
TL/EE10864

D
ig

ita
l
F
ilte

rin
g

w
ith

N
S
3
2
G

X
3
2
0

A
N

-6
9
5

National Semiconductor
Application Note 695
Zohar Peleg
July 1990

Digital Filtering with
NS32GX320

INTRODUCTION

Digital computation of filter transfer functions is a key opera-

tion in Digital Signal Processing. The NS32GX320 may be

used for digital filtering as well as for other DSP operations,

due to its DSP support, consisting of its hardware multiplier

and a set of dedicated instructions. This application note

describes the realization of FIR and IIR filters, using the

NS32GX320. It contains some theoretical overview, practi-

cal considerations and NS32GX320 assembly code imple-

mentation.

DIGITAL FILTERS

Consider a rational system given by the following transfer

function:

H(z) e

Y(z)

X(z)
e

&M
ke0

bk zbk

1 b &N
ke1

ak zbk

(1)

where H(z) is the Z transform of the system’s impulse re-

sponse h(n), X(z) and Y(z) are Z transforms of the input

sequence x(n) and output sequence y(n) respectively and ak
and bk are two sets of coefficients that define the system’s

behavior. Both the coefficients and the data sequences may

be complex.

The input and output of this system satisfy the difference

equation

y(n) e &N
ke1

ak y (n b k) a &M
ke0

bk x (n b k) (2)

NS32GX320 DSP SUPPORT

A software implementation of (2) is used for digital filtering.

The implementation requires a number of multiplications

and accumulations for each sample. Two major problems

may arise when trying to implement it for a real time applica-

tion, using a general purpose CPU:

1. Heavy code is required for implementation of each step.

That implies a long execution time.

2. Multiply is slow.

If the overall time required for calculating one output point

can not meet the input sampling rate of a given application,

the filter cannot be used for the application.

The NS32GX320 offers a solution for the implementation of

such expressions. The solution is based on the CMACD in-

struction (Complex Multiply Accumulate).

31 16 15 0

SRC1 src1.Im src1.Re

31 16 15 0

SRC2 src2.Im src2.Re

FIGURE 1. Complex Memory Operands

Consider the instruction:

CMACD src1, src2

Where src1 and src2 are 32-bit operands as shown in Fig-
ure 1. The result of this instruction is

R0 w R0asrc 1.Recsrc 2.Rebsrc 1.Imcsrc 2.Im
(3)

R1 w R1asrc 1.Recsrc 2.Imasrc 1.Imcsrc 2.Re

Where R0 and R1 are general purpose registers in the

NS32GX320. As shown in (3) the single instruction CMACD

performs four 16 c 16 bit multiplications and four additions.

The multiplications are performed by a fast hardware multi-

plier. Note that (3) is the fundamental step of (2). The differ-

ence equation of (2) is composed of (MaN) CMACD opera-

tions. Due to the advantages of the hardware multiplier and

the CMACD instruction, there is reduced amount of code

and increased execution speed, that may allow the use of

the NS32GX320 for a large variety of real time digital filter-

ing applications.

DATA REPRESENTATION

Both the data sequences and the coefficients are represent-

ed by 32-bit complex numbersÐ16 bits real part in the lower

word and 16 bits imaginary part in the upper word. The

16-bit number is represented as a signed fixed point normal-

ized number in the range of b1 : a1. The integer I repre-

sents the real number I/32K (I/32768.) The result of multi-

plying two such numbers is a 31-bit signed fixed point num-

ber in the accumulator. The 32-bit integer I in the accumula-

tor represents the real number I/1G (I/1,073,741,824). Fig-
ure 2 shows example of the memory and accumulator repre-

sentation of some numbers. Translation from accumulator

to memory is done by shifting 15 bits to the right. Translation

from memory to accumulator is done by sign extension from

word to doubleword and then a shift of 15 bits to the left.

Real 16-Bit 32-Bit

Number In Memory In Accumulator

b1.0 8000 C0000000

b0.5 C000 E0000000

b0.25 E000 F0000000

0.0 0000 00000000

0.25 2000 10000000

0.5 4000 20000000

E1.0 7FFF 3FFFFFFF

FIGURE 2. Data Representation

Sometimes there are coefficients larger than 1. In such a

case all the coefficients’ vector is scaled down by 2l where l
is the smallest integer that guarantees that all the coeffi-

cients become smaller than 1. In some of these cases the

data sequence must be scaled down by the same factor,

and hence it has to be shifted only 15bl bits when loading

the data to the accumulator, or when storing the accumula-

tor’s result in the memory.

C1995 National Semiconductor Corporation RRD-B30M75/Printed in U. S. A.

FIR FILTER

In FIR (Finite Impulse Response) all the ak are zero and (2)

may be written as:

y (n) e &keN

ke0
hk x (nbk) (4)

The implementation of such a filter is described in Figure 3.

It is known as direct form FIR.

TL/EE/10864–1

FIGURE 3. Flowgraph of Direct-Form FIR

PRACTICAL CONSIDERATIONS

System Configuration

A computation model for software realization of (4) is de-

scribed inFigure 4. When there is a new sample ready in the

input device (memory mapped I/O), the digital filter is called

either by Jump-Subroutine instruction or by interrupt. The

filter reads the new sample, stores it in the data buffer, cal-

culates the new output, and sends it to the distination output

device or memory buffer.

TL/EE/10864–2

FIGURE 4. System Configuration

DATA ORGANIZATION

In order to be able to calculate the n’th output, in a length-N

direct form FIR, there must be a memory buffer that holds

the N coefficients, and another memory buffer that holds

the recent N samples (x(nbNa1) b x(n)). They will be re-

ferred to as Hn and Xn respectively.

The Xn buffer is a problematic one. Since the FIR is built to

filter an infinite stream of input samples, the Xn buffer may

overflow and run out of the memory space. The pointers to

Xn buffer must be handled in a special manner to form a

cyclic buffer that can accommodate at least N samples.

A 256 byte cyclic buffer can be easily achieved by advanc-

ing a 32-bit pointer, using byte operations. In such a way the

24 MSB will point to the beginning of the buffer and will not

be affected by the advancing of the 8 LSB that will point to

the desired memory location within the buffer. This solution

is applicable for filters up to 64 points. This is sufficient for

most practical needs. For larger filters though, the pointer

adjustments must be composed of masking the operation

with the desired number of bits and then adding it to the

buffer’s base address. Figure 5 shows the memory organi-

zation of the FIR Implementation. In this specific implemen-

tation Xn and Hn are memory locations used as pointers to

the current data point and to the coefficients table start ad-

dress respectively. R3 is the pointer to the point n-k. R2 is

the counter k.

TL/EE/10864–3

FIGURE 5. Data Organization for FIR

ASSEMBLY LANGUAGE IMPLEMENTATION

Figure 6 shows an example of FIR routine in NS32GX320

assembly language. It is operated under the following condi-

tions. Xn, Hk, and firÐlen are predefined memory locations

that are initialized as following:

1. Xn holds the data buffer address of the recent point. (For

the first point it is initialized to the beginning of the data

buffer.)

2. Hk is initialized to the beginning address of the coeffi-

cients table.

3. firÐlen is initialized to the desired filter length.

4. inÐdevÐRe, inÐdevÐIm are the memory locations of

two 16-bit input devices, that hold the value of the next

data sample.

5. outÐdevÐRe and outÐdevÐIm are the memory loca-

tions of two output devices which are the destination of

the processed data.

2

FIR:

addb $4, Xn # adjust pointer to next point

movd Xn, r3 # in the cyclic buffer

movw in dev Re, 0(r3) # store new point

movw in dev Im, 2(r3) # in buffer.

movqd $0, r0 # Zero accumulator.

movqd $0, r1

movqd $0, r2 # k w 0

cnvl:

cmacd 0 (r3), Hk [r2:d] # acc w acc 0 x (n-k)*h(k)

cmpd fir len, r2 # is k4N ?

beq out

addqd $1, r2 # increment k

subb $4, r3 # adjust pointer to x(n-k)

br cnvl

out:

ashd $115, r0 # Normalize result

ashd $115, r1

movw r0, out dev R # Send result to

movw r1, out dev I # output device

reti

FIGURE 6. NS32GX320 Code for Direct Form FIR

Note: If the FIR length is a small predefined number N, the loop ‘‘cnvl:’’ may be replaced by N consecutive CMACD instructions. That will save the loop overhead

and improve performance.

IIR FILTER

In IIR filters, at least 1 of the a(k) in (2) is nonzero. Assuming

NeM (may be achieved by adding lNbMl zero coefficients

to the short expression), (2) becomes:

y(n) e &N
ke1

aky (n b k) a &N
ke0

bk x (n b k) (5)

The direct form realization of (5) is described in Figure 7.

TL/EE/10864–4

FIGURE 7. Direct Form I IIR Filter

The flowgraph of Figure 7 may be implemented using the

same concept as in the FIR implementation. A straight for-

ward implementation would require to maintain buffers of

both the recent N inputs and recent N outputs.

Figure 7 may be viewed as a cascade of two networks. The

first one with the bk corresponds to the numerator of (1),

and the second one, with the ak corresponds to the denomi-

nator of (1). In linear shift-invariant systems the order of

cascading subsystems may be reversed without changing

the input-output relation. The result of reversing the cascad-

ing order is shown in Figure 7.

TL/EE/10864–5

FIGURE 8. Reversed Cascading Order ofFigure 7

Figure 8 may be redrawn as shown in Figure 9, by combin-

ing the two identical delay strings. The resulting network is

known as Direct Form II.

TL/EE/10864–6

FIGURE 9. Direct Form II IIR

3

The difference equation for this network is

w(n) e x(n) a &N
ke1

akw (nbk)

(6)

y (n) e &N
ke0

bkw (nbk)

w (n) is a state signal inside the system. This is the only

delayed signal in that system. Therefore it is preferred to

implement the IIR using Direct Form II, since it requires only

one delay bufferÐWn rather than two buffers Xn and Yn as

required in Direct Form I.

SYSTEM CONFIGURATION

Consider a system similar to the one described for the FIR

and shown in Figure 4. A Wn buffer is organized the same

way as the Xn buffer in Figure 5. Ak and Bk buffers are

organized like the Hk buffer in Figure 5.

IMPLEMENTATION

A routine similar to the FIR is executed on the recent Nb1

Wn to calculate the new Wn and stores it in the Wn buffer.

Another FIR is then executed on the N recent Wn to calcu-

late the new y(n). If the Ak buffer was scaled down by 2scale

then x(n) must be scaled down by the same factor when

loaded to the accumulator. This scale down is compensated

when storing the accumulator in Wn buffer. In such a case

the scale constant assignment must be changed according-

ly.

.set scale, 0 # The number of shifts that

were used to scale down Ak.

IIR:

addb $4, Wn # adjust pointer to next point

movd Wn, r3 # load pointer to Wn buf.

movw in dev Re, r0 # acc.Re w x(n) .Re

movw in dev Im, r1 # acc.Im w x(n) .Im

movxwd r0, r0 # extend sign bit and

movxwd r1, r1 # shift right 15 bits

ashd $15-scale, r0 # to translate data to

ashd $151scale, r1 # accumulator representation

movqd $1, r2 # k w 1

A loop:

cmacd 0(r3), Ak[r2:d] # acc w acc 0 w (n1k) * a(k)

cmpd irr len, r2 # is k 4 N ?

beq out A

addqd $1, r2 # increment k

subb $4, r3 # adjust pointer to w(n1k)

br A loop

out A:

ashd $1150scale, r0 # normalize the new w(n)

ashd $1150scale, r1

movd Wn, r3 # reload pointer to w(n)

movw r0, 0(r3) # Store Real part of Wn

movw r1, 2(r3) # Store Im part of Wn

#
The rest is FIR of Bk

coefficients, on the W buffer.

#
movqd $0, r0 # Zero accumulator.

movqd $0, r1

movqd $0, r2 # R2 w 0

B loop:

cmacd 0(r3), Bk[r2:d] # acc w acc 0 b(k) * x(n1k)

cmpd iir len, r2

beq out B

addqd $1, r2 # k w k 0 1

subb $4, r3 # adjust pointer to w(n1k)

br B loop

out B:

ashd $115, r0 # normalize result

ashd $115, r1

movw r0, out dev Re # send result to

movw r1, out dev Im # its destination

reti

FIGURE 10. NS32GX320 Code of Direct Form II IIR

4

SECOND-ORDER DIRECT FORM IIR

Every direct form IIR of order N may be implemented as a

cascade of N/2 order-2 direct form II sections. Furthermore,

in many applications the order-2 IIR is sufficient. There are

some practical advantages in realizing low order IIR with

pre-defined length:

1. The loops of CMACD iterations may be unrolled to save

the loop overhead.

2. A small number of delayed elements may be shifted

along the data buffer to save the overhead of managing a

cyclic buffer.

For 2nd order IIR, (6) may be rewritten as

w (n) e x(n) a a(1)w (n11) a a(2)w (n12) (7)
y (n) e b(0)w (n) a b(1)w (n11) a b(2)w (n12)

The realization of (7) is illustrated in Figure 11. Figure 12
shows the data organization, and Figure 13 shows the

NS32GX320 assembly code implementation for the order-2

direct form II IIR.

TL/EE/10864–7

FIGURE 11. Order 2 Direct Form II IIR

TL/EE/10864–8

FIGURE 12. Data Organization for Order-2 IIR

REFERENCES

1. A.V. Oppenheim and R.W. Schafer, Digital Signal Pro-
cessing , Prentice-Hall, 1975.

2. L.R. Rabiner and B. Gold,Theory and Applications of Dig-
ital Signal Processing , Prentice-Hall, 1975.

5

A
N

-6
9
5

D
ig

it
a
l
F
il
te

ri
n
g

w
it
h

N
S
3
2
G

X
3
2
0

.set scale 0 # must be changed to the

actual number of shifts

that were used to scale down

the Ak coefficients.

ORDER 2 IIR:

movd Wn, r3 #r3 w Wn pointer.

movd AkBk, r2 #r3 w coefficients table pointer

movw in dev Re, r0 # store new point in Xn

movw in dev Im, r1 # store new point in Xn

movxwd r0, r0 # n’th sample is de-normalized

movxwd r1, r1 # to the accumulator’s

ashd $151scale, r0 # representation -

ashd $151scale, r1 # acc e Xn

amacd 4(r3), 0(r2) # acc w acc 0 W(n11)*A(1)

cmacd 8(r3), 4(r2) # acc w acc 0 W(n12)*A(2)

nop

nop # wait till acc is ready

ashd $1150scale, r0 # normalize acc

ashd $1150scale, r1

movw r0, 0(r3) # W(n) .Re w acc.Re

movw r1, 2(r3) # W(n) .Im w acc.Im

movd $0, r0 # acc.Re w 0

movd $0, r1 # acc.Im w 0

cmacd 0(r3), 8(r2) # acc w acc 0 W(n)*B(0)

cmacd 4(r3), 12(r2) # acc w acc 0 W(n11)*B(1)

cmacd 8(r3), 16(r2) # acc w acc 0 W(n12)*B(2)

nop

nop # wait till acc is ready

ashd $115, r0 # normalize Y(n) .Re

ashd $115, r1 # normalize Y(n) .Im

movw r0, out dev Re # send Y(n) to its destination.

movw r1, out dev Im

movd 4(r3), 8(r3) # W (n12) w W(n11)

movd 0(r3), 4(r3) # W (n11) w W(n)

reti

FIGURE 13. Order-2 Direct Form II IIR

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor National Semiconductores National Semiconductor
Corporation GmbH Japan Ltd. Hong Kong Ltd. Do Brazil Ltda. (Australia) Pty, Ltd.
2900 Semiconductor Drive Livry-Gargan-Str. 10 Sumitomo Chemical 13th Floor, Straight Block, Rue Deputado Lacorda Franco Building 16
P.O. Box 58090 D-82256 F 4urstenfeldbruck Engineering Center Ocean Centre, 5 Canton Rd. 120-3A Business Park Drive
Santa Clara, CA 95052-8090 Germany Bldg. 7F Tsimshatsui, Kowloon Sao Paulo-SP Monash Business Park
Tel: 1(800) 272-9959 Tel: (81-41) 35-0 1-7-1, Nakase, Mihama-Ku Hong Kong Brazil 05418-000 Nottinghill, Melbourne
TWX: (910) 339-9240 Telex: 527649 Chiba-City, Tel: (852) 2737-1600 Tel: (55-11) 212-5066 Victoria 3168 Australia

Fax: (81-41) 35-1 Ciba Prefecture 261 Fax: (852) 2736-9960 Telex: 391-1131931 NSBR BR Tel: (3) 558-9999
Tel: (043) 299-2300 Fax: (55-11) 212-1181 Fax: (3) 558-9998
Fax: (043) 299-2500

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

