card is in mailbox *

/* Read mailbox and print card Fd

printf ("\n\nCord Passed through All Nodes. Returned value is 7%d\n",
mbox[neighborl);

ff lush (stdout).

elIse . if I am not the parent process a

whi le (mbox[neighbor] =0) /* Busy-Wait until mailbox not empty .

p)rintf ("Node %d posses %d to Node %d\n", my~node, mbox[neighbor],

next node),
ft lush (stdout) .

mboxmy node] = mbox[neighbor].

/. This is the main process It starts the nodes or~d ilIs them after a
/'they have finished

V..~~~m I, n*~*~* *



i tn t i

for (i=O; i < NPROCS. i++) /* initialize boxes *

mbox [ i] 0;

m-set.procs (NPROCS); /* set number of players *
m-fork (nodes); /. start the game a
m -ki Ilprocs 0;/* game is over a

Enter the Card to Pass (1-10):
Card to pass i s 5
Node 0 passes 5 to Node I
Node 1 posses 5 to Node 2
Node 2 passes 5 to Node 0

Card Passed through All Nodes. Returned value is 5

tZt



4 Cobegin-Coend Implementation

Section 3 introduced both the fork and mifork routines and demonstrated how each is

used for process creation. The fork, exit, and wait routines, when used together, provide

for process creation, termination, and synchronization. The problem with these routines

is that they can become confusing to the programmer. Omission and commission errors

are also a threat. The mfork routine is a higher level process creation mechanism. It

names the specific routine to be placed in execution and provides for process termination.

However, mifork can only create a limited number of processes (the number of available

processors minus one) and each process will execute the same routine. This is satisfactory

since mifork was designed for data partitioning.

We require a mechanism which will allow a programmer to create as many processes as

the operating system allows. This mechanism should also allow the processes to execute

different sections of code to support both data partitioning and functional partitioning.

Each of these requirements are met by the construct "cobegin-coend". A cobegin-coend

construct is a block of code which is a structured method of creating processes. The

cobegin-coend structure was derived from Dijkstra's "Parbegin-Parend" construct. The

syntax and semantics of the cobegin-coend are as follows.

cobegin

statement 1 I

statement 2

statement 3

statement N

coend

Each statement within the cobegin-coend block is executed concurrently and may be any

valid C statement including function calls or block statements. The execution of code after

the cobegin-coend block will not proceed until every statement within the cobegin-coend

block has terminated. The cobegin-coend automatically provides for process creation

and termination while retaining much of the flexibility of the fork routine. This higher

level construct allows programmers to easily siructure concurrent programs. A reader of
a program containing this construct can clearly identify all tasks marked for concurrent

execution. Also, this construct is structured (one way in and one way out) and can easily

be nested. However, the cobegin-coend is not all powerful. Its major weakness is that it
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can not handle dynamic applications. For example, an application which does not know

how many separate processes it requires until run time.
I

4.1 Precompiler Logic

A precompiler was written to implement the cobegin-coend construct. The precompiler

was written in C and prepares a C program which contains cobegin-coend blocks for the C

compiler. The function of the precompiler is to find cobegin-coend blocks and to transform V

each block into a set of routines which provide for process creation, termination, and

synchronization. The fork, exit, and wait routines are used to provide this functionality.

Each of these routines is found in Unix, as well as DYNIX, which adds to the portability r

of the precompiler. The effect of the precompiler generated code is that each statement

within the cobegin-coend block will be forked by the parent process and executed by a

child process (process creation). After executing a statement. each child process will exit

(process termination). At the end of the cobegin-coend block, the parent will call the wait

routine for each child created (process synchronization). An example of the generated code

follows:

Before Precompilation After Precompilation

cobegin pid = fork ();
statement 1 if (pid != 0)
statement 2 pidarray[jj++] = pid;

coend if (pid == 0) {
statement 1

exitexit (0); } '
pid = fork (;
if (pid != 0)

pidarray[jj++] pid;
if (pid == 0) {

statement 2
exit (0); }

for (ii=0; ii<2; ii++) {
pid = wait (&status);
if (status) {

jj ---O ;
while (pid != pidarray[jj])

jj++; '
printf ("Error on Stint %d in cobegin block", jj);}
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The code generated after precompilation shows that a fork was performed for each state-

ment. If the PID (process id) is not zero (designating the parent), add the PID to an array
of PIDs. If the PID is zero (designating the child), execute the statement and then exit.

At the end of the cobegin-coend block, the parent performs a wait for each child. The
parent tests the status of the terminating child and will print an error message if the child

terminated with an error code. The error message contains the statement number of the

statement the child executed relative to the beginning of the cobegin-coend block. The

reason for printing this error message is to aid the programmer in debugging a program in z
a concurrent environment. The array pidarray and the integers ii, jj, and pid are inserted
for the programmer in order to keep the implementation of the cobegin-coend construct

transparent. Notice that the parent process creates a child for each statement and does

not execute one of the statements itself. This decision was for simplicity. The precompiler ,
would need to read the source code twice or would need to store full statements in memory

in order to allow the parent process to execute one of the statements. This is because the

precompiler reads one line at a time and has no look ahead capability. The precompiler

can not predict the length of a statement.

Appendix A contains the source code for the precompiler. The function of the precompiler

is simple. The most difficult aspect of the precompiler is the recognition and separation of

C statements. The statement within the cobegin-coend block can be any valid C statement

including blocks of code such as for, while, and do statements. A stack is used to separate
the statements within the cobegin-coend block. A user may invoke the precompiler by the

command cobegin filename. The precompiler will first check to see that the user has entered

the filename of a C source file. It then attempts to open the file and to create two more

files, a new source file, and a trace file. The new source file will contain the program code

after precompilation. The trace file will contain a trace of all stack operations performed

by the precompiler. The names of these two files are based on the name of the original

source file. If the original source file's name is xxxx.c, the new source file will be named
xxxxp.c, and the trace file will be named xxxxt.d. The trace file will only be retained if

an error occurs during precompilation.

The precompiler allows up to six source files to be entered by the user at a time. The

purpose of the "main" routine is to read the command line arguments and to create a
process for each entered file. The "main" routine calls the function "find-block" for each

file entered. "find-block" creates and opens all required files and begins a search for any

cobegin-coend block in the source file. The keywords "cobegin" and "coend" designate a
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cobegin-coend block and each must be in lower case and on a line by themselves. These '

requirements do not effect the programmer and ease the search for the cobegin-coend
blocks. "find-block" will call the function "forkstmts" for each cobegin-coend block found.

"find-block" will also insert the declarations for the variables ii, jj, pid, and pidarray. These

variables are placed outside the source's "main" routine. This was done because the "main"

routine is easy to find and every C program must have this routine. The precompiler

supports separate compilation since only routines which contain cobegin-coend blocks need

to be precompiled. However, the "main" routine must always be precompiled. "find-block"

will close all files after the source program has been precompiled.

The function "forkstmts" is the heart of the precompiler. Its function is to separate the

statements of the cobegin-coend block and to call the appropriate functions for inserting

any required code. The functions "prforks", "prwaits", and "printexit" are used to insert

the required calls to fork, wait, and exit respectively. At the beginning of each statement,

"forkstmts" calls the function "prforks". The function "printexit" is called when the end of

a statement is found. The function "prwaits" is called when the end of the cobegin-coend

block is found. "forkstmts" first initializes the stack by placing a semicolon on its top.

It is initially assumed that the end of each statement will be a semicolon. The logic of

separating the C statements is as follows:

1. Whenever a symbol is found which matches the top of the stack, pop the stack. The only

symbols which are screened by "forkstmts" are quotes, semicolons, left parenthesis, right

parenthesis, {, and }.

2. Between each statement, "forkstmts" will search for the keyword "coend". This marks the
end of the cobegin-coend block and "forkstmts" will return. If the keyword "cobegin" is

found an error is printed and "forkstmts" will return with an error. A new cobegin-coend

block as a statement within a cobegin-coend block has no meaning.

3. Newline characters are always recognized. The precompiler reads the old source file one

line at a time. The current line is printed to the new source file and a new line is read

from the old source file on each newline character.

4. If the quote symbol is found within a statement, ignore every syml ol except newline

characters until another quote symbol is found. t

5. If a semicolon symbol is found and the top of the stack is a semicolon, then pop the stack. %4
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If the stack is empty, the end of the statement has been found.

6. If a left parenthesis symbol is found and the top of the stack is either a right parenthesis

or a semicolon, push a right parenthesis symbol on the stack.

If a right parenthesis symbol is found and the top of the stack is a right parenthesis, pop

the stack.

8. If a do while loop is found at the beginning of a statement, turn on the flag "dostmt". The

reason for this flag will become apparent shortly.

9. If a { symbol is found and the top of the stack is a semicolon and dostmt is FALSE, pop

the stack and push a } symbol on the stack. In the case of dostmt being TRUE, do not pop

the stack and just push on the symbol }. The reason for this is that a do while statement

ends in a semicolon symbol, but contains a { } block. If a { is found and the top of the

stack is a }, push a } symbol on the stack.

10. If a } symbol is found and the top of the stack is a }, pop the stack and check for empty

stack. If the stack is empty, the end of the statement has been found.
I

11. If the keyword "cobegin" is found within a statement, then push the symbol &7 on the stack

and call "forkstmts" recursively. The & symbol is called a stack separator and is used to

designate the empty stack. The stack separator is used to separate different segments of the

stack which reflect different cobegin-coend blocks. This allows programmers to correctly

nest cobegin-coend blocks.

An important aspect of the precompiler is that it expects to receive a syntactically correct

C program. If the syntax of the C source file is incorrect, the results of the precompiler can

not be predicted. Any programmer using the precompiler, should first comment out the

keywords "cobegin" and "coend" and try to compile the source code. This will inform the

programmer if his source code is syntactically correct. The precompiler also attempts to

produce structured code. When the precompiler finds a cobegin-coend block, it remembers

the column number where the keyword "cobegin" was found. All inserted code is then

blocked relative to this column number. Thus, if the precompiler receives a structured

program, it will produce a structured program. Also remember that the variable names ii,

jj, pid, and pidarray are reserved when using the precompiler. If these names are used in

the program, problems could occur. Ir;

74!



-- - ~ % %,~ ~ ** ~ %+,,

I

a'

4.2 Examples of Cobegin-Coend

This section presents a number of examples which will aid the reader in understanding I

the functionality of the cobegin-coend construct. Each example is very simple. The first

four examples illustrate the implementation of the precompiler. Each of these examples

presents the new source code after precompilation. These examples are also void of any

synchronization between child processes. Again these examples are meant to show the

functionality of the cobegin-coend not synchronization primitives. The last examples r

present some of the classic problems of concurrent environments written in C using the
cobegin-coend construct. C

4.2.1 Function Calls

Example 24a is composed of two routines which share an array of counters. The main

routine wishes to increment each counter by ten, concurrently. The main routine first

initializes each counter and then calls the function "add" for each counter. The function

"add" accepts an index into the array of shared counters and the value to add to a counter.

The main routine calls "add" within a cobegin-coend block. This ensures that every call

to "add" is made concurrently. Example 24b shows the changes made to the source code I
by the precompiler. The syntax and semantics of the code are as described in section 4.1.

Notice that the array "pidarray" and the integers ii, jj, and pid are placed before the main

routine. The array size is set to 25 because that is the maximum number of processes any

one user can create on the current system at one time. This value can easily be changed N

in the precompiler function "find-block". Also notice that the appearance of the inserted V
code is in a structured format. In this example, it would have been just as easy to perform

the two statements of the "add" function in a block of code within the cobegin-coend

block. However, these examples are not presenting realistic situations, but are only meant

to show functionality.
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/ . .. . ......... /

/* Example 24o 4// ................. SS S /

#include <stdio.h>

/* This program increments an array of counters. The function */

/* "add" receives an index into the array of counters and the ./
/* amount to add to that counter. The main routine
/* initializes each counter to zerc and then adds 10 to each ./
/* counter concurrently using a cobegin - coend block.

shared int count[5]; /* array of counters S/

add (i, n)
int i, n;

count[i] = count[i] + n;

printf ("Counter %d is now %d\n", i, count[il]);

main ()

int i

for (i = 0; i < 5; i++)
count[i] = 0;

setbuf (stdout, NULL); /* no output buffer */

/* add 10 to each counter concurrently */

cobeg in
add (0. 10);
add (1 . 10);
odd (2, 10);
add (3, 10);
add (4, 10);

coend

printf ("Everyone is done\n");
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/. Example 24b ,/

#include <stdio.h>

/* This program increments an array of counters. The function s/

/* "add" receives an index into the array of counters and the ./
/* amount to add to that counter. The main routine

/. initializes each counter to zero and then odds 10 to each s/

/* counter concurrently using a cobegin - coend block.

shored nt count[5]; /* array of counters */

add (i , n)

int i n;

Sount[i] = count[i] + n;

printf ("Counter %d is now %d\n", i, count[i]);
I

int pidarroy[25];

int status, pid. ii;

static int j =

main ()

i n t i;

for (i = 0; i < 5; i++)

countri] = 0;

setbuf (stdout, NULL); /* no output buffer s/

/. add 10 to each counter concurrently ,,/

pid = fork );
if (pid != 0)

pidarray[jj++] = pid;

if (pid == 0)

add (0, 10);

exit (0);
pid = fork (; ;

if (pid 0)
p dar ray[ j j++] = pid

if (pd == 0)
add (1 10).
exit (0);

pid = fork ,

if (pid != 0)
p dar ray j++] pi d

Wif (pid == 0)

add (2. 10);
ext (0),

pid = fork P

,f (p d 0

p dar ray j ++] p

if (pd == 0 )
add (3. 0
ext (0/.
,d = fork H.

'f p d I 0,

pd rry[ r 4] po 4
If (p d = = O

odd (4, 10),

f or (,4 . 4 < 44)
pd =wo, I (&st us),
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if (status) 
ij =0 O-

'hi Ie (pid pidorroy[j)

j j++;
printf ("Error on Stmt %d in cobegin block\n",jj);

printf ("Everyone is done\n");
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4.2.2 Blocks of Code

Example 25a shows the exact same program shown in example 24a. However, counter 2 will

be incremented three times and counter 3 will incremented twice. Again the function "add" '

accepts the index of the counter and the value to add to the counter. Notice that the block

symbols { and } are placed around all the calls to "add" for counter 2 and counter 3. These

two blocks of code will be executed concurrently with every other statement in the cobegin-

coend block. However, each call within these two blocks are executed sequentially. In this

example, no synchronization mechanisms are needed for mutual exclusion since multiple

adds on a specific counter are executed sequentially. The blocking of code is important to

the cobegin-coend construct becausc it allows the declaration of local variables and allows

the programmer the ability to perform some sequential execution within the cobegin-coend

block. Of course calling a function within the cobegin-coend block has the same result,

but with the overhead of a function call. Example 25b shows the precompiler output

for example 2 5a. Notice that for each block statement, the precompiler still generated

enclosing brackets for the child process. Both pairs of { } are not needed. Both pairs of

brackets were retained for simplicity to the precompiler.
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/* Example 25o ,/
/ ................. * * /

#include <stdio.h>

/* This program increments an array of counters. The function ./
/* "add" receives an index into the array of counters and the */
/* amount to add to that counter. The main routine *1
/* initial izes each counter to zero and then adds 10 to
/* counters 0. 1, and 4. The main routine adds 30 to counter */
/* 2 in increments of 10 and odds 20 to counter 3 in
/* increments of 10. Counters 2 and 3 are incremented /"
/* sequentially by using the symbols I and j to block the
/. code.

shared int count[5]; /* array of counters */

odd (i , n)
int i, n;

count[i] = count[i] + n;

printf ("Counter %d is now %d\n", i. count[i]); p

main (

int i

for (i = 0; i < 5; i++)

count[i] = 0;
setbuf (stdout , NULL); /* no output buffer */

/* Increment each buffer concurrently */

cobeg in
add (0, 10);
odd (1, 10);

odd (2, 10);
add (2, 10);
add (2, 10); 1
add (3, 10);
add (3, 10);

add (4, 10);
c oend

pr int f ("Everyone is done\n");

VV
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/, Example 25b ,/ *

#include <stdio.h>

/* This program increments an array of counters. The function ./
/* "add" receives an index into the array of counters and the *1
/* amount to add to that counter. The main routine
/. initializes each counter to zero and then adds 10 to */
/- counters 0. 1. and 4. The main routine odds 30 to counter *1
/* 2 in increments of 10 and adds 20 to counter 3 in s/

/ * increments of 10. Counters 2 and 3 are incremented

/* sequentially by using the symbols I and I to block the
/* code.

shared int count[5]; /* array of counters ./

odd (i, n)
int i, n

count[i] = count[i] + n;

printf ("Counter %d is now %d\n". i. countfi]);

int pidarray[25);
int status, pid. ii;
static int j =
main () "

i nt i;

for (i = 0; i < 5; i++)

count[i] = 0;

setbuf (stdout, NULL); /* no output buffer */

/* Increment each buffer concurrently .1

pid = fork 0 ;
if (pid != 0)

pidarray[jj++] = pid;
if (pid == 0)

add (0. 10);
exit (0);

pid = fork 0;
if (pid != 0)

pidarrayCj j++] = pid;

if (pid == 0) .

add (1 10);

exst (0).
pid = for' ( ;
if (pid 1= 0)

pi darray[ jj++ = pid.

if (p d =0

odd (2 10>

odd (2 10).

add (2 1 0)
e It (0),

p id = fork k
if ( i d 1= 0)

p ar roy[j++] = pid

if (pId == 0 )
odd (3, 10);

add (3. 10)1.
t (0).



pid fork ()
if (pid != 0)

pidarray[jj++] pid;
if (pid == 0) 1

odd (4. 10);

exit (0); I
for (ii = 0; ii <5; i i++)

pid = wait (&status);

if (status)
jj = 0;
while (pid pidarray[jj])

jj++;

printf ("Error on Stmt %d in cobegin block\n",jj);

3 (

printf ("Everyone is done\n');

-tI
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4.2.3 Block Statements

Example 26a is a mild change to example 24a. In this example, each counter is incremented

ten times by calling "add" ten times. Each time the function "add" increments the counter

by ten. In the cobegin-coend block a for loop is placed around each call to "add". ThisA

does not mean that 50 processes are created, but that five processes are created, each of

which executes one of the for loops. Again, this example certainly is not the most effective

method for incrementing these loops. It would be best to bypass the ten function calls for

each process. Example 26b contains the precompiler output for example 26a. Notice that

each entire for loop is contained in a block of code to be executed by a child process. The

for loops could have been different sizes.

4'
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/* Example 26a */

#inclide <stdio.h>

/* This program increments an array of counters. The function ./
/* "add" receives on index into the array of counters and the */
/* amount to odd to that counter. The main routine
/° initial izes each counter to zero and then adds 100 to each */
/* counter concurrently using a cobegin - coend block.
/* Each counter is incremented to 100 by l s. 4/

shared int count[5); /* array of counters */

add (i n)
int i, n;

count(ij = count[i] + n;
printf ("Counter %d is now %d\n", i count[i]);

main )

int i;

for (i = 0; i < 5; i++)
count[i] = 0;

setbuf (stdout, NULL); /* no output buffer */

/* add 100 to each counter concurrently */

1 cobeg in

for (i = 0, i < 10; i++)
odd (0 10);

for (i = , i < 10; i++)
odd (1 10);

for (i = 0, i < 10; i++)
add (2, 10);

for (, = 0. i < 10; i++)
add (3, 10);

for (, 0 < 10; i++)
odd (4. 10),

coend

pr ,nt f ("Everyone is done\n");

It
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/* Example 26b ./

#include <stdio h>

/. This program increments an array of counters. The function */
/* "add" receives on index into the array of counters and the */
/, amount to add to that counter. The main routine

/, initial izes each counter to zero and then adds 100 to each */
/, counter concurrently using a cobegin - coend block.

/* Each counter is incremented to 100 by 10s.

shared int count[5]; /* array of counters */

odd (i, n)

int i n tI

c unt[i] = count[i] i- n;

printf ("Counter %d is now %d\n", i, count[i]);

int pidarroy[25];
int status. pid. ii;

static t j =i
mai n t)

mt

for (i = 0; i < 5; i++)

count[i] = 0;

setbuf (stdout, NULL); /* no output buffer */

/ add 100 to each counter concurrently */

pid = fork () ;

if (pid != 0)
pidarray[jj++] pid;

if (pid == 0) 1

for , = e, i < 10; i++)
ado (0, 10).

exit (0);

pid = fork "

if (pid 0) ..

pidarray[jj++] pid;

if (pid == 0)
for ( i = 0 i < 10, i++),

add (1 10);
exit (0),

pid = fork (;

i f (pId I= 0)

pidarray[jj++] = pid;

if (pod = 0))
for ( = 0 i < 10 i++)

odd (2. 10),

exit (0);

vd = fork ,

'f (d I=e.

p d r ray[ j ++ pI d .
,4 (pd == 0,

for . 1, < 10 4+)

add (3 . 101.
ext (0),

pd = fork h,
I pod I= 0d

p~darraylj)++] pod,



4.2.4 Nesting Cobegin Blocks

Example 2 7a illustrates the programmer's capability to nest cobegin-coend blocks. In this

example, each of the five counters are to be incremented by different values. Counters 0,

1, and 2 are to incremented until their combined values exceeds 110. Counters 3 and 4

are to be incremented until their combined values exceed 75. Notice that two independent

while loops are used to test and increment the two sets of counters. These two loops

are independent and can execute concurrently. Thus, they are placed within a cobegin-

coend block. Also notice that each call to "add" is independent and can be executed -

concurrently with every other add operation. Thus, each call to "add" within each while

loop is also placed within a cobegin-coend block. Each cobegin-coend block within a while

loop provides the synchronization needed by the loop to check the totals of each counter

set. Example 27b contains the source code produced by the precompiler for example 27a.

The first child process executes the while loop containing counters 0, 1, and 2. Also, three

child processes are created within the while loop, one for each counter. Notice that a

structured appearance is maintained.
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if (pid == 0)
for (i = 0; i < 10 i++)

add (4, 10);

e xit (0); I
for ( i i = 0; i i < 5; i+i +) 

pid = wait (&status);
if (status)

jj = 0;
while (pid ! pida rray[jj ])

j j++;

printf ("Error on Stmt %d in cobegin block\n",jj); -F

printf ("Everyone is done\n");

,,.

'€,

NI

I

%,

p

up

('

; ' e- ; ,'," P' " - . '"'-" ' " *'" " i""' ' " """"'"'" "- "'? "-'"';"" " " "'""'""'"""""" "" """"'"""".'-



hi. - .....~ .~M. /......... .... .. / a.s .. - -- .. ..

/, Example 27o 4// ................

#include <stdio.h>

/* This program increments an array of counters. The function */
/* "add" receives an index into the array of counters and the */
/* amount to add to the counter. The main routine increments */
/* counters 0. 1, and 2 until their values add up to more than ,/
/. 110. It increments counters 3 and 4 until their values add ./
/* up to more than 75. Each addition of a counter -s done
/* concurrently. This program illustrates nest ing of cobegin '/
/* blocks. /

shared int count[5]; /* array of counters ./

add (i, n)
int i, n;

count[i] = count(i] + n;

printf ("Counter %d is now %d\n", i, count[i]);

main )

i n t

for (i = 0; i < 5; i++)

count[i] = 0;

setbuf (stdout, NULL); /* no output buffer ./

/* Increment counters concurrently ,/

cobeg in '.

while (count[O] + count[l] + count[2] < 110)
cobeg in

add (0, 7);

odd (1. 10);
add (2, 15);

coend

wh ile (count[3] + count[4] < 75)
cobegi n

add (3, 10)
add (4, 10);

coend

coend

print f ("Counters 0.1. and 2 added equal %d\n" . count[O]+count[1]+count[2]))

printf ("Counter 3 and 4 added equal %d\n", count[3]+count[4]);

I.
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/. Example 27b *// .. **..... ..... /

#include <stdio.h>

/. This program increments on array of counters. The function /
/* "add" receives an index into the array of counters and the */
/* amount to add to the counter. The main routine increments */
/. counters 0. 1. and 2 until their values add up to more than */
/. 110. It increments counters 3 and 4 until their values add
/* up to more than 75. Each addition of a counter is done
/* concurrently. This program illustrates nest ing of cobegin /
/* blocks. /

shared nt count[5]; /* array of counters ./

add (i, n)
int , n;

count[i] = count[i] + n;
printf ("Counter %d is now %d\n", i, count[i]);

int pidarray[25];
int status, pid, ii;
stitic t j = 1
mon )

int ;

for (i = 0; i < 5; i++)

count[i] = 0;
setbuf (stdout, NULL); /* no output buffer */

/. Increment counters concurrently */

pid = fork ();

if (pid != 0)
pidarray[j j++] = pid;

if (pid == 0)
while (count[ ] + count[1] + count[2] < 110)

pid = fork (;

if (pid != 0)
pidarray[jj++] = pid;

if (pid == 0) t

add (0. 7);
exit (0);

pid = fork 

if (pid != 0)
pidarray j j++] = pid

if (pid == 8) I

add (1, 18);
exit (0);

pid = fork (;

if (pid = 0)

pidorray jj++] = pi d;
if (pi d == 0)

add (2. 15),
exit (0);

for (Ii 0; ii < 3 im++) '

pid wait (&stotus),
if (status) %

], jj = o,

while (pid J= pidarray[lj])
j ++,



printf ("Error on Stmt %d in cobegin block\n".jj);

exi ( ); 

pid = fork ();
i f ( p id != 0)

~pidorrayfj j++] =pid;

if (pid == 0) I
while (count[3] + count[4] < 75)

pid = fork (
if (pid = 0)

pidarray[j j++] = p id;
if (pid == )

odd (3, 10);

exit (0);
pid = fork ()

if (pid ! )= )

pidarroy[jj++] = pid;
if (pid == 0) I

odd (4, 10);
exit (0); I

for (ii = 0; ii < 2; ii++)
pid = wait (&status);
if (status)

jj =0e;

while (pid = pidorray[jj])
j j++

printf ("Error on Stmt %d in cobegin block\n",jj);

exit (0);

for (ii 0; ii < 2; ii++)
pid = wait (&status);

if (status)

while (pid != pidarray[jj])
j j++ ;

printf ("Error on Stmt %d in cobegin block\n",jj);

i (

printf ("Counters 0,1, and 2 added equal d\n", count[]+count[1+count[2]);
pr int f ("Counter 3 and 4 added equal %d\n", count [3]+count [41);

*'1
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4.2.5 Dining Philosophers

Example 28 is a solution to the Dining Philosophers problem. In this problem, there are

five philosophers. Each philosopher spends his day in two activities, eating and thinking.

After spending a certain amount of time thinking, a philosopher will become hungry and

want to eat. In this solution, a philosopher must enter the dining room to eat. Only four

philosophers are allowed in the dining room at a time. This restriction ensures the absence

of deadlock. The dining room contains a large round table with five place settings, one for

each philosopher. In the center of the table is a large bowl of spaghetti. There are a total

of five forks on the table, one between each place setting. After a philosopher has entered

the dining room, he must first pick up the fork on his left and then pick up the fork on his

right in order to eat the spaghetti.

This example combines the silock routines provided by DYNIX and the cobegin-coend

construct provided by the precompiler. There are six locks. An array of five locks is
.declared to represent each of the five forks. Thus, when a philosopher attempts to pick up

a fork which is being used (locked), he must wait. If a philosopher picks up his left fork and

the right fork is being used, he will not put down the left fork. The lock "room" is used to

monitor the amount of philosophers in the dining room. The variable "occupy" holds the

number of philosophers in the dining room. To enter the dining room, a philosopher will

first obtain the lock "room" and then check the variable "occupy". If "occupy" is less than

four, the philosopher increments "occupy", releases the lock, and enters the dining room.
If "occupy" is equal to four, he releases the lock and tries again. The main routine creates

five philosophers using a cobegin-coend block. Each philosopher receives his philosopher

number, the index into "forks" for his left fork, and the index to his right fork. Notice

how easy it was to place each philosopher into execution on a separate process by using
the cobegin-coend construct. Also, notice how clearly the cobegin-coend block defines the

concurrent tasks.

I??
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/ . . e......**... .. /

/, Example 28 v/
/ . ..... ... ... /

#include <porallel/m;crotask.h>

#include <porall el/parollel. h>

#inc lude <stdio. h>

#define TRUE 1

#define FALSE 0

/, This program is a solution to the Dining Philosophers problem. ,/
/* In this problem, there are five philosophers. Each philosopher */

/* does two things, he eats and thinks. In order to eat, a *%
/* philosopher must enter the dining room, pick up his right fork */
/* and pick up his left fork. The problem is that there are only */
/* five forks, one between each of five place settings. In this */
/, solution, the dining room acts as a lock and allows only four X

/* philosophei to enter. Each fork is also a lock. If a

/v philosopher attempts to pick up a fork and finds that it is

/, already in use, the philosopher will wait for the fork to be */
/. placed back on the table. After a philosopher has eaten, he

/* will put down both forks and leave the dining room to continue ./
/* thinking. The forks ore declared as on array of locks. The
/v philosophers receive indlces into the array which desigrate */

/, both their left and right forks. *

shored slock-t forks[5], room;

shored int occupy;

think (phi Inum)
int phi Inum;

printf ("Philosopher 7d is Thinking\n", philnum);

I

eat (phi Inum)
int phi Inum; ..

printf ("Philosopher %d is Eating\n", philnum);

pickupfork (forknum)

int forknum;

slock (&forks[forknum]);

putdownfork (forknum)

int forknum;
%

sunlock (&forks[forknum]);

enterroom (philnum)
nt phi Inum;

nt in
in = FALSE.

4.

whtle (! in) 1 1

s_lock (&room)
,f (occupy < 4) , Is there room for me to enter o/

occupy++;
in = TRUE;

printf ("Philosopher 7d has Entered Dining Room\n", philnum),

sunlock (&room);



Ip

Ip

exitroom (philnum)
int phi num;

stlock (&room);

occupy--;

printf ("Philosopher %d has left the Dining Room\n", philnum);

sunlock (&room);

phil (phi Inum. left, right) 

int phi lnum, left, right;

int days;

for (days = 0; days < 5; days++)

think (phi Inum); 

enterroom (phi Inum);

pickupfork (left);

pickupfork (right);

eat (phi Inum);
putdownfork (left);

putdownfork (right);

exit room (phil num);

main ()

int i

for (i = 0; i < 5; i++) /* creat locks */
s_init_lock (&forks iJ);

s_ init _ lock (&room);

/. Begin each Philosopher */

cobeg in

phil (0. 4, 0);
phi I (1. 0. 1)

phil (2, 1, 2);

phil (3. 2. 3);

phil (4, 3. 4);

coend

"'p



4.2.6 Bounded Buffer
%

Example 29 shows a solution to the Bounded Buffer problem. In this problem, there are

two producers and two consumers. Each producer wishes to write to an array of buffers

and each consumer wishes to read from the array of buffers. The problem is that the

array of buffers is limited in size. So, if the producers write faster than the consumers

read, they will overwrite their data. If the consumers read faster than the producers

write, they will read either old data or nonexistent data. This is a basic synchronization

problem. In this example, the array can hold up to 10 buffers. Each producer will write

10 messages to the array of buffers for a total of 20 messages. Each consumer will read 10

messages. Each buffer will hold two items, the producer number and a message number.

The lock "prods lk" is used to ensure that each producer does not attempt to write to the

same buffer. The lock "consik" is used to ensure that each consumer does not attempt
to read from the same buffer. These two locks ensure mutual exclusion. Another type

of synchronization problem is conditional synchronization. In this example. the variable

empty" holds the number of empty buffers. Each time a buffer is read by a consumer,

empty is incremented. The variable "full" is used to hold the number of full buffers. Each

time a producer writes to a buffer, full is incremented. A producer can only write to the

array of buffers if empty is greater than zero and a consumer can only read from the array of

buffers if full is greater than zero. This is referred to as conditional synchronization. The

two locks "fulllk" and "empty lk" are used to ensure mutual exclusion when updating

"full" and "empty", respectively. Once again each producer and consumer was created

and placed in execution using a cobegin-coend block. This example demonstrates the

cobegin-coend construct's capability to create processes which execute different routines.

N
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/* Example 29 ./
*4*444*4,** * * , ./

finclude <stdio.h>

#include <paral lel/microtask.h>

#include <parallel/parallel.h>

#define N 10

#define TRUE 1

#define FALSE 0

/* This program illustrates the Bounded Buffer problem. In this

/* program, there ore two producers and two consumers. The producers */

/* write their ID and a message number to a shared array buffer. The ./
consumers read the buffer and print a message. The message tells */

/* the message number and the producer who wrote it. The shored ,/

/* buffer can hold 10 messages. Each producer will write 10 messages */ -"

/* for a total of 20 messages. There ore four locks to ensure mutual ,/

/* exclusion when reading and writing a message and to ensure that 4/

/* buffer does not overflow or underflow. 4/

conslk - only one consumer may read at a time 4/

/* prodlk - only one producer may write at at time 4/

/4 empty-lk - mutual exclusion on the variable empty

ful Il k - mutual exclusion on the variable ful l/

/* The variable empty tells how many buffers ore empty and is 4/ I
/* initialized to 10. The variable full tells how many messages are 4/

/, in the array of buffers. Only one producer may write to a buffer ,/

/* at a time and only if empty is greater than zero. Only one 4/

/* consumer may read from a buffer at a time and only if full is ,/

/, greater thor zero */

shared slock-t prod-1k, cons_ 1k, full_1k, empty-lk;

struct entry
int prnum;

int msgnum,

shored int ir oul t empty, fu I ;

shored struct entry buffer[N]; /* array of buffers ./
I

producer (num)

int num;

int i, cont.

for ( i = 0, i < N; ++) % .

cant = FALSE; r

while (! cant) /* wait until there is on empty buffer */

s Iock (&empty_lk);

if (empty > 0)

cant = TRUE;

empty--;

s un oc (&empty_ Ik);

s c- (&)ro/lk Enler Critiua. Region 4

bmffer[in] msgnum i + 1. ,

buffer[ in] prnum = num.
in = (in f 1) N,

sunlock (&prod k) /s Exit Critical Region s/

s_lock (&ful I lk).

f : +4; /s Increment # of fuI buffers s/

s_unlock (&ful Ilk).

sleep (1);

N % . I A
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consumer (num)
int num;

int i, cant;

for (i = 0; i < N; i++)

cant = FALSE;

while (! cant) wait for a full buffer */
s-lock (&ful Il k);
if (full > e)

cant = TRUE;

full--;
I
sunlock (&ful _lk);

slock (&cons-lk); /* Enter Critical Region ,/
printf ("Message Number: %d\n". buffer[out].msgnum);
printf ("From Producer Number: %d\n", buffer[out].prnum);
printf ("By Consummer Number: %d\n", num);
f flush (stdout),
out = (out + 1) % N;
s_unlock (&cons-lk); /* Exit Critical Region ,1

slock (&emptylk);
empty++; /* Increment # of empty buffers */

s_unlock (&empty-lk);
sleep (1);

) main ()

in = p; / poi nter to buffers */
out =6;

empty = N; /* All buffers are empty *1 '
full = 0;

/* Start producers and consummers */
cobeg in

producer (0)
producer (1);

consumer (0);
consumer (1);

coend
%



4.2.7 Readers/Writers

Example 30 shows a solution to the Readers/Writers problem. This problem is similar to

the Bounded Buffer problem. There are a number of readers and writers. Each reader

wishes to read a data structure and each writer wishes to write to the data structure. In

this problem, any number of readers may read the data structure at a time. A reader does

not change the data structure. However, no reader may access the data structure while a

writer is writing and only one writer may write at a time. This is a problem of mutual

exclusion. In this example, the shared data structure is the integer "value". A reader

will read and print "value". A writer simply increments "value" by one. The variable
"read-count" holds the number of readers currently reading "value". The variable "wrt"

is a flag. "wrt" is TRUE if a writer is writing and FALSE otherwise. The lock "writerilk"

ensures mutual exclusion on both variables. Each reader begins by obtaining the lock and

checking "wrt" to see if a writer is writing. If "wrt" is FALSE, the reader increments
"readcount" and reads "value". A reader only prints "value" if it has changed since last

read. After reading "value", a reader will decrement "read-count". A writer must check

wrt" to see if any other writer is writing and "read-count" to see if there are any readers

reading. If "wrt" is FALSE and "read-count" is zero, a writer may proceed. The writer

will then set "wrt" to TRUE. After the writer is finished, he will set "wrt" to FALSE.

Again, a cobegin-coend block was used to create each reader and writer process.

97
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/. Example 30 0/

#include <stdio.h>
#include <parallel/microtask.h>

#include <parallel/parallel.h>

#define TRUE 1

#define FALSE 0

/9 This program demonstra:es a solution to the Readers/Writers problem. /

/. In this problem, there are three readers and two writers. The 9/

/* readers will read the variable "value" and if it has changed since they ./
/. last read it. they will print its value. The writers constantly try

/* to update the variable "value". This solution will allow as many
/. readers to access "value" as wish. However, no readers may access the */
/o "value" when a writer is updating it, and only one writer may update ./
/o "value" at a time. The variable "readcount" tells how many readers ./
/* are reading the variable. The variable "wrt" is TRUE if a writer is ./
/* writing. A reader will proceed only if "wrt" is FALSE. A writer will 0/

/* proceed only if "wrt" is FALSE and "readcount" is zero. The lock
/* "writerlk is used to ensure mutual exclusion on both "read-count" and ./
/* "wrt". 9/

shored slock t writer _ k;

shored int value, read_count, wrt;

reader (num)

int num;

int oldvalue, in;

oldvalue = 0;

in = FALSE;

for ( ; ; ) I /* forever do ./
in = FALSE;

while (! in) /* while I can not enter my crtical section, spin ./
s-lock (&writer_1k);

if (! wrt) /* Are any writers writing? 9/

in = TRUE;

read-count++;

s-unlock (&writer- k);

if (value 1= oldvalue) / If value has changed, print it /

oldvalue = value;
* printf ("Reader %d saw value change to %d\n", num, oldvalue);

s _lock (&writerlIk);

readcount--; /* Exit Critical Section ./
sunlock (&writer-lk);

writer 

int in.,

fo, ; ) I
in = FALSE,

while (! in) /, while I can not enter Critical Section, Spin ./
s-lock (&writer l1k);

if ((! wrt) && (read-count == e)) /. Can I write? ./
in = TRUE,

wrt TRUE,

%x



s..unlock (&wr iter-ik) 
I

v alIu e++ /9. Update value .

wrtriFALSE) /* Exiting Critical Section *
S~unlock (&wr iter..Ak);

main C

valIue =0
read-counlt =

wrt = FALSE;

s _init _lock (&writer..lk);

/*Start Readers and Writers *
cobeg i nD

reader (e).;
reader (1I) ;
reader (2);

wr it er ~
coend

%
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4.2.8 Matrix Multiply

Example 31 shows a Matrix Multiply program. This program multiplies two 6 by 6 ma-

trices. A and B, to produce matrix C. This means the each row of matrix A is multiplied

by each column of matrix B. This is an example of data partitioning. This solution di-

vides the data by rows of matrix A. Each process will multiply one row of matrix A by

every column of matrix B to produce a new row in matrix C. This requires six processes

since matrix A has six rows. Each process executes the routine "row" which accomplishes

the multiplication. All six processes are again created by a cobegin-coend block. This

program is very simple and is used to show the cobegin-coend construct's capability to

handle data partitioning. However, notice that the program needed to know the number

of rows in matrix A before execution. This shows the cobegin-coend's weakness in a dy-

namic environment. This weakness could be overcome in this problem by using rnext.

m-next could keep track of the number of rows which have been multiplied. A process

could decide to multiply another row of matrix A by checking the value of mnext.

.
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/. Example 31 4/

#include <stdio.h>

#define N 6

shared int c[N][N], a[N][N], btN][N];

/* This procedure multiplies row i of matrix A by s/
/* each column of matrix B and stores the result in ./
/4 in row i of matrix C.
void i

row (i)
i nt i;

it j ,k;

for(j=0; j<N; j++)

c[iI[j] = 0;
for(k=0; k<N; k++)

c[ i][j] += a[i][k] b[k][j];

Ia

/* This procedure reads in two 6 by 6 matrices ./
void

in it matrices ()

int i.j;

printf ("ENTER MATRIX A and B by ROWS\n\n");

for (i=0; i<N; i++)

printf ("ENTER ROW %d i +1);

scanf ("%ddd~dddd%d%dd%d%d", &a[i][0]. o[i][11, &..[i][2].
&o[ i][3], &o[i][4], &a[i][5], &b[i][0], &b[ i][1], &b[ i][2],

&b[i]3], &b[i][4], &b[i][5])

print f ("\n")

f flush (stdout);

/* This program multiplies two N by N matrices. A and B to get 4/

/. matrix C. The program is executed in parallel by creating ./
/* N processes with a cobegin. Each child proces, will mulitply */

row i of matrix A by each column of matrix B to get row i of ./
/* matrix C, where i is passed to the process All three ,.

/* Matrices ore in shored memory for each process to access */
/. Since each prccess is writing to a separate row in C, no 4/

/4 synchronizat on to access memory is neccessary. 4/

mai n(

void ni t-motrices row ( ;
int i . ,

initmatrices , / rea in matrices ./

cobegin
row (0)
row (1)

row (2)

row (3)
rcw (4)
row (5)

coenoti
, print out each matri x I

N N'



printf " MATRIX A MATRIX B MATRIX C\n );

p r in t f (- -\ n-n "-; - -

for (i=0: i<N; i++)
for (j= ; j<N; j++)

printf ( "%3d a[ ][J]);

pr irtf ( . .);

for (j=O; j<N; j++)

print f (".3d , b[ i ] 

printf (" . ..);

for (j=e; j<N; j++)

printf("%3d " ch]Ej]); I
print f ("\n");

'SN
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5 Synchronization

Synchronization mechanisms allow one process to affect the execution of another process.

There are two types of process synchronization. First, a process can delay until a specific

condition is true. This is referred to as "conditional synchronization". Second, a synchro-

10

nization mechanism can be used to ensure mutual exclusion. Section 3.10 demonstrates the

s-lock routine which can be used to ensure mutual exclusion by encapsulating a section of

code by the commands s-lock and s-unlock. The Bounded Buffer problem in section 4.2.6
demonstrated conditional synchronization. In the Bounded Buffer problem a producer can

only proceed if the amount of empty buffers is greater than zero. Only a consumer can
release an empty buffer and so the consumers effect the execution of producers through a

specific condition. Synchrocesstsyncroniticesses is based on interprocess communication.

For process A to affect process B, process A must communicate some condition to process

B. Communication between processes on the Balance 8000 is based on a shared memory

architecture. This means that multiple processes communicate by reading and writing to

shared data structures in memor . Thus, synchronization of processes in a shared memory

architecture is based on setting conditions in memory that multiple processes can detect.

Although the Balance 8000 allows programmers to create a large number of locks, its lock-

ing routines are based on a set of physical hardware locks. These physical locks ensure

mutual exclusion on the software locks which the programmer has created by performing

test-and-set operations. This ensures that multiple processes can not obtain the same soft-

ware lock at the same time. How does a programmer use shared memory to synchronize

multiple processes without the help of a hardware test-and-set operation? The following

two examples giv ote soe lutions to the mutual exclusion problem. After the mutual

exclusion problem has been solved, conditional synchronization can be achieved. This is

accomplished by placing the condition in shared memory and making it mutually exclusive.
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5.1 Peterson's Solution'

Example 32 is a software solution to the mutual exclusion problem as presented by Peterson I
2 . In this example, two processes wish to increment the same counter. The routine

counts" increments the counter by one and prints out its value. The routines "lock" and .

unlock" provide mutual exclusion on this operation using only shared memory. In this

solution, each process shares three variables. Two flags are used, one for each process, .4

to indicate whether the process wishes to enter its critical section. The integer "turn" is

used to indicate which process may proceed into its critical section. The routine "lock"

is called immediately before a processes critical section and the routine "unlock" is called k

immediately after the critical section. The routine "lock" sets the process's flag to TRUE

indicating it wishes to enter its critical section. "lock" then sets the value of "turn" to

designate the other process. If "turn" designates the other process and the other process's

flag is TRUE, then a process spins until it is either their turn or the other process resets its

flag. Notice that if only one process wishes to enter its critical section, then its neighbor's

flag will be false and it can proceed. If both processes try to enter the critical section at the

same time, "turn" will point to only one of them and that process will proceed. However,

after that process is finished, it resets its flag to FALSE and the other process may enter

its critical region. This solution is a strongly fair solution since a process will only wait at

most one turn before it can enter its critical section.

104.
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/ Example 32 *-
I ... .... ..... . I

#include <stdio.h>

#define TRUE 1

# def ine FALSE 0

/* This program is a software solution to the mutual exclusion *1
/- problem as presented by Peterson. Two processes wish to */

/. increment a counter. To ensure mutual exclusion each process */

/* calls the function lock before entering its critical section */

/* the function unlock after exiting its critical section. The ./
/* processes shore two variables, flog and turn. flag is an 5/

/* array of two flogs, one for each processor. The flog informs ,/
/* the other process that you wish to enter your critical *!

section. To enter its critical section, a process sets its */

/. flog to TRUE and sets turn to designate the other process.

I. If the other process wants to enter its critical section and a!
/a its their turn, then spin. Otherwise, enter your critical

/* section. After exiting your critical section, set your flog *r

/* to FALSE. */

shared int counter, flag[2]. turn;

lock (prnum)

int prnum;

int j;

flog[prnum] = TRUE; /* I want to enter my critical section */

j = (prnum + 1) 7 2;

turn = i ;
while ((f lag[j]) && (turn == j)) 1* wait for my turn */

unlock (prnum)

int prnum;

flog[prn,,m] = FALSE; /* I hove left the critical section */

counts (prnum)
int prnum;

in t i

for (i = 0; i < 10; i++)

lock (prnum);

counter ++;
pr.ntf ("Process %d Increments Counter to %d\n", prnum, counter);

f flush (stdout);

unlock (prnum); 3

ma in (

counter = 0;

cobeg in

counts (0);

counts (1);

coend

S
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5.2 Eisenberg and McGuire's Solution

Example 32 showed Peterson's solution to the mutual exclusion problem for two processes.

Example 33 shows a software solution for multiple processes as presented by Eisenberg and

McGuire [2]. In this example, five processes wish to increment the shared counter. Again,

the routines "lock" and "unlock" are used to ensure mutual exclusion by placing "lock"

at the beginning of the critical section and "unlock" immediately after the critical section.

Each process shares six variables: an array of fve flags which designate the state of a

process (IDLE, WANTIN, or IN-CS) and the integer "turn" which designates a process

that may enter its critical section. This solution is more complicated than Peterson's.

The routine "lock" sets the flag of a process to WANTIN and places the value of "turn"

in a local variable. The process then spins until the local variable indicates that it is its

turn. At this point, the process sets its flag to INCS. However, since a local variable

was used for the value of "turn", the process does not know which other processes might

be in their critical sections. So, the process now spins until no other process is in the

state INCS. At this point, the process checks to see if "turn" points to it or to an IDLE

process. If it is its true, the process enters its critical section. Otherwise, the process gets

a new value of "turn" and tries again. The "unlock" routine is executed only by a process

which is entering or exiting its critical section. "unlock" sets "turn" to point to the next

non-IDLE process in an ordered sequence and sets the flag of the exiting process to IDLE.

The "unlock" routine ensures strong fairness in the solution.
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/, Example 33 */

#include <stdio.h>
#define IDLE 0
#define WANTIN 1
#define INCS 2
#define N 5

/* This program shows the software solution to the mutual exclusion $1
/* problem as presented by Eisenberg and McGui re. There are N */
/s processes which wish to increment a counter. To ensure mutual ./
/s exclusion while incrementing the counter, each process calls the *1
/* function "lock" before entering its critical section and calls */
/o the function "unlock" after leaving its critical section. All
/* processes share an array of flags, one per process. A flog con

/* be in one of three states, IDLE, WANTIN, INCS. They also share s/
/* the variable turn. Notice that a process can enter its critical s/
/s section only if no other process is in its critical section. *1
/* Also note that the value of turn is modified only when a process o/

/* enters or exits its critical section. Once a process has set $/

/s its flog to INCS (thinking that no one else is in their K
/ crit ical sect ion), it waits until turn points to it or the 1
/. process which turn points to is idle. 

shared int counter, flog[N], turn;

lock (prnum)
int prnum;

int j;

do I -

flag[prnum] = WANTIN; /* I want in my critical section *1
j = turn;

while (j != prnum) /* Wait until everyone between ./
if (flag[j] l= IDLE) /* me and turn are IDLE 5/

j= turn;

else 
j = (j + 1) % N;

flog(prnum] = IN-CS. /s I am entering my critical section ./
j = ;
while ((j < N) && '(j == prnum) II (flog[j] 1= INCS)))

j++;

while ((j < N) I ((turn 1= prnum) && (flog[turn] != IDLE)));
turn = prnum,

unlock (prnum)
nt prnum;

nt j,

= (turn + 1 ) %N / Give turn to rext in line */
while (f log[j == IDLE)

j = (j 1) . N;
turn = ;

fIog[prnum] = IDLE; /* I am out of my critical section */

counts (prnum) P

int prnum;

n , ,
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for ( = 0; i < N i+.

lock ( rnum)

ulock (prnum);

counter +

frtt ('ProcesNsi+ /d nrmnse Couneryn to dle ru, one)

fflushi Is DLuE; &9

cuntc (pru;
countsM.,

main t (4)

counte =8

turn 8;4p
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/* prforks is cal led each time a new statement is found within a

/* cobegin-coend block. The routine inserts the code requi red to

/s fork a new process and add the PID of each child process to an

/* on-going list. An array of print statements (the code to be *
1~inserted) is created using the structure 'entry'. The paramenter .
'.col' holds the column to begin printing the inserted code. 0

prforks (col)
i nt col;I

i nt j,
static struct entry stmtE4] = pid = fork () ;\n\0Ij

[i f (pid !=0)\n\O0i,

S pidarray[jj++] = pid;\n\O'I,
[if ( p id == 0) \n\O'

f or (I=0; < 4; j++)I
f or (i 0; i < colI; i ++) /o move to col umn cot a

putc (' ' output);

fprintf (output, stmt[j].ln); /* print fork logic .

fprintf (trout.,os New Statement and Fork ***\n");

e o



/* The routine push will enter a new symbol on the top of the stack s/

/* push returns a 1 if successful and a 0 if stack Overflow is found. ./
/* If Overflow is found, UPPERBOUND may be reset in the #define */

/* statement at the beginning of this program.

push (symbol, In)

char symbol; /* symbol to be pushed on stack '/

int In; /* line number where symbol was found ./

fprinti (trout, "Entered Push routine\n");

if(stk.top >= UPPERBOUND) /* OVERFLOW ? a/

fprintf(stderr, "Overflow on Stack\n"); /* Print error message a!

return (e);

else

stk.top++; /* advance top '/

fprintf (trout, "Top : %d\n", stk.top);

fprintf (trout, "Pushed stack char: %c at line- %d\n". symbol, In);

stk.sym[stk. top] = symbol; /, odd symbol

stk. Inum[stk.top] = In; /* add current line #

return (1);

'.F
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/* The empty routine returns 1 if the stock is empty and 0 otherwise. s/
/* The character '&' indicates an empty stack. 5/

empty ()

return (stk.sym[stk.top] == U );

/* The routine pop will delete the top symbol on the stock. s/
/* pop returns a 1 if the operation is successful and a 0 *I
/* if Underf low is found.

pop ()

fprintf (trout, "Entered Pop routine\r"); /* Print statements to ./ 4'

if (stk.top == LOWERBOUND) I /* trout trace the
fprintf(stderr, "Underflow on Stack\n"); /* stack operations

return (0);

Ielse
fprintf (trout, "Poped stock char: Xc at line: Xd\n", stk.sym[stk.top],

stk. lnum[stk. top]);

stk.top--; /* delete top symbol ./

return (1);

VI
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#include <sys/woit.h>

#include <ctype.h>

#include <strings.h>

jinclude <stdio.h>

fdef ine TRUE 1

#define FALSE 0

#define LOWERBOUND 0 /* lowerbound on stock of

#define UPPERBOUND 99 /* upperbound on stock o/

/, FILES:

/o input points to the C source file 0/

/o output points to the C source file after precompi lotion o/

/s trout points to a file containing a trace of the stock operations o/

FILE 'input. *output. *trout;

int Icount; /* count number of lines in source file */

char I ine[80]; /* buffer to read one line at a time

struct stack I /s The stack is used to search for the */

char sym[100]; /, end of a statement. When the stack o/

int Inum[100]; /o is empty the end of the statement has */

int top; /* been found, top points to the top of o/

stk; /* the stack, sym holds the next symbol o/

/* to locate, and Inum tells on which o/

line the search began.

struct entry /s entry allows the creation of an array ,/

char ln[80]; /, of print statements. Each statement ./
9 j; /* must be less than 80 characters. 0/

.:
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The Balance 8000 provides a complete concurrent programming environment. The pro-

grammer has all the required primitives for process creation, synchronization, termination.

The programmer has the responsibility to ensure that every use of these primitives is con-

sistent and correct. A complete investigation into the memory aspects of the Balance

8000 is needed. The creation of a message sending mechanism would also be an interest-

ing research topic. This mechanism would, of course, be based on shared memory. The

concurrent programming routines in the Parallel Programming Library are also available

for Pascal. Appendix B discusses the implementation of the cobegin-coend construct in

Pascal. The software community has a fair amount of research and implementation work

to accomplish in order to meet the multiprocessing capabilities provided by the computer

hardware community.

110 6,

I, 

'S

],, 

,,,,,.

" 7," ,,.,dv ,," -'-2".' ,,, ""' " " -""" " """ ," -" " " -" ' " "-"€ " " " " " .. . . . . . . ., . . . . "-S

*, "* .' - ' , " ", .,. ' ,-:; *,'-', - ,' ,' ,' ,' . V- [ '.'* ,, "-
"- ', , ,,5¢- .. ,'- ,, .,- '. ', ', ,...',_-_' ",- 4'



A'

6 Conclusion

The objective of this paper was to investigate and document the concurrent environment

of the Sequent Balance 8000 Multiprocessing System. The paper concentrates on the

process creation and control mechanisms provided by the DYNIX Parallel Programming

Library. A precompiler is also introduced to implement the parallel programming construct
"cobegin-coend". The fork and mifork routines are DYN.X routines for process creation.

The precompiler implemented the cobegin-coend construct using the fork, exit. and wait

routines. The r-fork routine may seem very limited in its capabilities, however, when

used for data partitioning applications, its serves its purpose. The rnefork routine, like

cobegin-coend, is based on the fork routine. The fork routine is a simple and flxible

routine for process creation. However, the coding of forks, exits, and waits can become

confusing. It is not a clear mechanism for denoting process creation. Each call to fork

also requires approximately 50 milliseconds. This suggests that process creation should

be limited to only those applications whose individual process run times exceed the time

to execute each fork. Although many applications benefit from the fact that a fork

operation copies the parents total environment to the new child process, this should not

be the default and serves only to waste time and memory. What is needed is a mechanism

which copies only the section of code which is to be executed by the new process and any

other explicitly referenced information. The cobegin-coend construct is a very easy and

clear mechanism for process creation, but loses some of the flexibility of the fork operation.

An extension to the cobegin-coend construct is needed to add the dynamic features of the

fork operation. A type of optional statement guard is suggested for the cobegin-coend

construct. This guard could be used to determine process creation and carry a parameter

which determines the number of processes to be created.

The DYNIX Parallel Programming Library also provides many - )utines for process syn-

chronization. These mechanisms can be used to solve both the mutual exclusion and

conditional synchronization problems. However, all these primitives are built upon the

Balance's locking mechanism. This paper has already shown that this mechanism is only

weakly fair. This means that no strict order is maintained on which process is next to

obtain a lock, but that each process will eventually obtain the lock. The locking routines

of DYNIX are very dangeroas. The programmer has the responsibility for explicitly and

consistently coding every lock and unlock command. This can also lead to difficulty

in maintenance. A Monitor capablility is suggested in which any shared resource can be

encapsulated in one location along with any valid operations on that resource.
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/, prwaits is cailed at the end of a cobegin - coend block. /
/. The rountine inserts the code needed to perform the wait system ./
/4 call into the updated C source file. A loop is created in the */

new source file to perform a wait operation for each child 4/

/* process. Within the loop, the parent receives the PID and the 4/

/- status of each child process. If the status is nonzero, then an '/

/, error has occurred and the array pidarray is searched to find the */
/* number of the statement which returned with the error. A message 4/

/. is printed giving the statement number relative to the cobegin ./
/* block. An array of print statements (the inserted code) is
/, created using the structure 'entry'. The poramenter 'n' holds */
/. the number of waits (loop iterations) to perform. 'col' holds 4/ IL

/, the column number to start the code for a structured appearance. ./

prwoits (n. ca )
int n, col;

in t j. i;

static struct entry stmt[9] = ["for (ii = 0; ii < %d; ii++) j\n\0"j,
I" pid = wait (&status);\n\O"[,
)" if (status) \n\0" ,

!"~ -i 0 ;\n\O"j,

while (pid != p,dorroy[jj])\n\0"[,

jj++;\n\O"I.

printf (\"Error on Stmt %%d in cobegin block\\n\",jj);\n\0"j.

" I\n\0"l,

fprintf (trout, "Prwaits is called number of Waits : %d\n". n);

for (i = 0; i < col; i++) /* move to correct column to insert code 4/

putc (' output);

fpr int f (output, stmt[] n, n) ; / insert 'for loop 4/

for (j = ; j < 9; j++) .
for (i = 0; i < col; i++) /* move to column 'col' */

putc (' output);
fprintf (output, stmt[j]. In); /* insert wait logic 4/

t 'p
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The routine forkstmts is called when the beginning of a

/* cobegin - coend block is found. The overall function /!

/. of this routine is to separate the statements within o/

/* the cobegin - coend block and to call the appropriate 0/

/o routines to insert the fork, exit and wait code. This o/

/. routine is recursive, so that if it finds the beginning o/ P

/s of a cobegin - coend block, it calls itself. forkstmts */
/* uses the stock to find the end of a statement. It

/. initially assumes the end to be a 7 and thus places */

/s that character on the stack. If a '' is found before o/

/s the end of the statemeni is found, then a 'J' replaces s/

* ; ' and wi l now indicate the end of the statement. °/

/° every time a character is read that matches the top of o/

/* the stack, then the top of the stack is deleted. If / ,%

/* the stack is empty, then the end of the statement is A/

/* found. A switch statement is used to check each °/

/* character that is read. The parameter 'col' holds the e/
/° column number where the cobegin was found. This is used s/
/* to create a structured appearance when inserting code. */
/s forkstmts will call the push and pop routines inside °/

/s if statements. This is to check for errors. If on s/

/* error is found, forkstmts returns a 0, otherwise it

/* returns a 1. */

for kstmts (Col)

nt col;

int nocoend; /* True when no coend has been found 0/

int dostmt; /* True when a do statement is found */
int notstmtend; /* False when the end of a statement is found s/

nt numwaits; /. The number of iterations for the final wait logic /
nt cant; /* Used to find the begining of the next statement o/

tnt nxtchr; /o The index into the current line for the next char. /

tnt j;

numwaits = e;
nocoend TRUE;

if ((fgets (line, 80, input)) == NULL) 1 /* read new line ./ J
fprintf(stderr, "EOF found, Missing coend\n");

return (0);

else

nxtchr = 0; /o next character is index 0 s/

Icount++; /o increment line count

while (nocoend) /* do while no coend statement is found o/ '%
dostmt = FALSE; IN

notstmtend = TRUE;

/* Loop until a new statement or a coend is found ./
/* This loop is for skipping aver b an k lines and o/

/, finding coend statements. The coend must be on */

line by itse f and not within a statement So /

/o loo fo, coend before enter ing end cf stmt logc .
cant = TRUE.

while (cont"

while ((isspace (i Ine[nxtchr])) && (I ne[nxtchr] 1= '\n'))

nxtchr++, /. find first nonspace char '

fprintf (trout. "First cho' on new stmt. 7c\n", I nefnxtchr]) .

switch ( ine[nxtchr])

Pb'
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/o if a coend is found then insert code for wait ioop o/
/* and leave the forkstmts routine. If a cobegin is */

/o found print on error message. Placing a cobegin o/

/* block between statements of a cobegin block will H/

/o accomplish nothing. 0/

case c' : '

if (! strncmp ("coend", &l ine[nxtchr), 5)) $

fprintf (trout, "coend found at line Xd\n". count);

nocoend = FALSE;

prwaits (numwoits, col); /, insert wait logic

notstmtend = FALSE; /* no more stmts to find s/

if (! pop ()) /* pop stack separater 0/

return (0);

else if (! strncmp ("cobegin", &line[nxtchr], 7))

fprintf (stderr, "Improper placement of cobegin");

return (0);

cant = FALSE; /0 exit loop */
break;

/* If a new line is found, read in the next line 0/

/o if EOF is found, then print error message 0/ t
case '\n':

fprintf (output, "%s", line);

if ((fgets (line, 80, input)) == NULL)

fprintf (stderr, "EOF found, Missing coend\n");

return (0);

else

nxtchr = 0; /* reset index and increment line count ./

I count++;
fprintf (trout, "line %d read \n", Icount);

break;

default:

cant = FALSE; /* next statement is found o/

break;

if (nocoend) /* if no coend stmt has been found, o/

if (! push (';' , count)) /o then fork off the next stmt and o/
return (0); /o increment numwaits 0/

numwaits++;

fprintf (trout, "Numwaits is now %d\n", numwaits);

prforks (cal); c
,.

/o This next loop finds the end of each statement by using a stack. /

A switch statement is used to evaluate each character. The top o/

/o of the stack and the next character read determines the action o/

/o to be taken. The following logic is applied: 0/

/ The stock top is a , . Whenever a symbol is found which 0/

/. matches the top of the stack, pop the stock I f the stock is */

/* empty. then the end of the statement has been found If a ' / ,'0

is found and the top of the stack is a . then a block 0/

/o statement is found and the end of the statement will be a ' . */

/o Therefore, pop the ',' off the stock and push the ' However, /
, f the block is a do statment . then do not pop the ; If a */

/. newl ine char is found, then read the next line if a is/

/. found. push it on the stock and ignore al I else until another ./

is found. If a i is found ignore oll characters except a */
until a !s found If a '(' is found and the top of the ,/

/ - stot is a ; then ignore al. other characters except ./

% Z1



/* until a ')' is found. If another cobegin is found, then call
/* forkstmts recursively to separate and fork the statments.

while (notstmtend) I / statement end has not been found .
switch (linefnxtchr])I

IIf a d is found, check for a do loop. The do loop 9

/* is a special case. A do loop will be enclosed by .
I'. the Iand I symbols, but will end in a ; symbol.
/* Do not pop the ; symbol of f the stack.
case 'd ':

fprintf (trout, "Case d at Xd\n", lcount);
if (stk.sym[stk.top] == ''

if ('strncmp ("do ", &l inefnxtchr], 3)) 11
(strncmp ("dol", &lir-.4nxtchr], 3)))

fprintf (trout, "do while found on line %d\n", lcount);
dostmt = TRUF;

nxtchr++; /* get next character .
b r eak ,

/* If a c is founJ. then check for a new cobegin block. *
/s If a new cobegin block is found, recursively coall
/* forkstmts routine to process the block. 9

case 'c':
if (! strncmp ("cobegin", &line[nxtchr], 7))

fprintf (trout, "cobegin found at line %d\n", lcount);

if (! push ('&' , lcount)) /9 push on stack separater .
return (0); '

if (forkstmts (nxtchr)) f/. call forkstmts recursively s

fprintf (trout, "***Returned from~ coend#ss\n");
f pr int f ( trout , "Top : %d\n" , s tk .top);
fprintf (trout, "Symbol: %c \n". stk.sym[stk.top]); '

/. Returned OK< so read next line s I

if ((fgets (line. 80, input)) ==NULL)
fprintf (trout, "Missing Xc from line %d on stack\n",

stk.sym[stk.top], stk. lnum[stk. top]); '

fprmntf (stdlerr, "EOF found, Missing coendl\'"); .

return (0);

elIse
nxtchr =0 .reset index and increment line count 9

I coun t++
fprintf (trout, "line %~d read \n", lcount);

OF

else /* Bad return from forkstmts routine 9

fprintf (stderr, "Bad cobegin block \n");
return (0);

else if (I strncmp ("coend", &l mnefnxtchrJ, 5))
fprintf (stdlerr. 'coend found with-n statement\n"); '
tprintf (stdlerr, 'Missing End of Siatement\n"),
return 10),

else nxtchr+i- /* get next character o/
breal,

/9 If a new line is found, r e ad i n t he n e xt i ne ,

case '\r,
fpr intf (trout, "Case newl inc at %d\n' . lcount)

fprintf (output. "7s', line.,

if((fgets (line. 80. nput) == NULL I.EOF? *

,Vq -der,~~ -



fprintf (trout, "Missing %c from line %d\n",
stk.sym[stk.top], stk. Inum[stk.top]);

fprintf (stderr, "EOF found, Missing coend\n");

return (0);

ai S
nxtchr = 0; /* Next line read, index is 0, /
)count++; /* increment line count */
fprintf (trout, "line %d read \n", 1count);

~break;

/* If ( is found and top of stock is either ; or ), */
/* push the symbol ) on the stock *
case '(':

fprint f (trout, "Case ( at line %d\n", Icount);
if ((stk.sym[stk.top] == ')') II (stk.sym[stk.top] == ;'))

if (! push (')', Icount))
return (0);

nxtchr++; /* get next character */
break;

/* If a is found and the top of the stock is either a ;

/, or a , then push the I on the stack. Pop the stock if */
/* the top is a ; and dostmt is FALSE.

case
fprintf (trout, "Case at tine %d\n", Icount);
if ((stk.sym[stk.top] == ;) && (dostmt))

if (! push ('I' , Icount))
return (0);

else if (stk.sym[stk.top]== ;')

if (0 pop ())

return (0);
if (! push ('j'., count))

return (0);

else if (stk.sym[stk.top]== 'i')
if (! push ('I', count))

return (0);
nxtchr++; /* get next character /
break;

/, If ) is found and top of stock is ), then pop it */
/* off the stack. */
case ')

fprintf (trout, "Case ) at fine %d\n", 1count);
if (stk sym[stk, top] ==

if (! pop ()

return (0);
nxtchr++, /, get next character s/
break;

/* ] ft a is found and top of stack is (, then pop the s/
/. stack and check if stock is empty If the stock is ./
/* empty, then insert exit code and statement end has a/

/- been found a/

case

fprintf (trout, "Case a line 7d\n* Icount);

if 5st k sym [ s t k to ] =

f (' pop (,

return (0),
f (empty (t /. empty !tocV /'

nxtchr = pr ,ntexi t (++rxtchi col ) . /* :nsert exit */'

if (nxtch- . -1) bad re r /ii

return (0).
notstmterd FALE
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else nxtchr++; /* get next character */

else nxtchr++; /* get next character 0/

break;

/* If a; is found and the top of the stack is a; */

/. then pop stack and check if stock is empty. If ./

/* stack is empty, insert exit code and statement */

/* end is found.

case ; :
fprintf (trout, "Case ; at line %d\n" Icount);

if (stk.sym[stk.top] ==

if ( pop 9))
return (0);

if (empty () /* empty stack? */

nxtchr = printexit (++nxtchr, col); /* insert exit */
if (nxtchr == -1) /* bad return 0/

return (0);

notstmtend = FALSE;

else nxtchr++; /* get next character ./

else nxtchr++; /* get next character */
break; 

/* If a" is found and the top of the stack is alsoa", /

/* then pop the stack, otherwise push the " on the stock. o/

case ' "
fprintf (trout, "Case \" at line %d\n", lcount);

if (stk.sym[stk.top] == \" I
if (i pop ()

return (0);

else

if (! push ('\"', . count))
return (0);

nxtchr++; /* get next character */

b -eak ;

default:
nxtchr++; /* get next character o/
break;

return (1);

t



/* The routine findblock is called by the main routine for every ./

/* file entered by the user. The main purpose of find-block is to ./
/* search the input file for a cobegin block and to call the

routine forkstmts to process the block, findblock opens three */

/* files; the input source file, the output source file, and a */
/* a trace file. The output file contains the new C source code. */

/* The trace file contains a trace of the stock operations

/* performed. Given an input file name of XXX.c, find_block will

/* create the output file with the name XXXp.c and the trace file */
/* with the name XXXt.d. The trace file will be retained only if /
/* an error occurrs while processing the input file.

findblock (f ilenum, orgy, argc)

int f ienum; /* The number of the file in orgv */

char *orgv[];
int argc;

FILE *fopen( ;
static char trace[15] = P "; /* The name of the trace file ./
static char temp[15] = 1 ; /* The name of the output file ./
int i , noerror;

noerror = TRUE; /* noerror indicates an error in the input file ./
stk.top = 0;

/* open input file ./
if ((input = fopen (argv[fi lenum], "r+w")) == NULL)

fprintf (stderr, "Could not open file: Xs\n", argv[filenum]);

exit (2);

e) se
fprintf (stderr, "Opened input file: %s\n", argv[filenum]);

strcpy (trace, argv[filenum]); / copy name of input file */

strcpy (temp, argv[filenum]); / to both trace and output */

i = 0;

while (temp[i] = ' ) i++;
tracefi] = ''

templi] = p ;

trace[++i] = ; / These instructions complete the */
temp[ii] = ; names of the trace and output ,/

t race[++i] = 'd' ; / f i les.

tempfi] = 'c'

trace[++i] = '\O';

temp[i] = '\O';

/* open output file */

if ((output = fopen (temp. "w")) = NULL)

fprintf (stderr. "Could not open file: %s\n". temp);

exit (2);

e I se
fprintf (stderr. "Opened output file %s\n", temp);

/* open trace file */

if ((trout = fopen (trace. "w")) == NULL)
fprintf (stderr. "Could not open file %s\n", trace);

e xit (2)

else

fprintf (stderr, "Opened Trace Fi le %s\n", trace),

fprintf (trout. "Trace of Cobegir - Coend Bock\n\n").
I

Icount =

/* This loop will read the input file and write to the ./



/* output file until a cobegin block is found. At that ./
/* time, the routine forkstmts is called to process the ./
/* cobegin block. If the routine 'main' is found, then */

/. the array 'pidarray' and the variables pid, ii, jj, ./
/* and status are inserted into the output file. These */

/* are used by the fork and wait code. */
/* If on error is found in the file, return a 1. */

while (((fgets (line, 80, input)) != NULL) && (noerror))

I count++;

i 0;
while (isspace (line[i])) i++;

if (! strncmp ("main", &line[i], 4)) /* found 'main'? s/
fprintf (output, "int pidarray[25];\n");

fprintf (output, "int status, pid. ii;\n");

fprintf (output, "static int jj = 1 ;\ n");

if (strncmp ("cobegin", &line[i), 7)) / found 'cobegin'? */

fprintf (output, "%s", line);

else
fprintf (trout. "cobegin found at line %d\n", Icount);

push ('&' , Icount);
if (! forkstmts (i)) /* process cobegin block */

noerror = FALSE;

fprintf (stderr, "Bad cobegin block\n");

if (noerror)

fprintf (trout, "EOF: 7s\n", orgv[filenum]);

fprintf (stderr, "Number of lines in file %s: %d\n",

argv[f i lenum], lcount);

/* close files */

if ((fclose (input)) == EOF)

fprintf (stderr, "Could not close file: %s\n", argv[filenum]);

if ((fclose (output)) == EOF)

fprintf (stderr, "Could not close file: %s\n", temp);
if ((fclose (trout)) == EOF)

fprintf (stderr, "Could not close file: %s\n", trace);

cs check for errors /

if (noerror) I
unlink (t:ace);

return (0);

else

return (M)

% %



/* The main routine simply checks to see how many files were entered */

/* by the user and to fork a separate child to process each file. 0/

/* If the user doesn't enter a file, an error message is printed. */

/* The user may enter only 6 fi ps. This is because a user can only */

/* have 20 files opened and each file entered requires three opened */
/* files (input, output, and trace). If only one file is entered, o/

/0 the parent will process the file and no children wi I be created. */

/* If a child has an error, then it returns the file number of the o/

/* file it was processing and the parent will print on error message. 0/

main (argc, orgy)

int argc;

char *orgv[];

int i , err, pid, fi lenum, nochi Ids;

union wait status;

if (argc < 2) 1 /* Did the user enter a filename? */

fprintf (stderr, "Must Give A File Name!\n");
exit (1);

t0

if (argc > 7) /* Did the user enter too many files? */

fprintf (stderr, "User May Only Input 6 Files!\n");

exit (1);

nochids = 0; /. number of children is 0 0/

filenum = 1; /* file numbers start with 1 0/

setbuf (stderr, NULL); /* don't buffer output to standard error device */

if (argc == 2) /* only one file, don't fork any children. */

err = find block (fi lenum, orgy, orgc);

if (err)

fprintf (stderr, "Error on File %s\n", orgv[filenum]);

else /o fork a child for each file */
while (orgc = 1)

if (fork () == 0) %
err = findblock (filenum, orgv, argc);

if (err) .%

exit (f i lenum) ;

else

exit (0);

argc--;
filenum++; /* increment file number and number of children */

nochi lds++;

for (i = 0; i < nochilds; i++) /* wait for the children to finish */

pid = wait (&status);
if (status w _ status 0) /o the chi I returned an error /

if (' stotus.wtermsig)
fprntf (stderr, "Error on File %s\n", orgv[status w-retcode]);

else I
fpr nt f (stderr "Terminotec by System Error: u\n",

status.wtermsig).

if ( stotus.w-coredump)

fprintf (stderr, "Core Dump Taken\n");
0I
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Parallel Pascal '

Any Pascal program can be linked to the Parallel Programming Library by including the -
-rp option on the Pascal compiler command, pascal. A user must declare the routinesJJ

'p.

in the Parallel Programming Library as C external procedures or functions within their

I

Pascal program by using the keyword cexternal. The functionality of these routines is the
same for Pascal as for C. Reference the "Balance 8000 Guide to Parallel Programming" e

for further information on using these routines in Pascal. However, the routines fork,

exit, and wat are not part of the Parallel Programming Library and can not be directly

referenced from b usin gram. A user must first write a function in C which performs

the actual fork, exit, or wait and then link this function to their Pascal program. This
is very simple to accomplish. Again, the C functions are linked to the Pascal program -

by declaring them as cexternal functions or procedures. Any C function which returns

an integer must be declared in Pascal as returning a long integer (longint). Place the C

functions in a separate file and compile them using the Pascal compiler. This file must have

the ".c" file extension. The pascal command is smart enough to call in the C compiler

for this file. Also, when the C compiler compiles the C functions, it places an underscore

before the name. The functions must be declared and referenced in the Pascal program

using this underscore. Pascal also passes parameters in reverse order to C. Thus, if you call

a C function and pass parameters A, B, and C in that order, the C function will receive the

parameters in the order of C, B, and A. If any C function references a Pascal procedure,
you must also include the -e option when compiling the files. When a C function returns,

the calling function releases the stack. When a Pascal function returns, the called function

releases the stack. The -e option ensures that the calling C function releases the stack not

the called Pascal function.

The following two files demonstrate the ability to fork procedures in Pascal, terminate .

the processes (exit), and synchronize (wait). The Pascal procedure "add" adds a value

to a counter in an array of counters and prints its value. This program adds different

amounts to five different counters, concurrently. Before each call to the procedure "add",

the procedure "A1k" is called. This procedure is a cexternal function which performs a

fork and returns the process ID. The parent process will receive the new PID of the child

process and the child process will receive a zero. The child process performs the "add"

operation and then calls the procedure "ext". This procedure is a cexternal function

which performs an exit. At the end of the program, the parent process calls the function

127



"wt" for every child process. This function is also an cexternal function which performs

a wait and returns the PID of the exiting process. The first file is the Pascal program.

The second file is the C functions which call fork, exit, and wait. The array of counters

is placed in shared memory since all global variables in Pascal are shared. This example

implies that every routine a C program can reference can also be used by a Pascal program.

However, the user is cautioned when performing I/O. If the main program is written in

Pascal, use Pascal for the I/O. This example also implies that the cobegin-coend construct

can be easily extended to Pascal programs.

N
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/. FILE 1 */
/ ............ * /

/* This program increments an array of five counters. The counters ,/

/* are global (shored memory). The function "add" odds a value to ./
/* a counter. Each counter is incremented concurrently by calling

/* the functions _fk, -wt, and the procedure _ext. These ore *1
/* external C functions which perform the routines fork, exit, and */

/* wait. 0/

program counters (input, output);

~const
size = 5;

V counter array[ 1. size] of integer;

i : integer;

result : longint;

procedure odd (num, value integer);

begi n

counter[num] := counter[num] + value;
writeln ('counter , num, is counter[num],

end,

procedure _ext; cexternal

function _fk longint; cexternal

function _wt longint; cexternol

begin

for i 1 to size do

counter[ i] 0;

result = fk

if resuJt = 0 then

beg i n

add (1 , 10);
_ext

~end;
result := fk;

i if result = 0 then

%begin

% odd 2. 15);
_ext

end;

result f k
t f result = 0 then

begin

add (3, 20);

_ex I
end.

result := _ fk

if result = 0 then

begin

add (4, 25);
_ext

end,
result f 1

f result = 0 then

begin

odd (5, 30),
_ext

end.

f r i := 1 to size do

beg i n
result = _wt,

W, fa '?,-e - .-- '- 9-- *.' . .'...,'9,*..%** . .'< '.' .'.. _ .. _ - .- -_.



I

writeln ('Child result, Returned.')
end ; .S

end .

/, F] LE 1 *

/* These functions ore wr it ten i n C to perform calls to *,u W

t/ the routines foar k, e x it , and wo i t,*.

it f
r et ur-n (foar k )

i nt e xt "'

e x it (0 ..

iont w t %)-- W^ -
i nt st at us;

r et u rn (woai t (&st at u s

I.I
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NAME

int ro - introduction to Paral lel Programming Library

DESCRIPTION
These routines constitute the Parallel Programming Library,

which supports microtosking and multitasking in C, Pascal,
and FORTRAN programs. (For information on microtasking and

m u lt ita s k ing p rog ramm ing m ode ls , re fe r to the fiB g 3l ;-_ Q .Uj d . 1 41
IN T( gill DYNqLaig.) The Parallel Programming Library euT

is not supported under System V (.Qt- univer s e . "

The routines decribed here include the current Parallel Pro-

gromming library, /juaj/jjD/.Ljji p .g, and the previous ver- =

sion, /.U2L/iib/1iib2V-9 The older version is retained for
compatibility with earlier DYN X releases. The routines

from the current library are linked into a program by
including the - pps option in the cc or Id command line or

by including the -pps or -mp option in the fortran or pas-
calt command line. The routines from the old library are

linked by including the -1pp option. You must not link both, '
libraries with the some program. l P g m L r

For on overview of how the current Parallel Programm-ng

Library routines are used, and for sample programs ed

related information. refer to the egijgj Qui d J. 2g~gjjjj

LIST OF FUNCTIONS
The follow ing routines support microtsking:i

fm tfork mfork.3p execute subprogram in parallel

mgetiyid m get myid.3p return process identidfnicatlion

m getnnumprocs m- get numprocs.3p get number of child processes

m ki coprocs mlkiin. Tprocs.3p kill child processes

m lock m_lock.3p onit ialize and lock a lock

m..mulI t i msing e.3p end single-process sectiontam

m next mnext.3p increment global counterrmi
m_park procs m p rkfprocs.3p suepoend child process execution

m-reledpr mcs m-park_procs.3p resume child process execution

m-set pr s m set~p o s 3 set number of chilId processes
m-single m-single.3p start single-process sect ion ii

m sync m sync.3p check in at barrier 'm _un lock mock un ock a ock

The following routines support multitasking:

S mfor m; L _ .for . execuea supoga in parallelD

9 pus monlpine cpus online.3p return number of CPUs on-line
Smc Occ s- ck 3p I o r Im oc , r eturcn kf unsuccessfucl r s

sin, t b m rler s kwo tibrrier.3p initialize a barrier a l k
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s _ mit-_lock s-_lock.3p initialize a lock
s-_lock s-_lock.3p lack a lock
S-LOCK s-_lock.3p lack a lock (C macro)
s-unlock s-_lock.3p unlock a lock
SUNLOCK s-lock.3p unlock a lock (C macro)
s-_wait-_barrier s _wait _barrier.3p wait at a barrier

The following rout ines support memory allocation for paral-
lel programming. The jb~u and ItLj routines are available
without loading the Parallel Programming library (see
2Lk(2)), but the versions in the Parallel Programming
library are necessary for compatibility with the rest of the
Si brary.
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9 brk brk.3p change private data segment size
sbrk brk.3p change private data segment size
shbrk shbrk.3p change shared data segment size
shf ree shmol loc.3p deal locate shared data memory
shmalloc shmal loc.3p allocate shared data memory
shsbrk shbrk.3p change shared data segment size

The fol lowing routines constitute the previous version of
the Parallel Programming library, /ujL/1iD/1ik~j2.j, and are
retained for compatibility with earl ier releases:

9 p~cpus-_online p-cpus-onl ine.3p get number of processors in syst
em

p-finit-_barrier p-wait _ barrier.3p initialize a barrier (FORTRAN)
p~init p-init.3p initialize shored memory and Atoi

c Lock Memory
p~init-_barrier p-wait-barrier.3p initialize a barrier
p~init _lock p-lock.3p initial ize a lock
p~lock p~lock.3p lack a lock
p..shmalloc p-shmal loc.3p allocate shored memory
p-unlock p-lock.3p unlock a lock
pwait-_barrier p-wait-borrier.3p wait at oi barrier

The followi ng routi nes are retai n ed in the old Parallel Pro-

gramming Library for compatibility with earlier releases,
but are not described elsewhere in these man pages.

D-ejl is equivalent to pjI(3).

R-ftzil is equivalent to the standard FORTRAN routine
1121

~{jflj~has no effect.
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