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General Description Features

The NS32GX320 is a highly-integrated high-performance B 32-bit architecture and implementation
member of the Series 32000/EP™ family of National's Em- @ 4-GByte uniform addressing space
bedded System Processors™ specifically designed for m 512-Byte on-chip instruction cache
computation-intensive, embedded applications. It is soft- g 1024-Byte on-chip data cache

ware compatible with the previous microprocessors in the B Very Efficient DSP Support

family while providing new features to better support Graph- — 32-bit Add 67 ns
ics and Digital Signal Processing. — 16x16-to-32-bit Multiply 200 ns
The NS32GX320 CPU core incorporates a 4-stage instruc- — Multiply and Accumulate Double 367 ns
tion pipeline, on-chip instruction and data caches, a barrel — Complex Multiply and Accumulate 400 ns

shifter and a hardware multiplier unit. The internal organiza- -

. . o T High-performance/iow-cost bus
tion allows a high degree of parallism in executing instruc-

— Separate 32-bit address and data lines

tions. — Burst mode memory accessing

Integrated on the same chip with the CPU are also a — Dynamic bus sizing

2-channel DMA controller, a 15-level interrupt control unit — Support for page-mode and static-column DRAMs
(ICU) and three 16-bit timers. These make the device ex- — Idle states for slow peripherals

tremely attractive for those cost-sensitive applications
where a high level of integration is required.

The system interface is also optimized to support applica-
tions spanning a wide range, from low-cost, real-time con-
trollers to highly sophisticated, embedded systems.

The NS32GX320 integrates more than 390,000 transistors
fabricated in sub-micron, double-metal CMOS technology.
The advanced technology and mainframe—like design al-
low the device to achieve peak performance of 15 million
instructions per second.

On-chip 15-level Interrupt Control Unit

On-chip 2-channel DMA Controller (30 Mbytes/sec)
Three on-chip Timers

Floating-point support via the NS32381

Software compatible with the Series 32000 architecture
Double-metal CMOS technology

175-Pin Plastic Pin Grid Array (PGA) package
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1.0 Product Introduction

The NS32GX320 is an extremely sophisticated microproc-
essor in the Series 32000/EP family with a full 32-bit archi-
tecture and implementation optimized for high-performance
embedded applications.

By employing a number of mainframe-like features, the de-
vice can deliver 15 MIPS peak performance with no wait
states at a frequency of 30 MHz.

In addition to the very powerful CPU core, the NS32GX320
integrates on the same chip a number of peripherals, name-
ly: a 2-channel DMA Controller, a 15-level Interrupt Control
Unit (ICU) and three 16-bit timers.

The NS32GX320 is software compatible with the other
CPUs of the Series 32000 architecture. The main features
of the Series 32000 architecture and particularly the
NS32GX320, are described briefly below.

Powerful Addressing Modes. Nine addressing modes
available to all instructions are included to access data
structures efficiently.

Data Types. The architecture provides for numerous data
types, such as byte, word, doubleword, and BCD, which may
be arranged into a wide variety of data structures.

Symmetric Instruction Set. While avoiding special case
instructions that compilers can’t use, the Series 32000 ar-
chitecture incorporates powerful instructions for control op-
erations, such as array indexing and external procedure
calls, which save considerable space and time for compiled
code.

Memory-to-Memory Operations. The Series 32000 CPUs
represent two-address machines. This means that each op-
erand can be referenced by any one of the addressing
modes provided.

This powerful memory-to-memory architecture permits
memory locations to be treated as registers for all useful
operations. This is important for temporary operands as well
as for context switching.

Large, Uniform Addressing. The NS32GX320 has 32-bit
address pointers that can address up to 4 gigabytes without
requiring any segmentation.

Modular Software Support. Any software package for the
Series 32000 architecture can be developed independent of
all other packages, without regard to individual addressing.
In addition, ROM code is totally relocatable and easy to
access, which allows a significant reduction in hardware and
software costs.

Software Processor Concept. The Series 32000 architec-
ture allows future expansions of the instruction set that can
be executed by special slave processors, acting as exten-
sions to the CPU. This concept of slave processors is
unique to the Series 32000 architecture. It allows software
compatibility even for future components because the slave
hardware is transparent to the software. With future ad-
vances in semiconductor technology, the slaves can be
physically integrated on the CPU chip itself.

To summarize, the architectural features cited above pro-
vide three primary performance advantages and character-
istics:

® High-level language support

® Easy future growth path

e Application flexibility

2.0 Architectural Description

2.1 REGISTER SET

The NS32GX320 has 54 internal registers. 21 of them be-
long to the CPU portion of the device and are addressed
either implicitly by specific instructions or through the regis-
ter addressing mode. The other 33 control the operation of
the on-chip peripherals, and are memory mapped. Figure
2-1 shows the NS32GX320 internal registers.

2.1.1 General Purpose Registers

There are eight registers (R0O-R7) used for satisfying the
high speed general storage requirements, such as holding
temporary variables and addresses. The general purpose
registers are free for any use by the programmer. They are
32 bits in length. If a general purpose register is specified for
an operand that is eight or 16 bits long, only the low part of
the register is used; the high part is not referenced or modi-
fied.

2.1.2 Address Registers

The seven address registers are used by the CPU to imple-
ment specific address functions. A description of them fol-
lows.

PC—Program Counter. The PC register is a pointer to the
first byte of the instruction currently being executed. The PC
is used to reference memory in the program section.

SP0, SP1—Stack Pointers. The SPO register points to the
lowest address of the last item stored on the INTERRUPT
STACK. This stack is normally used only by the operating
system. It is used primarily for storing temporary data, and
holding return information for operating system subroutines
and interrupt and trap service routines. The SP1 register
points to the lowest address of the last item stored on the
USER STACK. This stack is used by normal user programs
to hold temporary data and subroutine return information.

When a reference is made to the selected Stack Pointer
(see PSR S-bit), the terms ‘SP Register’ or ‘SP’ are used.
SP refers to either SPO or SP1, depending on the setting of
the S bit in the PSR register. If the S bit in the PSR is 0, SP
refers to SPO. If the S bit in the PSR is 1 then SP refers to
SP1.

The NS32G X320 also allows the SP1 register to be directly
loaded and stored using privileged forms of the LPRi and
SPRi instructions, regardiess of the setting of the PSR S-bit.
When SP1 is accessed in this manner, it is referred to as
‘USP Register’ or simply ‘USP".

Stacks in the Series 32000 architecture grow downward in
memory. A Push operation pre-decrements the Stack Point-
er by the operand length. A Pop operation post-increments
the Stack Pointer by the operand length.

FP—Frame Pointer. The FP register is used by a procedure
to access parameters and local variables on the stack. The
FP register is set up on procedure entry with the ENTER
instruction and restored on procedure termination with the
EXIT instruction.

The frame pointer holds the address in memory occupied by
the old contents of the frame pointer.

SB—Static Base. The SB register points to the global vari-
ables of a software module. This register is used to support
relocatable global variables for software modules. The SB
register holds the lowest address in memory occupied by
the global variables of a module.
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TRCB (0,1, 2)
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Configuration

[ CFG |

FIGURE 2-1. NS32GX320 Internal Registers

INTBASE—Interrupt Base. The INTBASE register holds
the address of the dispatch table for interrupts and traps
(Section 3.2.1).

MOD—Module. The MOD register holds the address of the
module descriptor of the currently executing software mod-
ule. The MOD register is 16 bits long, therefore the module
table must be contained within the first 64 kbytes of memo-
ry.

2.1.3 Processor Status Register

The Processor Status Register (PSR) holds status informa-

tion for the microprocessor.

The PSR is sixteen bits long, divided into two eight-bit

halves. The low order eight bits are accessible to all pro-

grams, but the high order eight bits are accessible only to
programs executing in Supervisor Mode.

C The Cbitindicates that a carry or borrow occurred after
an addition or subtraction instruction. It can be used
with the ADDC and SUBC instructions to perform multi-
ple-precision integer arithmetic calculations. It may
have a setting of 0 (no carry or borrow) or 1 (carry or
borrow).

T The T bit causes program tracing. If this bitis setto 1, a
TRC trap is executed after every instruction (Section
3.3.1).

The L bit is altered by comparison instructions. In a
comparison instruction the L bit is set to ““1” if the sec-
ond operand is less than the first operand, when both
operands are interpreted as unsigned integers. Other-
wise, it is set to 0" In Floating-Point comparisons, this
bit is always cleared.

V  The V-bit enables generation of a trap (OVF) when an
integer arithmetic operation overflows.

Note: The settng of the V-bit affects the execution times of the multiply and
arithmetic shift instructions. Refer to Appendix D for details.

F The F bit is a general condition flag, which is altered by
many instructions (e.g., integer arithmetic instructions
use it to indicate overflow).

Z The Z bit is altered by comparison instructions. In a
comparison instruction the Z bit is set to ““1” if the sec-
ond operand is equal to the first operand; otherwise it is
set to “0”.

N The N bit is altered by comparison instructions. In a
comparison instruction the N bit is set to *“1” if the sec-
ond operand is less than the first operand, when both
operands are interpreted as signed integers. Otherwise,
it is set to “0”.
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FIGURE 2-2. Processor Status Register (PSR)

U If the U bitis “1” no privileged instructions may be exe-
cuted. If the U bit is “0” then all instructions may be
executed. When U = 0O the processor is said to be in
Supervisor Mode; when U = 1 the processor is said to
be in User Mode. A User Mode program is restricted
from executing certain instructions and accessing cer-
tain registers which could interfere with the operating
system. For example, a User Mode program is prevent-
ed from changing the setting of the flag used to indicate
its own privilege mode. A Supervisor Mode program is
assumed to be a trusted part of the operating system,
hence it has no such restrictions.

S The S bit specifies whether the SPO register or SP1
register is used as the Stack Pointer. The bit is automat-
ically cleared on interrupts and traps. it may have a
setting of 0 (use the SPO register) or 1 (use the SP1
register).

P The P bit prevents a TRC trap from occurring more than
once for an instruction (Section 3.3.1). It may have a
setting of O (no trace pending) or 1 (trace pending).

I 11 =1, then all interrupts will be accepted. If | = 0,
only the NMI interrupt is accepted. Trap enables are not
affected by this bit.

2.1.4 Configuration Register

The Configuration Register (CFG) is 32 bits wide, of which
ten bits are implemented. The implemented bits enable vari-
ous operating modes for the CPU, including vectoring of
interrupts, execution of slave instructions, and control of the
on-chip caches. In the NS32332 bits 4 through 7 of the CFG
register selected between the 16-bit and 32-bit slave proto-
cols and between 512-byte and 4-kbyte page sizes. The
NS32GX320 supports only the 32-bit slave protocol and no
memory management: consequently these bits are forced
to 1.

When the CFG register is loaded using the LPRi instruction,
bit 2 and bits 13 through 31 should be set to 0. Bits 4
through 7 are ignored during loading, and are always re-

The format of the CFG register is shown in Figure 2-3. The
various control bits are described below.

1 Interrupt vectoring. This bit controls whether maska-
ble interrupts are handled in nonvectored (1=0) or
vectored (1= 1) mode. Refer to Section 3.2.3 for more
information.

F Floating-point instruction set. This bit indicates
whether a floating-point unit (FPU) is present to exe-
cute floating-point instructions. If this bit is 0 when the
CPU executes a floating-point instruction, a Trap
(UND) occurs. If this bit is 1, then the CPU transfers
the instruction and any necessary operands to the
FPU using the slave-processor protocol described in
Section 3.1.4.1.

C Custom instruction set. This bit indicates whether a
custom slave processor is present to execute custom
instructions. If this bit is 0 when the CPU executes a
custom instruction, a Trap (UND) occurs. If this bit is
1, the CPU transfers the instruction and any neces-
sary operands to the custom slave processor using
the slave-processor protocol described in Section
3.1.4.1.

Direct-Exception mode enable. This bit enables the
Direct-Exception mode for processing exceptions.
When this mode is selected, the CPU response time
to interrupts and other exceptions is significantly im-
proved. Refer to Section 3.2.1 for more information.
Data Cache enable. This bit enables the on-chip Data
Cache to be accessed for data reads and writes. Re-
fer to Section 3.4.2 for more information.

Lock Data Cache. This bit controls whether the con-
tents of the on-chip Data Cache are locked to fixed
memory locations (LDC = 1), or updated when a data
read is missing from the cache (LDC=0).

IC Instruction Cache enable. This bit enables the on-
chip Instruction Cache to be accessed for instruction
fetches. Refer to Section 3.4.1 for more information.

DE

DC

LDC

turned as 1’s when CFG is stored via the SPRi instruction. LIC  Lock Instruction Cache. This bit controls whether the

When the SETCFG instruction is executed, the contents of contents of the on-chip Instruction Cache are locked

the CFG register bits 0 through 3 are loaded from the in- to fixed memory locations (LIC= 1), or updated when

struction’s short field, bits 4 through 7 are ignored and bits 8 an instruction fetch is missing from the cache

through 12 are forced to 0. Bit 2 must be set to 0. (LIC=0).

31 12 8(7 0
Reserved | to | 16 [woc[oc [oe [ + [ + [ 1 [ 1 [ c Jmes] F ] 1

FIGURE 2-3. Configuration Register (CFG) Bits 13 to 31 are Reserved; Bits 4 to 7 are Forced to 1.




2.0 Architectural Description (continued)

2.1.5 Debug Registers

The NS32GX320 contains 4 registers dedicated for debug-

ging functions.

These registers are accessed using privileged forms of the

LPRi and SPRi instructions.

DCR—Debug Condition Register. The DCR Register en-

ables detection of debug conditions. The format of the DCR

is shown in Figure 2-4; the various bits are described below.

A debug condition is enabled when the related bit is set to 1.

CBEO Compare Byte Enable 0; when set, BYTEO of an
aligned double-word is included in the address com-
parison

CBE1 Compare Byte Enable 1; when set, BYTE1 of an
aligned double-word is included in the address com-
parison

CBE2 Compare Byte Enable 2; when set, BYTE2 of an
aligned double-word is included in the address com-
parison

CBE3 Compare Byte Enable 3; when set, BYTE3 of an
aligned double-word is included in the address com-
parison

CWR Address-compare enable for write references
CRD Address-compare enable for read references
CAE Address-compare enable

TR Enable Trap (DBG) when a debug condition is de-
tected

PCE PC-match enable

ub Enable debug conditions in User-Mode

SD Enable debug conditions in Supervisor Mode
DEN Enable debug conditions

The following 2 bits control testing features that can be
used during initial system debugging. These features are

unique to the NS32GX320 implementation of the Series
32000 architecture; as such, they may not be supported in
future implementations. For normal operation these 2 bits
should be set to 0.

Sl Single-Instruction mode enable. This bit, when set
to 1, inhibits the overlapping of instruction’s execu-
tion.

BCP  Branch Condition Prediction disable. When this bit is
1, the branch prediction mechanism is disabled. See
Section 3.1.3.1.

DSR—Debug Status Register. The DSR Register indicates
debug conditions that have been detected. When the CPU
detects an enabled debug condition, it sets the correspond-
ing bit (BC, BEX, BCA) in the DSR to 1. When an address-
compare condition is detected, then the RD-bit is loaded to
indicate whether a read or write reference was performed.

Software must clear all the bits in the DSR when appropri-

ate. The format of the DSR is shown in Figure 2-5; the vari-

ous fields are described below.

RD Indicates whether the last address-compare condi-
tion was for a read (RD = 1) or write (RD = 0)
reference

BPC PC-match condition detected

BEX External condition detected

BCA Address-compare condition detected
Note: |f an address compare is detected for a read and write for the same
instruction, the RD bit will remain clear.
CAR—Compare Address Register. The CAR Register
contains the address that is compared to operand reference
addresses to detect an address-compare condition. The ad-
dress must be double-word aligned; that is, the two least-
significant bits must be 0. The CAR is 32 bits wide.
BPC—Breakpoint Program Counter. The BPC Register
contains the address that is compared with the PC contents
to detect a PC-match condition. The BPC Register is 32 bits
wide.

15 8(7 0
Reserved CAE | CRD | CWR | Res lCBES I CBE2|CBE1 lCBEO
31 24| 23 16
Reserved DEN | SD | ub | PCE I TR l BCP l St | Res

FIGURE 2-4. Debug Condition Register (DCR)
31 28|27 0

RO | BPG | BEX | BCA

Reserved

FIGURE 2-5. Debug Status Register (DSR)
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2.0 Architectural Description (continued)

2.1.6 DMA Controller Registers

The DMA Controller contains 19 32-bit memory mapped
registers that are both readable and writable by software.
Three of these registers are common to both channels and
are used to report various conditions as well as selectively
enable or disable interrupt generation corresponding to
each condition. The other 16 registers are divided into two
sets of eight, with each set associated to one channel.

All of the registers appear as memory locations, and must
be accessed by specifying an operand length of 32 bits.
Accesses specifying a length other than 32 bits may cause
unpredictable results. The registers DSTAT, ADCA, ADCB,
BLTC and MODE must not be written into while the associ-
ated channel is enabled. Upon reset, the registers STAT,
IMSK, BLTC, BLTR, MODE and CNTL are cleared. Figure
2-6 shows the address map of the DMA registers.
STAT—Status Register. This register contains status infor-
mation for the two DMA channels. Its format is shown in
Figure 2-7.

31 8|7 0
Reserved |cHAC|ovr|eoT]Tc]cHac]ovr]EoT]Tc
C _ N y,
Channel 1 Channel 0

FIGURE 2-7. DMA Status Register (STAT)

TC Terminal Count; when set to 1, indicates that the
transfer was completed by a terminal count condi-
tion (BLTC Register reached zero).

Register
Names

Register
Addresses

STAT | FFFFFO10

Global
Registers IMSK | FFFFFO14
DSTAT | FFFFFO18
(| ADCA | FFFFF020

ADRA | FFFFF024
ADCB FFFFFO28
Channel 0 ADRB FEFFF02C

Registers BLTC | FFFFFO30
BLTR | FFFFF034

FFFFFO38

\ CNTL FFFFFO3C

EOT External End Of Transfer. This bit is set to 1 when
the transfer is externally terminated by the assertion
of the EOT signal.

OVR Channel Overrun. Used only with double-buffered
transfers. OVR is set to 1 when the present transfer
is completed (BLTC = 0), but the parameters for the
next transfer (addresses and block length) are not
valid.

CHAC Channel Active. When set to 1, indicates that the
channel is active (CHEN bit in register CNTL is 1 and
BLTC > 0).
The TC, EOT and OVR bits are sticky. This means that,
once set by the occurrence of the specific condition, they
will remain set until explicitly cleared by software. These bits
can be individually cleared by writing a value into the STAT
register with the bit positions to be cleared set to 1. The
CHAC bit continuously reflects the active or inactive status
of the channel, and therefore, it is READ only.

IMSK—Interrupt Mask. This register is used to enable or
disable interrupts for various conditions recorded in the
STAT register. The format of IMSK is shown in Figure 2-8.

31 8|7 0

Reserved

oir| ova|eot[1c] o] ovr]EoT[TC
< 2 .

Channel 1 Channel 0

FIGURE 2-8. DMA Interrupt Mask Register (IMSK)

Register
Names

Register
Addresses

~

DCA | FFFFF040
ADRA | FFFFF044
DCB | FFFFF048
Channel 1 ADRB | FFFFF04C
Registers | [~ gi1c | FrrFFos0
BLTR | FFFFF054

FFFFFO58

\ CNTL FFFFFO5C

FIGURE 2-6. DMA Controller Registers Address Map




2.0 Architectural Description continued)

The DIP bit selects the DMA Interrupt Priority level in the
Interrupt Control Unit. When a DIP is 0, the priority level is 6;
when DIP is 1, the priority level is 14. Bits 0-2 and 4-6 are
the Interrupt Mask Bits. An interrupt is enabled when the
corresponding mask bit is set to 1.

DSTAT—DMA Debug Status Register. DSTAT is an im-
age of the STAT register and provides an alternate means
for accessing STAT. Writing a value into DSTAT stores the
value itself into the STAT register, as opposed to only clear-
ing bits as when writing directly into STAT. Setting a bit into
DSTAT affects the associated interrupt as well as the CHEN
bit in the CNTL register, according to the respective mask
bit in IMSK.

ADCA—Device A Address Counter. In Indirect transfer
mode, holds the current address of the source data item to
be transferred. In Flyby mode, holds the current address of
either the source data item or the destination location in the
Addressed Device. If the ADA bit in the MODE register is set
to 1, ADCA is incremented after each transfer cycle by the
number of bytes transferred.

ADRA—Device A Address Register. In Indirect transfer
mode, holds the starting address of the next source data
block to be transferred. in Flyby mode, holds the starting
address of either the source data block or the destination
data area in the Addressed Device.

ADCB--Device B Address Counter. In Indirect transfer
mode, holds the address of the destination location to re-
ceive the data item to be transferred. If the ADB bit in the
MODE register is set to 1, ADCB is incremented after each
transfer cycle by the number of bytes transferred. ADCB is
not used in Flyby mode.

ADRB—Device B Address Register. In Indirect transfer
mode, holds the starting address of the next destination
data area to receive the block of data. ADRB is not used in
Flyby mode.

BLTC—Block Length Counter. Holds the current number
of bytes to be transferred. BLTC is decremented after each
transfer cycle by the number of bytes transferred.

BLTR—BIlock Length Register. Holds the number of bytes

in the next block to be transferred. Writing a zero vaiue into

BLTR while the VLD and CHEN bits in CNTL are both set to

1 may cause unpredictable results.

Note 1: The ADRA, ADRB and BLTR registers are used to store the trans-
fer parameters (i.e., source address, destination address and block
length) for the next data block to be transferred, for either auto-ini-
tialize or double-buffer modes of operation.

Note 2: The vaiues programmed intoc ADCA, ADRA, ADCB, ADRB, BLTC
and BLTR must be multiples ot the smaller of the source and desti-
nation bus widths programmed in the mode register.

MODE—Mode Control Register. This register is used to

specify the channel operating mode. The format of MODE is

shown in Figure 2-9. Bit 1 and bits 15 through 31 should be

set to 0.

31 15| 14 10 9 8

OT Operation Type.

OT = 0 — Auto-Initialize Mode Disabled

OT = 1 — Auto-Initialize Mode Enabled
FBY Flyby/Indirect Transfers.

FBY = 0 — Flyby

FBY = 1 — Indirect (memory-to-memory)

DIR Flyby Transfer Direction. Specifies the direction of
transfer between memory and peripheral device dur-
ing flyby mode.

DIR = 0 — Peripheral Device is Destination

DIR = 1 — Peripheral Device is Source
BWB Device B Bus Width.

BWB = 00 — 8 Bits

BWB = 01 — 16 Bits

BWB = 10 — 32 Bits

BWB = 11 —> Reserved

ADB Device B Address Control. Enables the incrementing
of the device B address after each transfer cycle.

ADB = 0 — Address Unchanged
ADB = 1 — Address Incremented
BWA Device A Bus Width.

BWA = 00 — 8 Bits
BWA = 01 — 16 Bits
BWA = 10 — 32 Bits

BWA = 11 — Reserved
ADA Device A Address Control. Enables the incrementing
of the device A address after each transfer cycle.
ADA = 0 — Address Unchanged
ADA = 1 — Address Incremented
BLT Block Transfer Length. This 5-bit field is used by the
bus fairness mechanism, and specifies the maximum
number of bytes that can be transferred before the
DMA channel relinquishes the bus. Refer to Section
3.5.6 for details.
CNTL—Channel Control Register. CNTL is used to syn-
chronize the channel operation with the programming of the
block transfer parameters. The format of CNTL is shown in
Figure 2-10.

31 2|1 0
Reserved VLD J CHEN
FIGURE 2-10. Channel Control Register (CNTL)

6 5 4| 3 2 1 0

Reserved BLT ADA BWA

ADB BWB DIR | FBY | Res | OT

FIGURE 2-9. DMA Mode Control Register (MODE)




2.0 Architectural Description (continued)
CHEN Channel Enable.

CHEN = 0 — Channel Disabled

CHEN = 1 — Channel Enabled

Transfer Parameters Valid. Specifies whether the
transfer parameters for the next block to be trans-
ferred are valid.

VLD = 0 — Parameters Not Valid

VLD = 1 — Parameters Valid

The CHEN bit is set to 0 in the following cases.

¢ Upon Reset

® Software clears it by writing to the CNTL register

* The EOT bit in STAT is set to 1

e The OVR bit in STAT is set to 1 and is unmasked

In the last two cases the CHEN bit is forced to 0 and cannot
be set to 1 by software unless EOT is cleared and OVR is

either cleared or masked by clearing the corresponding bit
in IMSK.

2.1.7 Interrupt Control Unit (ICU) Registers

The interrupt control unit contains two memory-mapped reg-
isters: IVCT and ISRV. These registers are 8 bits and 16 bits
wide respectively, and must be accessed by specifying op-
erand lengths equal to their widths. Specifying different op-
erand lengths may cause unpredictable results. The ad-
dress map for IVCT and ISRV is shown in Figure 2-11.

VLD

Register Register
Names Addresses

IVCT FFFFFEQO

ISRV | FrrrrEOs

FIGURE 2-11. ICU Registers Address Map

IVCT—Interrupt Vector Register. This is a read-only reg-
ister containing the current interrupt request vector to be
used by the CPU in accessing the interrupt dispatch table
when the request is acknowledged. Bits 0-3 contain an en-
coded value representing the interrupt request priority level.
The binary value 1111 represents the highest priority level,
while the value 0000 indicates that no interrupt request is
pending. Figure 2-12 shows the format of IVCT.
7

o|o[o|1|v[v|vT3

FIGURE 2-12. Interrupt Vector Register (IVCT)

ISRV Interrupt In-Service Register. ISRV is used by the ICU
to keep track of the priority levels of interrupts cur-
rently being serviced.

A value of 1 in bit position i (where 1 < i < 15), indicates
that the i-th priority level is currently in-service. Bit position 0
is always forced to 0. Upon reset the ISRV register is
cleared to 0. Note that a zero value in the ISRV register
indicates that there are no in-service interrupts.

2.1.8 Timers Registers

Each of the three timers in the NS32GX320 is controlled by
a set of four registers. These registers are all 16 bits wide,
and are memory-mapped. Their address map is shown in
Figure 2-13. Accesses to the timer registers must specify
operand lengths of 16 bits otherwise undefined results may
be obtained. Refer to Section 3.5.3 for details on the timer’s
operation.

Register Register
Names Addresses
Timer 04 TRCA FFFFF814
TRCB FFFFF818
TCNTL FFFFF81C
. TRCA FFFFF824
Timer 1<
TRCB FFFFF828
TCNTL FFFFF82C
.
Timer 24 TRCA FFFFF834
TRCB FFFFF838
\ TCNTL FFFFF83C

FIGURE 2-13. Timer Registers Address Map
TC—Counter. TC is a down-counter which, upon under-
flow, is reloaded with the contents of either TRCA or TRCB
for modes 1 and 2, and with all 1’s for mode 3.

TRCA, TRCB—Reload/Capture Registers A and B.
These registers hold either the counter reload values or a
snapshot of TC.




2.0 Architectural Description (continueq)
TCNTL—Timer Control Register. Used to control the op-
eration of each timer, and to enable timer interrupts. The
TCNTL format is shown in Figure 2-14.

31 12| 11| 10] 9| 8|7 5a o
RES |wis |wia|wiB|PRC TMC]TCSIIPFAIIENAIIPFBLENB

FIGURE 2-14. Timer Control Register (TCNTL)

IENB Interrupt Enable Bit B. When set to 1, enables the
interrupt from IPFB.

IPFB  Interrupt Pending Flag B.

IENA Interrupt Enable Bit A. When set to 1, enables the

interrupt from IPFA. If Mode 3 is selected, it en-
ables the interrupt from TCS as well.

Interrupt Pending Flag A.

Timer Control and Status. In modes 1 or 2, this bitis
used to start and stop the timer. The timer starts
when TCS is 1. In mode 3, TCS is the underflow
interrupt pending flag.

Timer Mode Control. This three-bit field selects the
timer mode of operation. (See Section 3.5.3.)

Prescaler Control. Used only in modes 1 and 3.
PRC controls the frequency of the timer input clock
(TCLK). When PRC = 0, TCLK = BCLK/8; when
PRC = 1, TCLK = BCLK/4096.

Write Inhibit B. When WIB is set to 1, writing into
IPFB is inhibited.

Write Inhibit A. When WIA is set to 1, writing into
IPFA is inhibited.

Write Inhibit S. When WIS is set to 1, writing into
TCS is inhibited.

2.2 MEMORY ORGANIZATION

The NS32G X320 implements full 32-bit addresses. This al-
lows the device to access up to 4 Gbytes of memory. The
memory is a uniform linear address space. Memory loca-
tions are numbered sequentiaily starting at zero and ending
at 232 — 1. The number specifying a memory location is
called an address. The contents of each memory location is
a byte consisting of eight bits. Unless otherwise noted, dia-
grams in this document show data stored in memory with
the lowest address on the right and the highest address on
the left. Also, when data is shown vertically, the lowest ad-
dress is at the top of a diagram and the highest address at
the bottom of the diagram. When bits are numbered in a
diagram, the least significant bit is given the number zero,
and is shown at the right of the diagram. Bits are numbered
in increasing significance and toward the left.

IPFA
TCS

T™C

PRC

wiB

WIA

wis

7 0

Byte at Address A

Two contiguous bytes are called a word. Except where not-
ed, the least significant byte of a word is stored at the lower
address, and the most significant byte of the word is stored
at the next higher address. In memory, the address of a
word is the address of its least significant byte, and a word
may start at any address.

15 8|7 0
A+1 A
MSB LSB
Word at Address A

Two contiguous words are called a double-word. Except
where noted, the least significant word of a double-word is
stored at the lowest address and the most significant word
of the double-word is stored at the address two higher. In
memory, the address of a double-word is the address of its
least significant byte, and a double-word may start at any
address.

31 24|23 16| 15 87 0

A+3
MSB

A+2 A+1 A

LSB

Double-Word at Address A

Although memory is addressed as bytes, it is actually orga-
nized as double-words. Note that access time to a word or a
double-word depends upon its address, e.g. double-words
that are aligned to start at addresses that are multiples of
four will be accessed more quickly than those not so
aligned. This also applies to words that cross a double-word
boundary.

2.2.1 Address Mapping
Figure 2-15 shows the NS32GX320 address mapping.

The NS32GX320 supports the use of memory-mapped pe-
ripheral devices and coprocessors. Such memory-mapped
devices can be located at arbitrary locations in the address
space except for the upper 8 Mbytes of memory (addresses
between FF800000 (hex) and FFFFFFFF (hex), inclusive),
which are reserved by National Semiconductor Corporation.
Nevertheless, it is recommended that high-performance pe-
ripheral devices and coprocessors be located in a specific
8 Mbyte region of memory (addresses between FF000000
(hex) and FF7FFFFF (hex), inclusive), that is dedicated for
memory-mapped /0. This is because the NS32GX320 de-
tects references to the dedicated locations and serializes
reads and writes. See Section 3.1.3.3. When making 1/0
references to addresses outside the dedicated region, ex-
ternal hardware must indicate to the NS32GX320 that spe-
cial handling is required. In this case a small performance
degradation will also result. Refer to Section 3.1.3.2 for
more information on memory-mapped 1/0.
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2.0 Architectural Description (continued)
Address (Hex)

00000000

Memory and I/0

FF000000

FF800000

Memory-Mapped I/0

Reserved

FFFFFOXX

On-Chip DMA Controlier

Reserved

FFFFFBXX

On-Chip Timers

FFFFFEQD

Reserved

FFFFFFFF

On-Chip ICU and
Interrupt Control

FIGURE 2-15. NS32G X320 Address Mapping

2.3 MODULAR SOFTWARE SUPPORT

The NS32GX320 provides special support for software
modules and modular programs.

Each module in a NS32GX320 software environment con-
sists of three components:

1. Program Code Segment.

This segment contains the module’s code and constant
data.
2. Static Data Segment.

Used to store variables and data that may be accessed
by all procedures within the module.
3. Link Table.

This component contains two types of entries: Absolute
Addresses and Procedure Descriptors.

An Absolute Address is used in the external addressing
mode, in conjunction with a displacement and the current
MOD Register contents to compute the effective address
of an external variable belonging to another module.

The Procedure Descriptor is used in the call external pro-

cedure (CXP) instruction to compute the address of an

external procedure.
Normally, the linker program specifies the locations of the
three components. The Static Data and Link Table typically
reside in RAM; the code component can be either in RAM or
in ROM. The three components can be mapped into non-
contiguous locations in memory, and each can be indepen-
dently relocated. Since the Link Table contains the absolute
addresses of external variables, the linker need not assign
absolute memory addresses for these in the module itself;
they may be assigned at load time.
To handle the transfer of control from one module to anoth-
er, the NS32G X320 uses a module table in memory and two
registers in the CPU.

The Module Table is located within the first 64 kbytes of
memory. This table contains a Module Descriptor (also
called a Module Table Entry) for each module in the ad-
dress space of the program. A Module Descriptor has four
32-bit entries corresponding to each component of a mod-
ule:

¢ The Static Base entry contains the address of the begin-
ning of the module’s static data segment.

® The Link Table Base points to the beginning of the mod-
ule’s Link Table.

e The Program Base is the address of the beginning of the
code and constant data for the module.

e A fourth entry is currently unused but reserved.

The MOD Register in the CPU contains the address of the
Module Descriptor for the currently executing module.

The Static Base Register (SB) contains a copy of the Static
Base entry in the Module Descriptor of the currently execut-
ing module, i.e., it points to the beginning of the current
module’s static data area.

This register is implemented in the CPU for efficiency pur-
poses. By having a copy of the static base entry or chip, the
CPU can avoid reading it from memory each time a data
item in the static data segment is accessed.

In an NS32GX320 software environment modules need not
be linked together prior to loading. As modules are loaded,
a linking loader simply updates the Module Table and fills
the Link Table entries with the appropriate values. No modi-
fication of a module’s code is required. Thus, modules may
be stored in read-only memory and may be added to a sys-
tem independently of each other, without regard to their in-
dividual addressing. Figure 2-16 shows a typical
NS32G X320 run-time environment.




2.0 Architectural Description (continued)

o, MODULE TABLE STATIC DATA
31 0 SEGMENT
STATIC BASE Eatatetakale el ) SB REGISTER
Mgﬁgt‘é LINK TABLE BASE
ENTRY PROGRAM BASE [ DiSP
RESERVED :
L 4 LINK TABLE
: 31
: ABSOLUTE ADDRESS
' ABSOLUTE ADDRESS
OFFSET == -»@4- - OFFSET | MODULE
; DISP1 x 4 ABSOLUTE ADDRESS
: AL L
[}
' PROGRAM CODE C+ DiSP2
' SEGMENT EXTERNAL MODULE
! —>]
)
EXT. VARIABLE
PC REGISTER
Note: Dashed lines indicate information copied to registers during transter of control between modules.
FIGURE 2-16. NS32G X320 Run-Time Environment
OPTIONAL BASIC
EXTENSIONS INSTRUCTION
A .
4 ' N
H H
mm,w1lmn[m1 ! i
GEN | GEN |
IMPLIED INDEX INDEX ADOR | ADDR | OPCODE
O'EWEMS) DISP DisP BYTE 8YTE Il?DE E “goe i
] ] H i
1 i

|
y

(

L_ﬂ

FIGURE 2-17. General Instruction Format

GEN. ADDR. MODE

REG. NO.

FIGURE 2-18. Index Byte Format

TL/EE/10564-4

TL/EE/10564-2

TL/EE/10564-3
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2.0 Architectural Description (continued)
2.4 INSTRUCTION SET

2.4.1 General Instruction Format

Figure 2-17 shows the general format of a Series 32000
instruction. The Basic Instruction is one to three bytes long
and contains the Opcode and up to two 5-bit General Ad-
dressing Mode (“Gen”) fields. Following the Basic Instruc-
tion field is a set of optional extensions, which may appear
depending on the instruction and the addressing modes se-
lected.

index Bytes appear when either or both Gen fields specify
Scaled Index. In this case, the Gen field specifies only the
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies
which General Purpose Register to use as the index, and
which addressing mode calculation to perform before index-
ing. See Figure 2-18.

Following index Bytes come any displacements (addressing
constants) or immediate values associated with the select-
ed addressing modes. Each Disp/Imm field may contain
one or two displacements, or one immediate value. The size
of a Displacement field is encoded with the top bits of that
field, as shown in Figure 2-19, with the remaining bits intet-
preted as a signed (two’s complement) value. The size of an
immediate value is determined from the Opcode field. Both
Displacement and Immediate fields are stored most signifi-
cant byte first. Note that this is different from the memory
representation of data (Section 2.2).

Some instructions require additional, ‘implied” immediates
and/or displacements, apart from those associated with ad-
dressing modes. Any such extensions appear at the end of
the instruction, in the order that they appear within the list of
operands in the instruction definition (Section 2.4.3).

2.4.2 Addressing Modes

The CPU generally accesses an operand by calculating its
Effective Address based on information available when the
operand is to be accessed. The method to be used in per-
forming this calculation is specified by the programmer as
an “addressing mode.”

Byte Displacement: Range —64 to +63

] SIGNED DISPLACEMENT

Word Displacement: Range —8192to + 8191

1 e

o

Double Word Displacement:
Range —(229 — 224)to + (229 — 1)*

TL/EE/10564-5
FIGURE 2-19. Displacement Encodings
*Note: The pattern *11100000" for the most significant byte of the displace-
ment is reserved by National for future enhancements. Therefore, it
should never be used by the user program. This causes the lower
limit of the displacement range to be — (229 —224) instead of —229.
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2.0 Architectural Description (continued)

Addressing modes are designed to optimally support high-
level language accesses to variables. In nearly all cases, a
variable access requires only one addressing mode, within
the instruction that acts upon that variable. Extraneous data
movement is therefore minimized.

Addressing Modes fall into nine basic types:

Register: The operand is available in one of the eight Gen-
eral Purpose Registers. In certain Slave Processor instruc-
tions, an auxiliary set of eight registers may be referenced
instead.

Register Relative: A General Purpose Register contains an
address to which is added a displacement value from the
instruction, yielding the Effective Address of the operand in
memory.

Memory Space: Identical to Register Relative above, ex-
cept that the register used is one of the dedicated registers
PC, SP, SB or FP. These registers point to data areas gen-
erally needed by high-level languages.

Memory Relative: A pointer variable is found within the
memory space pointed to by the SP, SB or FP register. A
displacement is added to that pointer to generate the Effec-
tive Address of the operand.

Immediate: The operand is encoded within the instruction.
This addressing mode is not allowed if the operand is to be
written.

Absolute: The address of the operand is specified by a
displacement field in the instruction.

External: A pointer value is read from a specified entry of
the current Link Table. To this pointer value is added a dis-
placement, yielding the Effective Address of the operand.
Top of Stack: The currently-selected Stack Pointer (SPO or
SP1) specifies the location of the operand. The operand is
pushed or popped, depending on whether it is written or
read.

Scaled Index: Although encoded as an addressing mode,
Scaled Indexing is an option on any addressing mode ex-
cept Immediate or another Scaled Index. It has the effect of

calculating an Effective Address, then multiplying any Gen-
eral Purpose Register by 1, 2, 4 or 8 and adding it into the
total, yielding the final Effective Address of the operand.
Table 2-1 is a brief summary of the addressing modes. For a
complete description of their actions, see the Instruction Set
Reference Manual.

2.4.3 instruction Set Summary
Table 2-2 presents a brief description of the NS32GX320
instruction set. The Format column refers to the Instruction
Format tables (Appendix A). The Instruction column gives
the instruction as coded in assembly language, and the De-
scription column provides a short description of the function
provided by that instruction. Further details of the exact op-
erations performed by each instruction may be found in the
Instruction Set Reference Manual.
Notations:
i = Integer length suffix: B = Byte

W = Word

D = Double Word
f = Floating Point length suffix: F = Standard Floating

L = Long Floating

gen = General operand. Any addressing mode can be
specified.
short = A 4-bit value encoded within the Basic Instruction
(see Appendix A for encodings).
imm = Implied immediate operand. An 8-bit value append-
ed after any addressing extensions.
disp = Displacement (addressing constant): 8, 16 or 32
bits. All three lengths legal.
reg = Any General Purpose Register: RO-R7.
areg = Any Processor Register: Address, Debug, Status,
Configuration.
creg = A Custom Slave Processor Register (Implementa-
tion Dependent).

cond = Any condition code, encoded as a 4-bit field within
the Basic Instruction (see Appendix A for encodings).
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2.0 Architectural Description (continued)
TABLE 2-1. NS32GX320 Addressing Modes

ENCODING MODE ASSEMBLER SYNTAX EFFECTIVE ADDRESS

Register

00000 Register 0 RO, FO, LO None: Operand is in the

00001 Register 1 R1,F1, 1 specified register.

00010 Register 2 R2,F2,L2

00011 Register 3 R3, F3, L3

00100 Register 4 R4,F4,L4

00101 Register 5 R5, F5, L5

00110 Register 6 R6, F6, L6

00111 Register 7 R7,F7,L7

Register Relative

01000 Register 0 relative disp(R0) Disp + Register.

01001 Register 1 relative disp(R1)

01010 Register 2 relative disp(R2)

01011 Register 3 relative disp(R3)

01100 Register 4 relative disp(R4)

01101 Register 5 relative disp(R5)

01110 Register 6 relative disp(R6)

01111 Register 7 relative disp(R7)

Memory Relative

10000 Frame memory relative disp2(disp1(FP)) Disp2 + Pointer; Pointer found at

10001 Stack memory relative disp2(disp1(SP)) address Disp1 + Register. “SP" is either

10010 Static memory relative disp2(disp1(SB)) SPO or SP1, as selected in PSR.

Reserved

10011 (Reserved for Future Use)

Immediate

10100 Immediate value None. Operand is input from
instruction queue.

Absolute

10101 Absolute @disp Disp.

External

10110 External EXT(disp1) + disp2 Disp2 + Pointer; Pointer is found
at Link Table Entry number Disp1.

Top of Stack

10111 Top of stack TOS Top of current stack, using either
User or Interrupt Stack Pointer,
as selected in PSR. Automatic
Push/Pop included.

Memory Space

11000 Frame memory disp(FP) Disp + Register; “SP” is either

11001 Stack memory disp(SP) SPO or SP1, as selected in PSR.

11010 Static memory disp(SB)

11011 Program memory * -+ disp

Scaled Index

11100 Iindex, bytes mode[Rn:B] EA (mode) + Rn.

11101 Index, words mode[Rn:W] EA (mode) + 2 X Rn.

11110 Index, double words mode[Rn:D] EA (mode) + 4 X Rn.

11111 Index, quad words mode[Rn:Q} EA (mode) + 8 X Rn.

‘Mode’ and ‘n’ are contained
within the index Byte.

EA (mode) denotes the effective
address generated using mode.
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2.0 Architectural Description (continued)
TABLE 2-2. NS32G X320 Instruction Set Summary

MOVES
Format Operation Operands
4 MOVi gen,gen
2 MOVQi short,gen
7 MOVMi gen,gen,disp
7 MOVZBW gen,gen
7 MOVZID gen,gen
7 MOVXBW gen,gen
7 MOVXiD gen,gen
4 ADDR gen,gen
INTEGER ARITHMETIC
Format Operation Operands
4 ADDI gen,gen
2 ADDQi short,gen
4 ADDCi gen,gen
4 SUBI gen,gen
4 SUBCi gen,gen
<] NEGi gen,gen
[ ABSi gen,gen
7 MULi gen,gen
7 QUOI gen,gen
7 REMi gen,gen
7 DIvi gen,gen
7 MODi gen,gen
7 MEIi gen,gen
7 DEli gen,gen
18 MULWD gen,gen
18 MACTD gen,gen
COMPLEX ARITHMETIC
Format Operation Operands
18 CMULD gen,gen
18 CMACD gen,gen
PACKED DECIMAL (BCD) ARITHMETIC
Format Operation Operands
6 ADDPI gen,gen
[} SUBPi gen,gen
INTEGER COMPARISON
Format Operation Operands
4 CMPi gen,gen
2 CMPQi short,gen
7 CMPMi gen,gen,disp
LOGICAL AND BOOLEAN
Format Operation Operands
4 ANDiI gen,gen
4 ORi gen,gen
4 BICi gen,gen
4 XORi gen,gen
6 COMi gen,gen
6 NOTi gen,gen
2 Scondi gen
SHIFTS
Format Operation Operands
6 LSHi gen,gen
6 ASHi gen,gen
6 ROTi gen,gen

Description

Move a value.

Extend and move a signed 4-bit constant.
Move Multiple: disp bytes (1 to 186).

Move with zero extension.

Move with zero extension.

Move with sign extension.

Move with sign extension.

Move Effective Address.

Description

Add.

Add signed 4-bit constant.

Add with carry.

Subtract.

Subtract with carry (borrow).
Negate (2’s complement).
Take absolute value.

Multiply.

Divide, rounding toward zero.
Remainder from QUO.

Divide, rounding down.
Remainder from DIV (Modulus).
Multiply to Extended Integer.
Divide Extended Integer.
Multiply Word to Double.
Multiply and Accumulate Twice Double.

Description
Complex Multiply Double.
Complex Multiply and Accumulate Double.

Description
Add Packed.
Subtract Packed.

Description

Compare.

Compare to signed 4-bit constant.
Compare Multiple: disp bytes (1 to 16).

Description

Logical AND.

Logical OR.

Clear selected bits.

Logical Exclusive OR.

Complement all bits.

Boolean complement: LSB only.

Save condition code (cond) as a Boolean variable of size i.

Description

Logical Shift, left or right.
Arithmetic Shift, left or right.
Rotate, left or right.
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2.0 Architectural Description (continued)
TABLE 2-2. NS32G X320 Instruction Set Summary (Continued)

BITS
Format Operation Operands Description
4 TBITi gen,gen Test bit.
6 SBITi gen,gen Test and set bit.
6 SBITli gen,gen Test and set bit, interlocked.
6 CBITi gen,gen Test and clear bit.
6 CBITii gen,gen Test and clear bit, interlocked.
3] IBITi gen,gen Test and invert bit.
8 FFSi gen,gen Find first set bit.
BIT FIELDS

Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records used in
Pascal. “Extract” instructions read and align a bit field. “Insert” instructions write a bit field from an aligned source.

Format Operation Operands Description
8 EXTi reg,gen,gen,disp Extract bit field (array oriented).
8 INSI reg,gen,gen,disp insert bit field (array oriented).
7 EXTSi gen,gen,imm,imm Extract bit field (short form).
7 INSSI gen,gen,imm,imm Insert bit field (short form).
8 CVTP reg,gen,gen Convert to Bit Field Pointer.
ARRAYS
Format Operation Operands Description
8 CHECK:i reg,gen,gen Index bounds check.
2] INDEXi reg,gen,gen Recursive indexing step for multiple-dimensional arrays.
STRINGS
String instructions assign specific functions to Options on all string instructions are:
the General Purpose Registers: B (Backward): Decrement string pointers after each step
R4 - Comparison Value rather than incrementing.
R3 - Translation Table Pointer U (Until match): End instruction if String 1 entry
R2 - String 2 Pointer matches R4.
R1 - String 1 Pointer W (While match):  End instruction if String 1 entry
RO - Limit Count does not match R4.
All string instructions end when RO decrements to zero.
Format Operation Operands Description
5 MOVSi options Move String 1 to String 2.
MOVST options Move string, translating bytes.
5 CMPSi options Compare String 1 to String 2.
CMPST options Compare transiating, String 1 bytes.
5 SKPSi options Skip over String 1 entries.
SKPST options Skip, translating bytes for Until/While.
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2.0 Architectural Description continued)

TABLE 2-2. NS32GX320 Instruction Set Summary (Continued)

Operands Description
gen Jump.
disp Branch (PC Relative).
disp Conditional branch.
gen Multiway branch.
short,gen,disp Add 4-bit constant and branch if non-zero.
gen Jump to subroutine.
disp Branch to subroutine.
disp Call external procedure.
gen Call external procedure using descriptor.
Supervisor Call.
Flag Trap.
Breakpoint Trap.
[reg list],disp Save registers and allocate stack frame (Enter Procedure).
{reg list) Restore registers and reclaim stack frame (Exit Procedure).
disp Return from subroutine.
disp Return from external procedure call.
disp Return from trap. (Privileged)

Return from interrupt. (Privileged)

JUMPS AND LINKAGE
Format Operation

3 JUMP

0 BR

0 Bcond

3 CASEi

2 ACBi

3 JSR

1 BSR

1 CXP

3 CXPD

1 SvC

1 FLAG

1 BPT

1 ENTER

1 EXIT

1 RET

1 RXP

1 RETT

1 RETI
CPU REGISTER MANIPULATION
Format Operation

1 SAVE

1 RESTORE

2 LPRi

2 SPRi

3 ADJSPi

3 BISPSRi

3 BICPSRi

5 SETCFG
FLOATING POINT
Format Operation

11 MOvVf

9 MOVLF

9 MOVFL

9 MOVif

9 ROUNDfi

9 TRUNCHi

9 FLOOR(i

11 ADDf

11 SuBf

11 MULf

11 Divf

1 CMPf

11 NEGf

11 ABSf

12 POLYf

12 DOTf

12 SCALBf

12 LOGBf

9 LFSR

9 SFSR

Operands Description

[reg list] Save General Purpose Registers.

[reg list] Restore General Purpose Registers.

areg,gen Load Processor Register. (Privileged if PSR, INTBASE, USP, CFG
or Debug Registers).

areg.gen Store Processor Register. (Privileged if PSR, INTBASE, USP, CFG
or Debug Registers).

gen Adjust Stack Pointer.

gen Set selected bits in PSR. (Privileged if not Byte length)

gen Clear selected bits in PSR. (Privileged if not Byte length)

[option list] Set Configuration Register. (Privileged)

Operands Description

gen,gen Move a Floating Point value.

gen,gen Move and shorten a Long value to Standard.

gen.,gen Move and lengthen a Standard value to Long.

gen,gen Convert any integer to Standard or Long Floating.

gen,gen Convert to integer by rounding.

gen,gen Convert to integer by truncating, toward zero.

gen,gen Convert to largest integer less than or equal to value.

gen,gen Add.

gen,gen Subtract.

gen,gen Multiply.

gen,gen Divids.

gen,gen Compare.

gen,gen Negate.

gen,gen Take absolute value.

gen,gen Polynomial Step.

gen,gen Dot Product.

gen,gen Binary Scale.

gen,gen Binary Log.

gen Load FSR.

gen Store FSR.
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2.0 Architectural Description (continued)
TABLE 2-2. NS32GX320 Instruction Set Summary {Continued)

MISCELLANEOUS
Format Operation
1 NOP
1 WAIT
1 DIA
14 CINV
CUSTOM SLAVE
Format Operation
15.5 CCALOc
15.5 CCAL1c
15.5 CCAL2c
15.5 CCAL3c
15.5 CMOVoc
15.5 CMOV1ic
15.5 CMOV2c
15.5 CMOV3c
15.5 CCMPOC
15.5 CCMP1c
15.1 CCVOci
15.1 CCV1ici
15.1 CCV2ci
15.1 CCV3ic
151 CCv4DQ
15.1 CCV5QD
15.1 LCSR
15.1 SCSR
15.0 LCR
15.0 SCR

Operands

[options],gen

Operands
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen

gen
creg,gen
creg,gen

Description

No Operation.

Wait for interrupt.

Diagnose. Single-byte “Branch to Seif”’ for hardware
breakpointing. Not for use in programming.

Cache Invalidate. (Privileged)

Description
Custom Calculate.

Custom Move.

Custom Compare.

Custom Convert.

Load Custom Status Register.
Store Custom Status Register.
Load Custom Register. (Privileged)
Store Custom Register. (Privileged)
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3.0 Functional Description

This chapter provides details on the functional characteris-
tics of the NS32G X320 microprocessor.

The chapter is divided into six main sections:

Instruction Execution, Exception Processing, Debugging,
On-Chip Caches, On-Chip Peripherals and System Inter-
face.

3.1 INSTRUCTION EXECUTION

To execute an instruction, the NS32GX320 performs the
following operations:

® Fetch the instruction

® Read source operands, if any (1)
¢ Calculate results

® Write result operands, if any

* Modify flags, if necessary

® Update the program counter

Under most circumstances, the CPU can be conceived to
execute instructions by completing the operations above in
strict sequence for one instruction and then beginning the
sequence of operations for the next instruction. However,
due to the internal instruction pipelining, as well as the oc-
currence of exceptions, the sequence of operations per-
formed during the execution of an instruction may be al-
tered. Furthermore, exceptions also break the sequentiality
of the instructions executed by the CPU.

Details on the effects of the internal pipelining, as well as
the occurrence of exceptions on the instruction execution,
are provided in the following sections.

Note: 1 In this and following sections, memory locations read by the CPU to
calculate effective addresses for Memory-Relative and External ad-
dressing modes are considered like source operands, even if the
effective address is being calculated for an operand with access
class of write.

3.1.1 Operating States

The CPU has four operating states regarding the execution
of instructions and the processing of exceptions: Reset, Ex-
ecuting Instructions, Processing An Exception and Waiting-
For-An-interrupt. The various states and transitions be-
tween them are shown in Figure 3-1.

Whenever the RST signal is asserted, the CPU enters the
reset state. The CPU remains in the reset state until the
RST signal is driven inactive, at which time it enters the
Executing-Instructions state. In the Reset state the contents
of certain registers are initialized. Refer to Section 3.6.3 for
details.

In the Executing-Instructions state, the CPU executes in-
structions. It will exit this state when an exception is recog-
nized or a WAIT instruction is encountered. At which time it
enters the Processing-An-Exception state or the Waiting-
For-An-Interrupt state respectively.

While in the Processing-An-Exception state, the CPU saves
the PC, PSR and MOD register contents on the stack and
reads the new PC and module linkage information to begin
execution of the exception service procedure (see note).
Following the completion of all data references required to
process an exception, the CPU enters the Executing-In-
structions state.

In the Waiting-For-An-Interrupt state, the CPU is idle. A spe-

cial status identifying this state is presented on the system

interface (Section 3.6). When an interrupt or a debug condi-

tion is detected, the CPU enters the Processing-An-Excep-

tion state.

Note: When the Direct-Exception mode is enabled, the CPU does not save
the MOD Register contents nor does it read the module linkage infor-

mation for the exception service procedure. Refer to Section 3.2 for
details.

RST ACTIVE

RST INACTVE

INTERRUPT
OR TRAP

PROCESSING
AN
EXCEPTION

EXECUTING
INSTRUCTIONS

SERVICE CALL
COMPLETE

WAIT INTERRUPT
INSTRUCTION OR DEBUG
EXECUTED CONDITION

WAITING
FOR AN
INTERRUPT

TL/EE/10564-6
FIGURE 3-1. Operating States

3.1.2 Instruction Endings

The NS32GX320 checks for exceptions at various points
while executing instructions. Certain exceptions, like inter-
rupts, are in most cases recognized between instructions.
Other exceptions, like Divide-By-Zero Trap, are recognized
during execution of an instruction. When an exception is
recognized during execution of an instruction, the instruction
ends in one of four possible ways: completed, suspended,
terminated, or partially completed. Each type of exception
causes a particular ending, as specified in Section 3.2.

3.1.2.1 Completed Instructions

When an exception is recognized after an instruction is
completed, the CPU has performed all of the operations for
that instruction and for all other instructions executed since
the last exception occurred. Result operands have been
written, flags have been modified, and the PC saved on the
Interrupt Stack contains the address of the next instruction
to execute. The exception service procedure can, at its con-
clusion, execute the RETT instruction (or the RETI instruc-
tion for maskable interrupts), and the CPU will begin execut-
ing the instruction following the completed instruction.
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3.0 Functional Description (continued)

3.1.2.2 Suspended Instructions

An instruction is suspended when one of several trap condi-
tions is detected during execution of the instruction. A sus-
pended instruction has not been completed, but all other
instructions executed since the last exception occurred
have been completed. Result operands and flags due to be
affected by the instruction may have been modified, but only
modifications that allow the instruction to be executed again
and completed can occur. For certain exceptions (Trap
(UND) and Trap (ILL)) the CPU clears the P-flag in the PSR
before saving the copy that is pushed on the Interrupt
Stack. The PC saved on the Interrupt Stack contains the
address of the suspended instruction.

To complete a suspended instruction, the exception service
procedure takes either of two actions:

1. The service procedure can simulate the suspended in-
struction’s execution. After calculating and writing the in-
struction’s results, the flags in the PSR copy saved on the
Interrupt Stack should be modified, and the PC saved on
the Interrupt Stack should be updated to point to the next
instruction to execute. The service procedure can then
execute the RETT instruction, and the CPU begins exe-
cuting the instruction following the suspended instruction.
This is the action taken when floating-point instructions
are simulated by software in systems without a hardware
floating-point unit.

2. The suspended instruction can be executed again after
the service procedure has eliminated the trap condition
that caused the instruction to be suspended. The service
procedure should execute the RETT instruction at its con-
clusion; then the CPU begins executing the suspended
instruction again. This is the action taken by a debugger
when it encounters a BPT instruction that was temporarily
placed in another instruction’s location in order to set a
breakpoint.

Note 1: It may be necessary for the exception service procedure to alter the

P-flag in the PSR copy saved on the Interrupt Stack: If the exception
service procedure simulates the suspended instruction and the P-
flag was cleared by the CPU before saving the PSR copy, then the
saved T-flag must be copied to the saved P-flag (like the floating-
point instruction simulation described above). Or if the exception
service procedure executes the suspended instruction again and
the P-flag was not cleared by the CPU before saving the PSR copy,
then the saved P-flag must be cleared (like the breakpoint trap de-
scribed above). Otherwise, no alteration to the saved P-flag is nec-
essary.

3.1.2.3 Terminated Instructions

An instruction being executed is terminated when reset oc-
curs. Any result operands and flags due to be affected by
the instruction are undefined, as is the contents of the PC.
The result operands of other instructions executed since the
last serializing operation may not have been written to mem-
ory. A terminated instruction cannot be completed.

3.1.2.4 Partially Completed Instructions

When an interrupt or debug condition is recognized during
execution of a string instruction, the instruction is said to be

partially completed. A partially completed instruction has
not completed, but all other instructions executed since the
last exception occurred have been completed. Result oper-
ands and flags due to be affected by the instruction may
have been modified, but the values stored in the string
pointers and other general-purpose registers used during
the instruction’s execution allow the instruction to be exe-
cuted again and completed.

The CPU clears the P-flag in the PSR before saving the
copy that is pushed on the Interrupt Stack. The PC saved on
the Interrupt Stack contains the address of the partially
completed instruction. The exception service procedure
can, at its conclusion, simply execute the RETT instruction
(or the RETI instruction for maskable interrupts), and the
CPU will resume executing the partially completed instruc-
tion.

3.1.3 Instruction Pipeline

The NS32GX320 executes instructions in a heavily pipe-
lined fashion. This allows a significant performance en-
hancement since the operations of several instructions are
performed simultaneously rather than in a strictly sequential
manner.

The CPU provides a four-stage internal instruction pipeline.
As shown in Figure 3-2, a write buffer, that can hold up to
two operands, is also provided to allow write operations to
be performed off-line.

I Fetch Instruction j Stage 1
: 8 Byte Queue : Buffer
b-------l-------‘
I Decode Instruction I Stage 2
: 1 Decoded Instruction  § Buffer
G-------I-------‘
Calculate Addresses Stage 3
Read Source Operands
Calculate Results Stage 4
Write Destination Operands
: 2 Memory Results : Buffer

bteomseocvocececsaseaed
TL/EE/10564-7
FIGURE 3-2. NS32GX320 Internal Instruction Pipeline

Due to the pipelining, operations like fetching one instruc-
tion, reading the source operands of a second instruction,
calculating the results of a third instruction and storing the
results of a fourth instruction, can all occur in parallel.
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3.0 Functional Description (continued)

The order of memory references performed by the CPU may
also differ from that related to a strictly sequential instruc-
tion execution. In fact, when an instruction is being execut-
ed, some of the source operands may be read from memory
before the instruction is completely fetched. For example,
the CPU may read the first source operand for an instruction
before it has fetched a displacement used in calculating the
address of the second source operand. The CPU, however,
always completes fetching an instruction and reading its
source operands before writing its results. When more than
one source operand must be read from memory to execute
an instruction, the operands may be read in any order. Simi-
larly, when more than one result operand is written to mem-
ory to execute an instruction, the operands may be written
in any order.

An instruction is fetched only after all previous instructions
have been completely fetched. However, the CPU may be-
gin fetching an instruction before all of the source operands
have been read and results written for previous instructions.

The source operands for an instruction are read only after
all previous instructions have been fetched and their source
operands read. A source operand for an instruction may be
read before all results of previous instructions have been
written, except when the source operand’s value depends
on a result not yet written. The CPU compares the address
and length of a source operand with those of any resulits not
yet written, and delays reading the source operand until af-
ter writing all results on which the source operand depends.
Also, the CPU ensures that the interlocked read and write
references to execute an SBITIi or CBITIi instruction occur
after writing all results of previous instructions and before
reading any source operands for subsequent instructions.

The result operands for an instruction are written after all
results of previous instructions have been written.

The description above is summarized in Figure 3-3, which
shows the precedence of memory references for two con-

secutive instructions.
INSTRUCTION N INSTRUCTION N+ 1

INSTRUCTION FETCH s INSTRUCTION FETCH

\

$ DATA READ

DATA READ

DATA WRITE

$ DATA WRITE
TL/EE/10564-8
FIGURE 3-3. Memory References for
Consecutive Instructions
{An arrow from one reference to another indicates that
the first reference always precedes the second.)

Another consequence of overlapping the operations for sev-
eral instructions, is that the CPU may fetch an instruction
and read its source operands, even though the instruction is
not executed (e.g., due to the occurrence of an exception).

Special care is needed in the handling of memory-mapped
170 devices. The CPU provides special mechanisms to en-
sure that the references to these devices are always per-
formed in the order implied by the program. Refer to Section
3.1.3.2 for details.

It is also to be noted that the CPU does not check for de-
pendencies between the fetching of an instruction and the
writing of previous instructions’ results. Therefore, special
care is required when executing self-modifying code.

3.1.3.1 Branch Prediction

One problem inherent to all pipelined machines is what is
called “Pipeline Breakage™.

This occurs every time the sequentiality of the instructions is
broken, due to the execution of certain instructions or the
occurrence of exceptions.

The result of a pipeline breakage is a performance degrada-
tion, due to the fact that a certain portion of the pipeline
must be flushed and new data must be brought in.

The NS32GX320 provides a special mechanism, called
branch prediction, that helps minimize this performance
penalty.

When a conditional branch instruction is decoded in the ear-
ly stages of the pipeline, a prediction on the execution of the
instruction is performed.

More precisely, the prediction mechanism predicts back-
ward branches as taken and forward branches as not taken,
except for the branch instructions BLE and BNE that are
always predicted as taken.

Thus, the resulting probability of correct prediction is fairly
high, especially for branch instructions placed at the end of
loops.

The sequence of operations performed by the loader and
execution units in the CPU is given below:

® L oader detects branches and calculates destination ad-
dresses

* Loader uses branch opcode and direction to select be-
tween sequential and non-sequential streams

* Loader saves address for alternate stream
* Execution unit resolves branch decision

Due to the branch prediction, some special care is required
when writing self-modifying code. Refer to the appropriate
section in Appendix B for more information on this subject.

3.1.3.2 Memory-Mapped 1/0

The characteristics of certain peripheral devices and the
overlapping of instruction execution in the pipeline of the
NS32GX320 require that special handling be applied to
memory-mapped 1/0 references. 1/0 references differ from
memory references in two significant ways, imposing the
following requirements:

1. Reading from a peripheral port can alter the value read
on the next reference to the same port or another port in
the same device. (A characteristic called here “destruc-
tive-reading”.) Serial communication controllers and
FIFO buffers commonly operate in this manner. As ex-
plained in “Instruction Pipeline” above, the NS32GX320
can read the source operands for one instruction while
the previous instruction is executing. Because the previ-
ous instruction may cause a trap, an interrupt may be
recognized, or the flow of control may be otherwise al-
tered, it is a requirement that destructive-reading of
source operands before the execution of an instruction
be avoided.
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3.0 Functional Description (continued)

2. Writing to a peripheral port can alter the value read from
another port of the same device. (A characteristic called
here *side-effects of writing™”). For example, before read-
ing the counter’s value from the NS32202 Interrupt Con-
trol Unit it is first necessary to freeze the value by writing
to another control register.

However, as mentioned above, the NS32GX320 can read
the source operands for one instruction before writing the
results of previous instructions unless the addresses indi-
cate a dependency between the read and write references.
Consequently, it is a requirement that read and write refer-
ences to peripheral that exhibit side-effects of writing must
occur in the order dictated by the instructions.

The NS32GX320 supports 2 methods for handling memory-
mapped 1/0. The first method is more general; it satisfies
both requirements listed above and places no restriction on
the location of memory-mapped peripheral devices. The
second method satisfies only the requirement for side ef-
fects of writing, and it restricts the location of memory-
mapped 1/0 devices, but it is more efficient for devices that
do not have destructive-read ports.

The first method for handling memory-mapped I/0 uses two
signals: 1OINH and TODEC. When the NS32GX320 gener-
ates a read bus cycle, it asserts the output signal IOINH if
either of the 1/0 requirements listed above is not satisfied.
That is, IOINH is asserted during a read bus cycle when (1)
the read reference is for an instruction that may not be exe-
cuted or (2) the read reference occurs while a write refer-
ence is pending for a previous instruction. When the read
reference is to a peripheral device that implements ports
with destructive-reading or side-effects of writing, the input
signal IODEC must be asserted; in addition, the device must
not be selected if IOINH is active. When the CPU detects
that the TODEC input signal is active while the IOINH output
signal is also active, it discards the data read during the bus
cycle and serializes instruction execution. See the next sec-
tion for details on serializing operations. The CPU then gen-
erates the read bus cycle again, this time satisfying the re-
quirements for 1/0 and driving IOINH inactive.

The second method for handling memory-mapped I/0 uses
a dedicated region of memory. The NS32GX320 treats all
references to the memory range from address FFO00000 to
address FFFFFFFF inclusive in a special manner.

While a write to a location in this range is pending, reads
from locations in the same range are delayed. However,
reads from locations with addresses lower than FFO00000
may occur. Similarly, reads from locations in the above
range may occur while writes to locations outside of the
range are pending.

it is to be noted that the CPU may assert [OINH even when
the reference is within the dedicated region. Refer to Sec-
tion 3.6.8 for more information on the handling of I/O devic-
es.

3.1.3.3 Serializing Operations

After executing certain instructions or processing an excep-
tion, the CPU serializes instruction execution. Serializing in-

struction execution means that the CPU completes writing
all previous instructions’ results to memory, then begins
fetching and executing the next instruction.

For example, when a new value is loaded into the PSR by
executing an LPRW instruction, the pipeline is flushed and a
serializing operation takes place. This is necessary since
the privilege level might have changed and the instructions
following the LPRW instruction must be fetched again with
the new privilege level.

The CPU serializes instruction execution after executing one
of the following instructions: BICPSRW, BISPSRW, BPT,
CINV, DIA, FLAG (trap taken), LPR (CFG, INTBASE, PSR,
UPSR, DCR, BPC, DSR, and CAR only), RETT, RETI, and
SVC. Figure 3-4 shows the memory references after seriali-
zation.

Note 1: LPRB UPSR can be executed in User Mode to serialize instruction
execution.

Note 2: Atter an instruction that writes a result to memory is executed, the
updating of the result's memory location may be delayed untii the
next serializing operation.

Note 3: When reset occurs, the CPU discards any results that have not yet
been written to memory.

INSTRUCTION N INSTRUCTION N +1
INSTRUCTION FETCH

DATA READ

INSTRUCTION FETCH
DATA READ

DATA WRITE DATA WRITE
TL/EE/10564-9

FIGURE 3-4. Memory References after Serialization

3.1.4 Slave Processor Instructions

The NS32GX320 recognizes two groups of instructions be-
ing executable by external slave processors:

* Floating Point Instructions

® Custom Slave Instructions

Each Slave Instruction Set is enabled by a bit in the Configu-
ration Register (Section 2.1.4). Any Slave Instruction which
does not have its corresponding Configuration Register bit
set will trap as undefined, without any Slave Processor com-
munication attempted by the CPU. This allows software sim-
ulation of a non-existent Slave Processor.

3.1.4.1 Slave Instruction Protocol

Slave Processor instructions have a three-byte Basic In-

struction field, consisting of an ID Byte followed by an Oper-

ation Word. The ID Byte has three functions:

1) It identifies the instruction as being a Slave Processor
instruction.

2) It specifies which Slave Processor will execute it.

3) It determines the format of the following Operation Word
of the instruction.

Upon receiving a Slave Processor instruction, the CPU initi-

ates the sequence outlined in Figure 3-5. While applying

Status code 1111 (Broadcast ID Section 3.6.4.1), the CPU

transfers the 1D Byte on bits D24-D31, the operation
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3.0 Functional Description (continued)

START

BROADCAST
ID AND OPERATION WORD
(BUS STATUS=1111)

7'\

SEND OPERAND
(BUS STATUS = 1101)

TO SEND
?

READ RESULT
(BUS STATUS = 1101)

READ SLAVE STATUS
(BUS STATUS = 1110)

UPDATE
N,Z,L FLAGS

PROCESS R
TRAP (SLAVE)

PROCESS
TRAP (UND)

ala

L Bl

A

END
TL/EE/10564-10
FIGURE 3-5. Slave Instruction Protocol: CPU Actions
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3.0 Functional Description (continued)

3 0
IDBYTE | OPCODE(LOW) | OPCODE (HIGH) |  XXXxxxxx
FIGURE 3-6. ID and Operation Word
3 15 7 0

ZERO [rs| zemo [n[z|ofolof[L]o]a

FIGURE 3-7. Slave Processor Status Word

word on bits D8-D23 in a swapped order of bytes and a
non-used byte XXXXXXXX (X = don’t care) on bits DO-D7
(Figure 3-6).

All slave processors observe the bus cycle and inspect the
identification code. The slave selected by the identification
code continues with the protocol; other slaves wait for the
next slave instruction to be broadcast.

After transferring the slave instruction, the CPU sends to the
slave any source operands that are located in memory or
the General-Purpose registers. The CPU then waits for the
slave to assert SDN or FSSR. While the CPU is waiting, it
can perform bus cycles to fetch instructions and read
source operands for instructions that follow the slave in-
struction being executed. If there are no bus cycles to per-
form, the CPU is idle with a special Status indicating that it is
waiting for a slave processor. After the slave asserts SDN or
FSSR, the CPU follows one of the two sequences described
below.

If the slave asserts SDN, then the CPU checks whether the
instruction stores any results to memory or the General-Pur-
pose registers. The CPU reads any such results from the
slave by means of 1 or 2 bus cycles and updates the desti-
nation.

If the slave asserts FSSR, then the NS32GX320 reads a 32-
bit status word from the slave. The CPU checks bit 0 in the
slave's status word to determine whether to update the PSR
flags or to process an exception. Figure 3-7 shows the for-
mat of the slave’s status word.

If the Q bit in the status word is 0, the CPU updates the N, Z
and L flags in the PSR.

If the Q bit in the status word is set to 1, the CPU processes
either a Trap (UND) if TS is 1 or a Trap (SLAVE) if TS is 0.

Note 1: Only the fioating-point and custom compare instructions are allowed
10 return a value of 0 for the Q bit when the FSSH signal is activat-
ed. All other instructions must always set the Q bit to 1 (to signal a
Trap), when activating FSSR.

Note 2: While executing CINV instruction, the CPU displays the operation
code and source operand using slave processor write bus cycles, as
described in the protocol above. Nevertheless, the CPU does not
wait for SDN or FSSR to be asserted while executing these instruc-
tions. This information can be used to monitor the contents of the
on-chip Instruction Cache, and Data Cache.

Note 3: The slave processor must be ready to accept new slave instruction
at any time, even while the slave is executing another instruction or
waiting for the CPU to read results.
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3.0 Functional Description (continued)

3.1.4.2 Floating Point Instructions

Table 3-1 gives the protocols followed for each Floating
Point instruction. The instructions are referenced by their
mnemonics. For the bit encodings of each instruction, see
Appendix A.

The Operand class columns give the Access Class for each
general operand, defining how the addressing modes are
interpreted (see Instruction Set Reference Manual).

The Operand Issued columns show the sizes of the oper-
ands issued to the Floating Point Unit by the CPU. “D” indi-
cates a 32-bit Double Word. “i” indicates that the instruction
specifies an integer size for the operand (B = Byte, W =
Word, D = Double Word). “f" indicates that the instruction
specifies a Floating Point size for the operand (F = 32-bit
Standard Floating, L = 64-bit Long Floating).

The Returned Value Type and Destination column gives the
size of any returned value and where the CPU places it. The
PSR-Bits-Affected column indicates which PSR bits, if any,
are updated from the Slave Processor Status Word (Figure
3-7).

Any operand indicated as being of type “‘f’ will not cause a
transfer if the Register addressing mode is specified. This is
because the Floating Point Registers are physically on the
Floating Point Unit and are therefore available without CPU
assistance.

3.1.4.3 Custom Slave Instructions

Provided in the NS32GX320 is the capability of communi-
cating with a user-defined, “Custom” Slave Processor. The
instruction set provided for a Custom Slave Processor de-
fines the instruction formats, the operand classes and the
communication protocol. Left to the user are the interpreta-
tions of the Op Code fields, the programming model of the
Custom Slave and the actual types of data transferred. The
protocol specifies only the size of an operand, not its data
type.

Table 3-2 lists the relevant information for the Custom Slave
instruction set. The designation “c” is used to represent an
operand which can be a 32-bit (“D*') or 64-bit (“Q") quantity

in any format; the size is determined by the suffix on the
mnemonic. Similarly, an “i” indicates an integer size (Byte,
Word, Double Word) selected by the corresponding mne-
monic suffix.

Any operand indicated as being of type “c” will not cause a
transfer if the register addressing mode is specified. It is
assumed in this case that the slave processor is already
holding the operand internally.

For the instruction encodings, see Appendix A.

3.2 EXCEPTION PROCESSING

Exceptions are special events that alter the sequence of
instruction execution. The CPU recognizes two basic types
of exceptions: interrupts, and traps.

An interrupt occurs in response to an event generated either
internally, by the on-chip DMA Channels or Timers, or exter-
nally, by activating NMI or one or more of the TR0-3 input
signals. Interrupts are typically requested by peripheral de-
vices that require the CPU's attention.

Traps occur as a result either of exceptional conditions
(e.g., attempted division by zero) or of specific instructions
whose purpose is to cause a trap to occur (e.g., supervisor
call instruction).

When an exception is recognized, the CPU saves the PC,
PSR and optionally the MOD register contents on the inter-
rupt stack and then it transfers control to an exception serv-
ice procedure,

Details on the operations performed in the various cases by
the CPU to enter and exit the exception service procedure
are given in the following sections.

Itis to be noted that the reset operation is not treated here
as an exception. Even though, like any exception, it alters
the instruction execution sequence.

The reason being that the CPU handles reset in a signifi-
cantly different way than it does for exceptions.

Refer to Section 3.6.3 for details on the reset operation.
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3.0 Functional Description (continued)
TABLE 3-1. Floating Point Instruction Protocols

Mnemonic Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits
Class Class Issued Issued Type and Dest. Affected
ADDf read.f rmw.f f f fto Op.2 none
suBf read.f rmw.f f f fto Op.2 none
MULf read.f rmw.f f f fto Op.2 none
DIvf read.f rmw.f f f fto Op.2 none
MOVt read.f write.f f N/A fto Op.2 none
ABSf read.f write.f f N/A ftoOp.2 none
NEGf read.f write.f f N/A fto Op.2 none
CMPf read.f read.f f f N/A N, Z L
FLOORfi read.f write.i f N/A itoOp.2 none
TRUNCHi read.f write.i f N/A ito Op.2 none
ROUNDfi read.f write.i f N/A itoOp.2 none
MOVFL read.F write.L F N/A Lto Op.2 none
MOVLF read.L write.F L N/A FtoOp.2 none
MOVif read.i write.f i N/A ftoOp.2 none
LFSR read.D N/A D N/A N/A none
SFSR N/A write.D N/A N/A D to Op.2 none
POLYf read.f read.f f f fto FO none
DOTt read.f read.f f f fto FO none
SCALBf read.f rmw.f f f fto Op.2 none
LOGBf read.f write.f f N/A ftoOp.2 none
TABLE 3-2. Custom Slave Instruction Protocols
Mnemonic Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits
Class Class Issued Issued Type and Dest. Affected
CCALOc read.c rmw.c c c ctoOp.2 none
CCAL1c read.c rmw.c c c ctoOp.2 none
CCAL2¢ read.c mw.c c c ctoOp.2 none
CCAL3c read.c mw.c c c ctoOp.2 none
CMOVOc read.c write.c c N/A ctoOp.2 none
CMOV1c read.c write.c c N/A ctoOp.2 none
CMOV2c read.c write.c c N/A ctoOp.2 none
CMOV3c read.c write.c c N/A ctoOp.2 none
CCMPOc read.c read.c c c N/A N,Z,L
CCMP1c read.c read.c c c N/A NZL
CCVOci read.c write.i c N/A itoOp.2 none
CCVici read.c write.i c N/A itoOp.2 none
CCVaci read.c write.i c N/A itoOp.2 none
CCV3ic read.i write.c i N/A ctoOp.2 none
CCv4DQ read.D write.Q D N/A QtoOp.2 none
CCv5QD read.Q write.D Q N/A DtoOp.2 none
LCSR read.D N/A D N/A N/A none
SCSR N/A write.D N/A N/A Dto Op.2 none
LCR* read.D N/A D N/A N/A none
SCR* write.D N/A N/A N/A Dto Op.1 none

Note:

D = Double Word

i = Integer size (B,W.D) specified in mnemonic.

¢ = Custom size (D:32 bits or Q:64 bits) specified in mnemonic.
* = Privileged instruction: will trap if CPU is in User Mode.

N/A = Not Applicable to this instruction.
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3.0 Functional Description (continued)

3.2.1 Exception Acknowledge Sequence

When an exception is recognized, the CPU goes through
three major steps:

1) Adjustment of Registers. Depending on the source of the
exception, the CPU may restore and/or adjust the con-
tents of the Program Counter (PC), the Processor Status
Register (PSR) and the currently-selected Stack Pointer
(SP). A copy of the PSR is made, and the PSR is then set
to reflect Supervisor Mode and selection of the Interrupt
Stack. Trap (TRC) and Trap (OVF) are always disabled.
Maskable interrupts are also disabled if the exception is
caused by an interrupt or Trap (DBG).

2) Vector Acquisition. A vector is either obtained from the
on-chip interrupt control unit or is supplied internally by
default.

3) Service Call. The CPU performs one of two sequences
common to all exceptions to complete the acknowledge
process and enter the appropriate service procedure.
The selection between the two sequences depends on
whether the Direct-Exception mode is disabled or en-
abled.

Direct-Exception Mode Disabled

The Direct-Exception mode is disabled while the DE bit in
the CFG register is 0 (Section 2.1.4). In this case the CPU
first pushes the saved PSR copy along with the contents of
the MOD and PC registers on the interrupt stack. Then it

INTERRUPT BASE
REGISTER

L Fixep INTERRUPTS |

E INTERRUPTS [

AND TRAPS
DISPATCH TABLE
VECTORED

reads the double-word entry from the Interrupt Dispatch ta-
ble at address ‘INTBASE + vector X 4. See Figures 3-8
and 3-9. The CPU uses this entry to call the exception serv-
ice procedure, interpreting the entry as an external proce-
dure descriptor.

A new module number is loaded into the MOD register from
the least-significant word of the descriptor, and the static-
base pointer for the new module is read from memory and
loaded into the SB register. Then the program-base pointer
for the new module is read from memory and added to the
most-significant word of the module descriptor, which is in-
terpreted as an unsigned value. Finally, the result is loaded
into the PC register.

Direct-Exception Mode Enabled

The Direct-Exception mode is enabled when the DE bit in
the CFG register is set to 1. In this case the CPU first
pushes the saved PSR copy along with the contents of the
PC register on the Interrupt Stack. The word stored on the
Interrupt Stack between the saved PSR and PC register is
reserved for future use; its contents are undefined. The CPU
then reads the double-word entry from the Interrupt Dis-
patch Table at address 'INTBASE + vector X 4’. The CPU
uses this entry to call the exception service procedure, inter-
preting the entry as an absolute address that is simply load-
ed into the PC register. Figure 3-10 provides a pictorial of
the acknowledge sequence. It is to be noted that while the

F-‘31 O’r‘
0] NV1 NON-VECTORED INTERRUPT
1] NMI NON=MASKABLE INTERRUPT
2| RESERVED
3] SLAVE SLAVE PROCESSOR TRAP
41 ILL ILLEGAL OPERATION TRAP
5| SvC SUPERVISOR CALL TRAP
6| OvZ DIVIDE BY ZERO TRAP
7] FLG FLAG TRAP
8] BPT BREAKPOINT TRAP
9] TRC TRACE TRAP
10] UND UNDEFINED INSTRUCTION TRAP
11] RESERVED
12| RESERVED
13| OVF INTEGER OVERFLOW TRAP
14| DBG DEBUG TRAP
15| RESERVED
16 VECTORED
INTERRUPTS

TL/EE/10564-11

FIGURE 3-8. Interrupt Dispatch Table
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3.0 Functional Description (continued)

| ' LOWER
328ITS ADDRESSES
RETURN ADDRESS (PUSH)
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INTBASE REGISTER
INTERRUPT BASE jJ DISPATCH
TABLE
VECTOR x4 ]
DESCRIPTOR (32 BITS)
—
DESCRIPTOR
1 18
OFFSET MODULE
MOD REGISTER MODULE TABLE
MODULE TABLE ENTRY
MODULE TABLE ENTRY
32
STATIC BASE POINTER —
LINK BASE POINTER
L PROGRAM BASE POINTER
(RESERVED)
PROGRAM COUNTER $8 REGISTER
ENTRY POINT ADDRESS J NEW STATIC BASE J

FIGURE 3-9. Exception Acknowledge Sequence.
Direct-Exception Mode Disabled.
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3.0 Functional Description (continued)
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TL/EE/10564-14
INTBASE REGISTER
l INTERRUPT BASE ll DISPATCH
TABLE
VECTOR GO ©
ABSOLUTE ADDRESS
PROGRAM COUNTER
ENTRY POINT ADDRESS ]

TL/EE/10564-15

FIGURE 3-10. Exception Acknowledge Sequence.
Direct-Exception Mode Enabled.

direct-exception mode is enabled, the CPU can respond
more quickly to interrupts and other exceptions because
fewer memory references are required to process an excep-
tion. The MOD and SB registers, however, are not initialized
before the CPU transfers control to the service procedure.
Consequently, the service procedure is restricted from exe-
cuting any instructions, such as CXP, that use the contents
of the MOD or SB registers in effective address calcula-
tions.

3.2.2 Returning from an Exception Service Procedure

To return control to an interrupted program, one of two in-
structions can be used: RETT (Return from Trap) and RETI
(Return from Interrupt).

RETT is used to return from any trap, non-maskable inter-
rupt or bus error service procedure. Since some traps are
often used deliberately as a call mechanism for supervisor

mode procedures, RETT can also adjust the Stack Pointer
(SP) to discard a specified number of bytes from the original
stack as surplus parameter space.

RETI is used to return from a maskable interrupt service
procedure. A difference of RETT, RETI also informs the on-
chip ICU as well as any external interrupt control logic that
interrupt service has completed. Since interrupts are gener-
ally asynchronous external events, RETI does not discard
parameters from the stack.

Both of the above instructions always restore the Program
Counter (PC) and the Processor Status Register from the
interrupt stack. If the Direct-Exception mode is disabled,
they also restore the MOD and SB register contents. Fig-
ures 3-11 and 3-12 show the RETT and RETI instruction
flows when the Direct-Exception mode is disabled.
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3.0 Functional Description (continued)
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MODULE
TABLE
MODULE TABLE ENTRY
J
MODULE TABLE ENTRY
STATIC BASE POINTER ~ —]
LINK BASE POINTER
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(RESERVED)
PARAMETERS
n
BYTES
SB REGISTER
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FIGURE 3-11. Return from Trap (RETT n) Instruction Flow.
Direct-Exception Mode Disabled.

3.2.3 Maskable Interrupts

Maskable interrupt requests are generated either externally
through the TRO-3 pins or internally by the DMA controller
or the timers. These requests are enabled to generate an
interrupt only while the |-bit in the PSR register is set to 1.
The | bit is automatically cleared during service of a maska-
ble interrupt, NMI or Trap (DBG), and is restored to its origi-
nal setting upon return from the interrupt service routine via
the RETT or RET! instruction.

Maskable interrupts can be configured through the | bit in
the CFG register to be either non-vectored (CFG bit | =0) or
vectored (CFG bit |=1).

If the non-vectored mode is selected, a default vector value
of zero is always used. For the vectored mode instead, the
on-chip Interrupt Control Unit will provide the CPU with a
vector value. This vector value is then used as an index into
the Dispatch Table in order to find the External Procedure
Descriptor for the proper interrupt service procedure. The
service procedure eventually returns via the Return from In-
terrupt (RETI) instruction, which performs an End of Inter-
rupt bus cycle, informing the on-chip ICU that it may re-prior-
itize any interrupt requests still pending.
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3.0 Functional Description (continued)

“END OF INTERRUPT"
BUS CYCLE
INTERRUPT
CONTROL
UNIT
f—— 328178 ——+
PROGRAM COUNTER
1 (POP)
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=~ MODULE TABLE ENTRY|
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STATIC BASE
SB REGISTER

FIGURE 3-12. Return from Interrupt (RETI) Instruction Flow.
Direct-Exception Mode Disabled.
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3.0 Functional Description (continued)

3.2.4 Non-Maskable Interrupt

The Non-Maskable Interrupt is triggered whenever a falling
edge is detected on the NMI pin. The CPU performs an
“Interrupt Acknowledge” bus cycle from Address
FFFFFF001g when processing of this interrupt actually be-
gins. The vector value used for the Non-Maskable Interrupt
is taken as 1, regardless of the value read from the bus.
The service procedure returns from the Non-Maskable In-
terrupt using the Return from Trap (RETT) instruction. No
special bus cycles occur on return.

3.2.5 Traps

Traps are processing exceptions that are generated as di-

rect results of the execution of an instruction.

The return address saved on the stack by any trap except

Trap (TRC) and Trap (DBG) is the address of the first bye of

the instruction during which the trap occurred.

When a trap is recognized, maskable interrupts are not dis-

abled except for the case of Trap (DBG).

There are 10 trap conditions recognized by the NS32GX320

as described below.

Trap (SLAVE): An exceptional condition was detected by

the Floating Point Unit or another Slave Processor during

the execution of a Slave Instruction. This trap is requested
via the Status Word returned as part of the Slave Processor

Protocol (Section 3.1.4.1).

Trap (ILL): lllegal operation. A privileged operation was at-

tempted while the CPU was in User Mode (PSR bit U = 1).

Trap (SVC): The Supervisor Call (SVC) instruction was exe-

cuted.

Trap (DVZ): An attempt was made to divide an integer by

zero. (The FPU trap is used for Floating Point division by

zero.)

Trap (FLG): The FLAG instruction detected a “1” in the

PSR F bit.

Trap (BPT): The Breakpoint (BPT) instruction was execut-

ed.

Trap (TRC): The instruction just completed is being traced.

Refer to Section 3.3.1 for details.

Trap (UND): An Undefined-Instruction trap occurs when an

attempt to execute an instruction is made and one or more

of the following conditions is detected:

1. The instruction is undefined. Refer to Appendix A for a
description of the codes that the CPU recognizes to be
undefined.

2. The instruction is a floating point instruction and the F-bit
in the CFG register is 0.

3. The instruction is a custom slave instruction and the C-bit
in the CFG register is 0.

4. The reserved general addressing mode encoding (10011)
is used.

5. Immediate addressing mode is used for an operand that
has access class different from read.

6. Scaled Indexing is used and the basemode is also Scaled
Indexing.

7. The instruction is a floating-point or custom slave instruc-
tion that the FPU or custom slave detects to be unde-
fined. Refer to Section 3.1.4.1 for more information.

Trap (OVF): An Integer-Overflow trap occurs when the V-bit

in the PSR register is set to 1 and an Integer-Overflow con-

dition is detected during the execution of an instruction. An
Integer-Overflow condition is detected in the following cas-
es:

1. The F-flag is 1 following execution of an ADDi, ADDQi,
ADDCi, SUBi, SUBCi, NEGi, ABSi, or CHECKi instruction.

2. The product resulting from a MULI instruction cannot be
represented exactly in the destination operand’s location.

3. The quotient resulting from a DEIi, DIVi, or QUOi instruc-
tion cannot be represented exactly in the destination op-
erand’s location.

4. The result of an ASHi instruction cannot be represented
exactly in the destination operand’s location.

The sum of the ‘INC’ value and the 'INDEX’ operand for
an ACBI instruction cannot be represented exactly in the
index operand’s location.

Trap (DBG): A debug trap occurs when one or more of the
conditions selected by the settings of the bits in the DCR
register is detected. This trap can also be requested by acti-
vating the input signal DBG. Refer to Section 3.3.2 for more
information.

Note 1: Following exaecution of the WAIT instruction, then a Trap (DBG) can
be pending for a PC-match condition. In such an event, the Trap
(DBG) is processed immediately.

Note 2: If an attempt is made to execute a privileged custom instruction
while in User-Mode and the C-bit in the CFG register is 0, then Trap
{UND) occurs.

Note 3: While operating in User-Mode, if an attempt is made to execute a
privileged instruction with an undefined use of a general addressing
mode (either the reserved encoding is used or else scaled-index or
immediate modes are incormrectly used), the Trap (UND) occurs.

Note 4: If an undefined instruction or illegal operation is detected, then no
data references are performed for the instruction.

Note 5: For certain instructions that are relatively long to execute, such as
DEID, the CPU checks for pending interrupts during execution of the
instruction. In order to reduce interrupt latency, the NS32GX320 can
suspend executing the instruction and process the interrupt. Refer
to Section B.5 in Appendix B for more information about recognizing
interrupts in this manner.

o

3.2.6 Priority Among Exceptions

The CPU checks for specific exceptions at various points
while executing an instruction. It is possible that several ex-
ceptions occur simuitaneously. in that event, the CPU re-
sponds to the exception with highest priority.

Figure 3-13 shows an exception processing flowchart.

Before executing an instruction, the CPU checks for pend-
ing Trap (DBG), interrupts, and Trap (TRC), in that order. If a
Trap (DBG) is pending, then the CPU processes that excep-
tion, otherwise the CPU checks for pending interrupts. At
this point, the CPU responds to any pending interrupt re-
quests; nonmaskable interrupts are recongized with higher
priority than maskable interrupts. If no interrupts are pend-
ing, then the CPU checks the P-flag in the PSR to determine
whether a Trap (TRC) is pending. If the P-flag is 1, a Trap
(TRC) is processed. If no Trap (DBG), interrupt or Trap
(TRC) is pending, the CPU begins executing the instruction.
While executing an instruction, the CPU may recognize up
to two exceptions:
1. trap (DBG) or interrupt, if the instruction is interruptible
2. one of 7 mutually exclusive traps: SLAVE, ILL, SVC, DVZ,
FLG, BPT, UND
If no exception is detected while the instruction is executing,
then the instruction is completed and the PC is updated to

point to the next instruction. If a Trap (OVF) is detected,
then it is processed at this time.
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3.0 Functional Description (continued)
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3.0 Functional Description (continued)

While executing the instruction, the CPU checks for enabled
debug conditions. If an enabled debug condition is met, a
Trap (DBG) is held pending until after the instruction is com-
pleted (see Note 3). If another exception is detected before
the instruction is completed, the pending Trap (DBG) is re-
moved and the DSR register is not updated.

Note 1: Trap (DBG) can be detected simuitaneously with Trap (OVF). In this

event, the Trap (OVF) is processed before the Trap (DBG).

Note 2: An address-compare debug condition can be detected while pro-
cessing a bus error, interrupt, or trap. In this event, the Trap (DBG)
is held pending until after the CPU has processed the first excep-
tion.

Note 3: Between operations of a string instruction, the CPU responds to
pending operand address compare and external debug conditions
as well as interrupts. If a PC-match debug condition is detected
while executing a string instruction, then Trap (DBG) is held pending
until the instruction has completed.

3.2.7 Exception Acknowledge Sequences: Detailed Flow
For purposes of the following detailed discussion of excep-
tion acknowledge sequences, a single sequence called
“service” is defined in Figure 3-14.

Upon detecting any interrupt request or trap condition, the
CPU first performs a sequence dependent upon the type of
exception. This sequence will include saving a copy of the
Processor Status Register and establishing a vector and a
return address. The CPU then performs the service se-
quence.

3.2.7.1 Maskable/Non-Maskable Interrupt Sequence
This sequence is performed by the CPU when the NMI pin
receives a falling edge, or an interrupt event is signalled
either through IR0-3 or by the on-chip peripherals and the
PSR | bit set. The interrupt sequence begins either at the
next instruction boundary or, in the case of an interruptible
instruction (e.g., string instruction), at the next interruptible
point during its execution.

1. If an interruptible instruction was interrupted and not yet

completed:

a. Clear the Processor Status Register P bit.

b. Set “Return Address” to the address of the first byte of
the interrupted instruction.

Otherwise, set “Return Address” to the address of the

next instruction.

. Copy the Processor Status Register (PSR) into a tempo-
rary register, then clear PSR bits T, V, U, S, P and |
. If the interrupt is Non-Maskable:

a. Do a type-1 special read cycle (Section 3.6.4.6) from
address FFFFFF004¢g, applying Status Code 0100 (In-
terrupt Acknowledge). Discard the byte read.

b. Set “Vector” to 1.

c. Go to Step 6.

4. If the interrupt is Non-Vectored:

a. Do a type-2 special read cycle (Section 3.6.4.6) from
address FFFFFE004g, applying Status Code 0100 (In-
terrupt Acknowledge). Discard the byte read.

b. Set “Vector” to 0.

c. Go to Step 6.

n

w

5. Here the interrupt is Vectored.

a.Do a type-2 special read cycle from address
FFFFFEO0046, applying status code 0100 (interrupt Ac-
knowledge), and discarding the byte read. This is to
notify external circuitry that the interrupt is being ac-
knowledged.

b. Read vector byte from the IVCT register of the on-chip
Interrupt Control Unit.

6. Perform Service (Vector, Return Address), Figure 3-14.
3.2.7.2 SLAVE/ILL/SVC/DVZ/FLG/BPT/UND Trap
Sequence

1. Restore the currently selected Stack Pointer and the
Processor Status Register to their original values at the
start of the trapped instruction.

2. Set “Vector” to the value corresponding to the trap type.
SLAVE: Vector = 3.
ILL: Vector = 4.
SVC:  Vector = 5.
DVZ:  Vector = 6.
FLG: Vector = 7.
BPT: Vector = 8.
UND: Vector = 10.

3. Iif Trap (ILL) or Trap (UND)
a. Clear the Processor Status Register P bit.

4. Copy the Processor Status Register (PSR) into a tempo-
rary register, then clear PSR bits T, V, U, S and P.

5. Set “Return Address” to the address of the first byte of
the trapped instruction.

6. Perform Service (Vector, Return Address), Figure 3-14.

3.2.7.3 Trace Trap Sequence
1. In the Processor Status Register (PSR), clear the P bit.

2. Copy the PSR into a temporary register, then clear PSR
bits T, V, U and S.

3. Set “Vector” to 9.

4. Set “Return Address” to the address of the next instruc-
tion.

5. Perform Service (Vector, Return Address), Figure 3-14.

3.2.7.4 Integer-Overflow Trap Sequence

1. Copy the PSR into a temporary register, then clear PSR
bits T, V, U, S and P.

2. Set “Vector” to 13.

3. Set “Return Address” to the address of the next instruc-
tion.

4. Perform Service (Vector, Return Address), Figure 3-14.

3.2.7.5 Debug Trap Sequence

A debug condition can be recognized either at the next in-
struction boundary or, in the case of an interruptible instruc-
tion, at the next interruptible point during its execution.

1. If PC-match condition, then go to Step 3.

2. If a String instruction was interrupted and not yet com-
pleted:

a. Clear the Processor Status Register P bit.

b. Set “Return Address” to the address of the first byte of
the instruction.

c. Go to Step 4.
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3.0 Functional Description (continued)

3. Set “Return Address” to the address of the next instruc- a program. Tracing is enabled by setting the T-bit in the PSR
tion. Register. When enabled, the CPU generates a Trace Trap

4. Set “Vector” to 14. (TRC) after the execution of each instruction.

5. Copy the Processor Status Register (PSR) into a tempo- At the beginning of each instruction, the T bit is copied into
rary register, then clear PSR bits T, V, U, S, P and I. the PSR P (Trace “Pending”) bit. If the P bit is set at the end

of an instruction, then the Trace Trap is activated. If any

6. Perform Service (Vector, Return Address), Figure 3-14. other trap or interrupt request is made during a traced in-

3.3 DEBUGGING SUPPORT struction, its entire service procedure is allowed to complete
The NS32GX320 provides several features to assist in pro- before the Trace Trap occurs. Each interrupt and trap se-
gram debugging. quence handles the P bit for proper tracing, guaranteeing

only one Trace Trap per instruction, and guaranteeing that
the Return Address pushed during a Trace Trap is always
the address of the next instruction to be traced.

Besides the Breakpoint (BPT) instruction that can be used
to generate soft breaks, the CPU also provides instruction
tracing as well as debug trap (or hardware breakpoints) ca-

pabilities. Details on these features are provided in the fol- Due to the fact that some instructions can clear the T and P
lowing sub-sections. bits in the PSR, in some cases a Trace Trap may not occur

at the end of the instruction. This happens when one of the
3.3.1 Instruction Tracing privileged instructions BICPSRW or LPRW PSR is executed.

Instruction tracing is a very useful feature that can be used
during debugging to single-step through selected portions of

TABLE 3-3. Summary of Exception Processing

Instruction Cleared before Cleared after
Exception Ending Saving PSR Saving PSR

Interrupt Before Instruction None/P* TVUSPI
ILL, UND Suspended P TVUS

SLAVE, SVC, DVZ, FLG, BPT Suspended None TVUSP
OVF Completed None TVUSP
TRC Before Instruction P TVUS

DBG Before Instruction None/P* TVUSPI

*Note: The P bit of the saved PSR is cleared in case the exception is acknowledged before the instruction is completed (e.g., interrupted string instruction). This is
to avoid a mid-instruction trace trap upon return from the Exception Service Routine.

Service (Vector, Return Address):
1) Push the PSR copy onto the Interrupt Stack as a 16-bit value.
2) If Direct p mode is then go to step 4.
3) Push MOD Register into the Interrupt Stack as a 16-bit value.
4) Read 32-bit Interrupt Dispatch Table (IDT) entry at address ‘INTBASE + vector x 4’
5) if Direct: P mode |s sel d, then go to Step 10.
6) Move the L.S. word of the IDT entry (Module Field) into the MOD register.

7) Read the Program Base pointer from memory address ‘MOD + 8', and add to it the M.S. word of the IDT entry (Offset Field), placing the resuit in the
Program Counter.

8) Read the new Static Base pointer from the memory address contained in MOD, placing it into the SB Register.
9) Go to Step 11.

10) Piace IDT entry In the Program Counter.

11) Push the Return Address onto the Interrupt Stack as a 32-bit quantity.

12) Serialize: N y fetch first of P Service F

Note: Some of the Memory Accesses indicated in the service sequence may be performed in an order different from the one shown.
FIGURE 3-14. Service Sequence
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3.0 Functional Description (continued)

In other cases, it is still possible to guarantee that a Trace
Trap occurs at the end of the instruction, provided that spe-
cial care is taken before returning from the Trace Trap Serv-
ice Procedure. In case a BICPSRB instruction has been ex-
ecuted, the service procedure should make sure that the T
bit in the PSR copy saved on the Interrupt Stack is set be-
fore executing the RETT instruction to return to the program
begin traced. If the RETT or RETI instructions have to be
traced, the Trace Trap Service Procedure should set the P
and T bits in the PSR copy on the Interrupt Stack that is
going to be restored in the execution of such instructions.

Note: If instruction tracing is enabled while the WAIT instruction is executed,
the Trap (TRC) cccurs after the next interrupt, when the interrupt
service procedure has returned.

3.3.2 Debug Trap Capability

The CPU recognizes three different conditions to generate a
Debug Trap:

1) Address Compare
2) PC Match
3) External

These conditions can be enabled and monitored through
the CPU Debug Registers.

An address-compare condition is detected when certain
memory locations are either read or written. The double-
word address used for the comparison is specified in the
CAR Register. The address-compare condition can be sep-
arately enabled for each of the bytes in the specified dou-
bie-word, under control of the CBE bits of the DCR Register.
The VNP bit in the DCR controls whether virtual or physical
addresses are compared. The CRD and CWR bits in the
DCR separately enable the address compare condition for
read and write references; the CAE bit in the DCR can be
used to disable the compare-address condition indepen-
dently from the other control bits. The CPU examines the
address compare condition for all data reads and writes,
reads of memory locations for effective address calcula-
tions, Interrupt-Acknowledge and End-of-interrupt bus cy-
cles, and memory references for exception processing.

The PC-match condition is detected when the address of
the instruction equals the value specified in the BPC regis-
ter. The PC-match condition is enabled by the PCE bit in the
DCR.

Detection of address-compare and PC-match conditions is
enabled for User and Supervisor Modes by the UD and SD
bits in the DCR. The DEN-bit can be used to disable detec-
tion of these two conditions independently from the other
control bits.

An external condition is recognized whenever the DBG sig-
nal is activated.

When the CPU detects an address-compare or PC-match
condition while executing an instruction or processing an
exception, then Trap (DBG) occurs if the TR bit in the DCR
is 1. When an external debug condition is detected, Trap
(DBG) occurs regardless of the TR bit. The cause of the
Trap (DBG) is indicated in the DSR Register.

When an address-compare or PC-match condition is detect-
ed while executing an instruction, the CPU asserts the BP

signal at the beginning of the next instruction, synchronous-

ly with PFS. If the instruction is not completed because a

higher priority trap is detected, the BP signal may or may not

be asserted.

Note 1: The assertion of BP is not affected by the setting of the TR bit in the
DCR register.

Note 2: When the LPRi instruction is executed to load a new value into the
BPC, CAR or DCR, it is undefined whether the address-compare
and PC-match conditions, in effect while executing the instruction,
are detected under control of the old or new contents of the loaded
register. Therefore, any LPRIi instruction that alters the control cf the
address-compare or PC-match conditions should use register or im-
mediate addressing mode for the source operand.

3.4 ON-CHIP CACHES

The NS32GX320 provides two on-chip caches: the Instruc-
tion Cache (IC) and the Data Cache (DC).

These are used to hold the contents of frequently used
memory locations.

The IC and DC can be individually enabled by setting appro-
priate bits in the CFG Register (See Section 2.1.4).

The CPU also provides a locking feature that allows the
contents of the IC and DC to be locked to specific memory
locations. This is accomplished by setting the LIC and LDC
bits in the CFG register.

Cache locking can be successfully used in real-time applica-
tions to guarantee fast access to critical instruction and data
areas.

Details on the organization and function of each of the
caches are provided in the following sections.

Note 1: Accesses to the on-chip peripherals are not cacheable.

Note 2: The size and organization of the on-chip caches may change in
future Series 32000 microprocessors. This however, will not affect
software compatibility.

3.4.1 Instruction Cache (iC)

The basic structure of the instruction cache (IC) is shown in
Figure 3-15.

The IC stores 512 bytes of code in a direct-mapped organi-
zation with 32 sets. Direct-mapped means that each set
contains only one block, thus each memory location can be
loaded into the IC in only one place.

Each block contains a 23-bit tag, which holds the most-sig-
nificant bits of the physical address for the locations stored
in the block, along with 4 double-words and 4 validity bits
(one for each double-word).

A 4-double-word instruction buffer is also provided, which is
loaded either from a selected cache block or from external
memory. Instructions are read from this buffer by the loader
unit and transferred to an 8-byte instruction queue.

The IC may or may not be enabled to cache an instruction
being fetched by the CPU. it is enabled when the IC bit in
the CFG Register is set to 1.

If the IC is disabled, the CPU bypasses it during the instruc-
tion fetch and its contents are not affected. The instruction
is read directly from external memory into the instruction
buffer.
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3.0 Functional Description (continued)
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FIGURE 3-15. Instruction Cache Structure

When the IC is enabled, the instruction address bits 4 to 8
are used to select the IC set where the instruction may be
stored. The tag corresponding to the single block in the set
is compared with the 23 most-significant bits of the instruc-
tion’s physical address. The 4 double-words in this block are
loaded into the instruction buffer and the 4 validity bits are
also retrieved. Bits 2 and 3 of the instruction’s physical ad-
dress select one of these double-words and the associated
validity bit.

If the tag matches and the selected double-word is valid, a
cache ‘hit' occurs and the double-word is directly trans-
ferred to the instruction queue for decoding; otherwise a
cache ‘miss’ will result.

In the latter case, if the cache is not locked, the CPU will
take the following actions.

First, if the tag of the selected block does not match, the tag
is loaded with the 23 most-significant bits of the instruction
address and all the validity bits are cleared. Then, the in-
struction is read from external memory into the instruction
buffer.

If the CIIN input signal is not active during the fetching of the
missing instruction, then the IC is updated and the instruc-
tion double-words fetched from memory are stored into it
with the validity bits set.

If the cache is locked, its contents are not affected, as the
CPU reads the missing instruction from external memory.

Whenever the CPU accesses external memory, whether or
not the IC is enabled, it always fetches instruction double-
words in a non-wrap-around fashion. Refer to Sections
3.6.4.3 and 3.6.6 for more information.

The contents of the instruction cache can be invalidated by
software through the CINV instruction. Refer to Section
3.4.3 for details. Clearing the IC bit in the CFG Register also
invalidates the instruction cache. Refer to Section C.2 for
information on loading the CFG register.

Note: If the IC is enabled for a certain instruction and a ‘miss’ occurs due to
a tag mismatch, the CPU will clear all the validity bits of the selected
tag before fetching the instruction from external memory. If the CIIN
input signal is activated during the fetching of that instruction, the
validity bits are not set and the IC is not updated.

3.4.2 Data Cache (DC)

The Data Cache (DC) stores 1,024 bytes of data in a two-
way set associative organization as shown in Figure 3-16.
Each of the 32 sets has 2 cache blocks. Each block con-
tains a 23-bit tag, which holds the most-significant bits of
the address for the locations stored in the block, along with
4 double-words and 4 validity bits (one for each double-
word).

The DC is enabled for a data read when ali of the foilowing
conditions are satisfied.

e The DC bit in the CFG Register is set to 1.

* The reference is not an interlocked read resulting from
executing a CBITI or SBITI instruction.

If the DC is disabled, the CPU bypasses it during the data
read and its contents are not affected. The data is read
directly from external memory. The DC is also bypassed for
Interrupt-Acknowledge and End-of-interrupt bus cycles.

When the DC is enabled for a data read, the address bits 4
to 8 are used to select the DC set where the data may be
stored.

The tags corresponding to the two blocks in the set are
compared to the 23 most-significant bits of the address. Bits
2 and 3 of the address select one double-word in each
block and the associated validity bit.

If one of the tag matches and the selected double-word in
the corresponding block is valid, a cache ‘hit’ occurs and
the data is used to execute the instruction; otherwise a
cache ‘miss’ wilt result. in the latter case, if the cache is not
locked, the CPU will take the foliowing actions.
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FIGURE 3-16. Data Cache Structure

First, if the tag of either block in the set matches the data
address, that block is selected for updating. Otherwise, if
neither tag matches, then the least recently used block is
selected; its tag is loaded with the 23 most-significant bits of
the data address, and all the validity bits are cleared.

Then, the data is read from external memory; up to 4 dou-
ble-word bits are read into the cache in a wrap-around fash-
ion. Refer to Sections 3.6.4.3 and 3.6.6 for more informa-
tion.

If the CIIN and 1ODEC input signals are both inactive during
the bus cycles performed to read the missing data, then the
DC is updated, as each double-word is read from memory,
and the corresponding validity bit is set. If the cache is
locked, its contents are not affected, as the CPU reads the
missing data from external memory.

The DC is enabled for a data write whenever the DC bit in
the CFG Register is set to 1, including interlocked writes
resulting from executing the CBITI and SBITI instructions.

The DC does not use write allocation. This means that, dur-
ing a write, if a cache ‘hit’ occurs, the DC is updated, other-
wise it is unaffected. The data is always written through to
external memory.

The contents of the data cache can be invalidated by soft-

ware through the CINV instruction. Clearing the DC bit in the

CFG Register also invalidates the data cache. Refer to Sec-

tion C.2 for information on loading the CFG register.

Note: If the DC is enabled for a certain data reference and a “miss” occurs
due to tag mismatch, the CPU will clear all the validity bits for the least
recently used tag before reading the data from external memory. If
either CiIN or TODEC are activated during the data read bus cycles,
the validity bits are not set and the DC is not updated.

3.4.3 Cache Coherence Support

The NS32GX320 provides means for maintaining coher-
ence between the on-chip caches and external memory.
The CINV instruction can be executed to invalidate the In-

struction Cache and/or Data Cache; the CINV instruction
can also be executed to invalidate a single 16-byte block in
either or both caches.

In hardware, the use of the caches can be inhibited for indi-
vidual locations using the CIIN input signal. A cache invali-
dation for both caches can be performed by activating the
CINV input signal.

Whenever a CINV instruction is executed, the operation
code and operand appear on the system interface using
slave processor bus cycles. Thus, invalidations of the on-
chip caches by software can be monitored externally.

Note, however, that the software is responsible for commu-
nicating to the external circuitry the values of the cache en-
able and lock bits in the CFG Register, since the CPU does
not generate any special cycle (e.g., Slave Cycle) when the
CFG Register is loaded.

3.5 ON-CHIP PERIPHERALS

Three types of on-chip peripherals are provided in the
NS32GX320: a DMA controller, an interrupt control unit and
timers.

Details on the operation of these peripherals are provided in
the following sections.

3.5.1 DMA Controlier

The on-chip DMA Controller provides 2 channels for trans-
ferring blocks of data between memory and 1/0 devices
with minimal CPU intervention. Source and destination ad-
dresses as well as block size and type of operation are set
up in advance by programming the appropriate control reg-
isters. Actual transfers are handled by the DMA channels in
response to external transfer requests. Upon receiving a
transfer request from an 1/0 device, the DMA Controller
performs the following operations:
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3.0 Functional Description (continued)
1. Acquires control of the bus.

2. Acknowledges the requesting 170 device by asserting the
appropriate DAK signal.

3. Starts executing data transfer cycles according to the val-
ues stored into the control registers of the channel being
serviced.

4. Teminates the data transfer operation whenever one of
the following events occurs:

— The specified number of bytes has been transferred

— The EOT signal is activated during a data transfer
cycle

— The software writes into the appropriate control
registers

Each channel can be programmed for Flyby (Direct) or Indi-
rect (Memory-to-Memory) data transfers. In addition, multi-
ple transfer operations can be chained together by program-
ming the appropriate control registers. Detailed descriptions
of the different modes of operation are provided in the fol-
lowing sections.

3.5.1.1 Flyby (Direct) Transfers

In Flyby mode each data item is transferred using a single
bus cycle without reading the data into the DMA controller.
This mode offers the fastest transfer rate, but the source
and destination bus widths must be the same. Data trans-
fers cannot occur between two memory elements. One of
the elements must always be an 1/0 device selected by the
channel’s DAK signal. This device is referred to as the im-
plied 1/O device. The other element can be either memory
or another 1/0 device, and is referred to as the addressed
170 device.

Since only one address is required in flyby mode, this ad-
dress is taken from the corresponding ADCA counter. The
DMA Channel generates either a read or a write bus cylce
according to the setting of the DIR bit in the MODE register.
When the DIR bit is 0, a read bus cycle from the addressed
device is performed and the data is written to the implied
1/0 device. When the DIR bit is 1, a write bus cycle to the
addressed device is performed, and the data is read from
the implied 1/0 device.

The number of bytes transferred in each cycle is taken from
the BWA field in the MODE register.

After the data element has been transferred, the BLTC
counter is decremented by the number of bytes transferred.
if the addressed device is memory, the ADCA counter is
also incremented by the same amount.

Note: On Fiyby transfers the channel may change the value of the ADCB
register.

3.5.1.2 Indirect (Memory-to-Memory) Transfers

In this mode of operation, the transfer of each data item
requires two bus cycles. The data is first read into a tempo-
rary register, and subsequently it is written into the destina-
tion. This mode is slower than the Flyby mode, but it pro-
vides support for differing bus widths between source and
destination, and also for block transfers between two mem-
ory elements. Each element is an addressed device, and
can be either memory or an 1/0O device. The DAK signal
corresponding to the channel is asserted during both bus
cycles.

The first bus cycle is used to read data from the source
using the ADCA counter, while the second bus cycle is used
to write the data into the destination using the address in
the ADCB counter. The number of bytes read is determined
by the smaller of the BWA and BWB fields in the MODE
register.

After the data item has been transferred, the DMA decre-
ments the BLTC counter by the number of bytes trans-
ferred. The ADCA and ADCB counters are then increment-
ed by the same amount, provided that the ADA and ADB
bits in the MODE register are set to 1.

Note: If transfer operations between two memory areas are to be per-

formed, external logic should be provided to activate the DRQ signal
under software control.

3.5.1.3 Single Transfer Operation

This mode provides the simplest way to accomplish a single
block transfer operation. The block transfer addresses and
byte count should be first written into the corresponding
ADCA, ADCB and BLTC counters, the OT bit in the MODE
register should be programmed for non auto-initialize mode,
and the VLD bit in the CNTL register should be set to 0.
When the CHEN bit in the CNTL register is set to 1, the
channel becomes active and responds to external transfer
requests.

When the BLTC counter reaches 0, the transfer operation
terminates, the TC and OVR bits in the STAT register are
set to 1, the CHAC bit is set to 0 and, if OVR is unmasked,
the CHEN bit in the CNTL register is forced to 0. An interrupt
can also be generated at the end of the transfer by setting
the appropriate bits in the IMSK register.

3.5.1.4 Double-Buffer Operation

This mode allows the software to set up the next block
transfer specification while the current block transfer is in
progress. The operation is initialized by writing the block
transfer addresses and byte count into the ADCA, ADCB
and BLTC counters, and programming the OT bit in the
MODE register for non auto-initialize mode. When the
CHEN bit in the CNTL register is set to 1, the channel be-
comes active and responds to external transfer requests.

While the current block transfer is in progress, the software
can write the addresses and byte count for the next block
into the ADRA, ADRB and BLTR registers, and then set the
VLD bit in the CNTL register to 1.

When the BLTC counter reaches 0, the TC bit is set to 1 and
the DMA channel checks the value of the VLD bit. If it is 1,
the channel copies the ADRA, ADRB and BLTR values into
ADCA, ADCB and BLTC, and becomes ready to start the
next block transfer. if the VLD bit is 0, the channel sets the
OVR bit in the STAT register to 1, clears the CHAC bit and,
it OVR is unmasked, it forces the CHEN bit to 0.

3.5.1.5 Auto-Initialize Operation

This mode allows the DMA controller to continuously fill the
same memory area without software intervention. The oper-
ation is initialized by writing the block addresses and byte
count into the ADCA, ADCB and BLTC counters as well as
the ADRA, ADRB and BLTR registers, and programming the
OT bit in the MODE register for auto-initialize mode. When
the CHEN bit in the CNTL register is set to 1, the channel
becomes active and responds to external requests.
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3.0 Functional Description (continued)

When the BLTC counter reaches 0, the TC bit in the STAT
register is set to 1, the contents of the ADRA, ADRB and
BLTR registers are copied to the ADCA, ADCB and BLTC
counters, and the operation is repeated.

3.5.1.6 Bus Arbitration

Whenever a DMA channel needs to perform a data transfer,
it first needs to acquire control of the bus. Bus arbitration is
performed according to a fixed priority scheme. An external
HOLD request has the highest priority, followed by channel
0, channel 1 and, finally the CPU at the lowest priority. Once
the bus is granted in response to a channel request and no
higher priority request is pending, the channel can use the
bus for a certain number of back-to-back transfers before it
is forced to release it. This is controlled by a Bus Fairness
mechanism whose purpose is to prevent bus monopoliza-
tion from a DMA channel. The maximum number of back-to-
back transfers can be programmed through the BLT field in
the MODE register. When the programmed number of trans-
fers is reached, the channel will release the bus for at least
one clock cycle, so that it can be granted to a lower priority
requester. Table 3-4 shows the maximum number of back-
to-back transfers for different values of the BLT field.

TABLE 3-4. Maximum Number of
Back-to-Back DMA Transfers

Maximum Number of Transfers
BLT Field Byte Word Double-Word

Transfers | Transfers Transfers
00000 Unlimited Unlimited Unlimited
00001 1 1 1
00010 2 1 1
00100 4 2 1
01000 8 4 2
10000 16 8 4

Note: The values shown for the BLT fieid are the only ones allowed. Speci-
fying a different value may cause unpredictable resuits.

3.5.2 Interrupt Control Unit (ICU)

The on-chip Interrupt Control Unit (ICU) manages up to 15
levels of prioritized interrupt requests. Requests can be gen-
erated either externally or internally. External requests are
binary encoded as a 4-bit value, and are input to the ICU
through the TR0-3 pins. internal requests are generated by
the on-chip DMA controlier and timers. Table 3-5 shows the
possible interrupt sources and related priority levels.

The ICU keeps track of the interrupt priority levels currently

in-service, and signals to the CPU only interrupt requests

whose priority level is higher than the level of the highest
priority interrupt currently being serviced. In addition, the

ICU monitors the system bus and responds to Interrupt-Ac-

knowledge and End-of-interrupt bus cycles, by providing

vector values to the CPU and updating the appropriate bits
in the ISRV register.

Note: The Series 32000 interrupt handling specification remains un-
changed, except for the elimination of cascaded maskabie interrupt
requests and their associated bus cycles. In particular, the vector
numbers are always positive, in the range 114¢ through 1F,¢. The
CPU interpretation and handling of the PSR I-bit and CFG I-bit re-
mains unchanged. From the CPU standpoint, the on-chip ICU can be
regarded as an independent moduie.

TABLE 3-5. Iinterrupt Sources and Priority Levels

Priority Interrupt Source
Level

INT15 (Highest) External Only
INT14 External or DMA (DIP bitin IMSK is 1)
INT13 External or Timer 0 IPFA or Capture Mode Underflow
INT12 External or Timer O IPFB
INT11 External Only
INT10 External or Timer 1 IPFA or Capture Mode Underflow
INT9 External or Timer 1 IPFB
INT8 External Only
INT7 External Only
INT6 External or DMA (DIP bit in IMSK is 0)
INT5 External or Timer 2 IPFA or Capture Mode Underflow
INT4 External Only
INT3 External or Timer 2 IPFB
INT2 External Only
INT1 (Lowest) External Only
— No Interrupt
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3.0 Functional Description (continued)

3.5.2.1 Interrupt-Acknowledge Processing

When an Interrupt acknowledge cycle is performed, the bit
in the ISRV register corresponding to the priority level of the
current interrupt request is set to 1. This is specified in the
least significant 4 bits of the IVCT register and represents
the higher of the encoded priority value from the TRO-3 pins
and the highest priority of any pending internal request. Dur-
ing the acknowledge cycle a special bus cycle is also exe-
cuted, and the IVCT value is output on the data bus (Section
3.6.4.6).

Note that the IVCT register is not latched by the ICU even
after the interrupt request is acknowledged by the CPU. This
allows the software to examine the priority level of the cur-
rent request by reading the IVCT register.

For proper ICU operation, the priority level of an interrupt
request must not be decreased unless one of the following
conditions is met.

1. The CPU performed an Interrupt-Acknowledge bus cycle

2. Maskable interrupts are currently disabled (PSR I-flag is
0)

3. A higher or same priority level interrupt is currently in-
service

The first condition can be used by a requesting 1/0 device

to determine when it is appropriate to remove the interrupt

request. The other conditions could be used by the software

to remove an interrupt request by accessing the 1/0 devic-

e’s control registers.

3.5.2.2 End-of-interrupt Processing

In response to an End-of-Interrupt bus cycle, the ICU clears
the bit in the ISRV register corresponding to the highest
priority interrupt currently in-service. The CPU is assumed to
have returned to the next lower priority interrupt service rou-
tine.

In addition, the ICU returns the IVCT register value as data
on the system bus. This value is not related to the priority
level of the terminated interrupt routine that executed the
RET! instruction. The returned IVCT value is ignored by the
CPU.

Note that it is also possible to clear bits in the ISRV explicitly
by software, for example, inside an interrupt service routine
in order to reenable interrupts at the same or lower priority
levels. In this case, either the RETT instruction should be
used to terminate that interrupt service routine, or else the
corresponding ISRV bit should be set to 1 again before exe-
cuting the RETI instruction.

3.5.3 Timers

The NS32G X320 provides three on-chip timer blocks. Since
these blocks are identical, the descriptions that follow are
equally applicable to any one of them. Each timer block
consists of a 16-bit counter TC, a control register TCNTL,
and two support registers TRCA and TRCB. Two external
signals TXA and TXB are also provided for each block to
handle all the interactions with external logic. Each timer
can operate in one of three modes: Processor Independent,
External Event Counter, and input Capture. Table 3-6 shows
the TMC field encodings for the ditferent modes. Details on
the operation of each mode are given in the following sec-
tions.

3.5.3.1 Processor Independent Mode (Mode 1)

This mode can be used to generate an output signal with
minimal software intervention. The software only needs to
define the ON and OFF times for the waveform to be gener-
ated. Once started, the timer will generate a periodic wave-
form without further intervention, except when the parame-
ters need to be updated.

In this mode the timer counts down at the Tclk rate (Section
2.1.8). Upon the occurrence of every underflow the timer is
alternately reloaded with the contents of the support regis-
ters TRCA and TRCB. The first timer underflow causes a
reload from the TRCA register. Reloads from subsequent
underflows alternate from the two support registers, starting
with TRCB. Each underflow toggles the TXA output pin.

Timer underflows are alternately latched into the IPFA and
IPFB flags. The software is responsible for resetting these
flags. Two enable bits, IENA and IENB, allow timer under-
flow interrupts to be enabled or disabled. Setting the IENA
bit will cause an interrupt when a timer underflow causes a
reload from TRCA, while setting IENB will cause an interrupt
when the reload is from TRCB.

The IENA and IENB bits give the user the flexibility to en-
able or disable interrupts on either or both edges of the
timer output waveform.

3.5.3.2 External Event Counter Mode (Mode 2)

This mode is similar to the processor independent mode.
The only difference is that the timer is clocked by the rising
edge of the signal applied on the TXB input pin.
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3.0 Functional Description (continued)
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TL/EE/10564-21

FIGURE 3-17. Timer Block Diagram for the Processor Independent and External Event Counter Modes

TABLE 3-6. Timer Modes
. Interrupt A Interrupt B Timer
TMC Field Timer Mode Source Source Counts On
000 IDLE
001 MODE 1 Autoreload Autoreload Tclk
{Processor Independent) TRCA TRCB
010 MODE 2 (External Autoreload Autoreload TXB
Event Counter) TRCA TRCB Rising Edge
100 MODE 3 (Input Capture) TXA Rising TXB Rising Telk
Captures on: Edge or Timer Edge
TXA Rising Edge Underflow
TXB Rising Edge

3.5.3.3 Input Capture Mode (Mode 3)

This mode allows to perform precise measurements of ex-
ternal frequencies and to time external events.

The timer constantly runs at the Tclk rate. The registers
TRCA and TRCB act as capture registers, and are con-
trolled by external signals applied on the TXA and TXB pins.
The timer value gets copied into the corresponding register
when a trigger event is signaled on either TXA or TXB. A
trigger event is specified as a rising edge of the input signal.

Note: The values shown for the TMC field (Section 2.1.8) are the only ones allowed. Specifying a different value may cause unpredictable results.

Trigger events can be programmed to generate interrupts.
The occurrence of a trigger event on either TXA or TXB will
be latched into IPFA or IPFB respectively. Interrupts are
controlled by the setting of IENA and IENB.

Timer underflows can also generate interrupts. Since the
underflow interrupt pending flag TCS has a different func-
tion in the other timer modes, the software should always
reset it when the Input Capture Mode is selected. Timer
underflow interrupts are also enabled by the IENA bit.
Therefore, when IENA is set to 1 and an interrupt occurs,
both IPFA and TCS should be checked to determine the
origin of the interrupt.
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3.0 Functional Description (continued)
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FIGURE 3-18. Timer Block Diagram for the Input Capture Mode

3.6 SYSTEM INTERFACE

This section provides general information on the
NS32GX320 interface to the external world. Descriptions of
the CPU requirements as well as the various bus character-
istics are provided here. Detalils on other device characteris-
tics including timing are given in Chapter 4.

3.6.1 Power and Grounding

The NS32GX320 requires a single 5V power supply, applied
on the Vg pins. These pins should be connected together
by a power (V) plane on the printed circuit board.

The grounding connections are made on the GND pins.
These pins should be connected together by a ground
(GND) plane on the printed circuit board.

Both power and ground connections are shown in Figure
3-19.

3.6.2 Clocking

The NS32GX320 requires a single-phase input clock signal
(CLK) with frequency twice the CPU’s operating frequency.

NS326X320
CPU

27

TL/EE/10564-22

+5v

2 OTHER Voo
CONNECTIONS

(Vo PLANE)

OTHER GROUND
CONNECTIONS
{GND PLANE)

TL/EE/10564-23

FIGURE 3-19. Power and Ground Connections
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3.0 Functional Description (continued)
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FIGURE 3-20. Bus Clock Synchronization

This clock signal is internally divided by two to generate two
non-overlapping phases PHI1 and PHI2. One single-phase
clock signal BCLK in phase with PHI1 and its complement
BCLK, are also generated and output by the CPU for timing
reference.

Following power-on, the phase relationship between BCLK
and CLK is undefined. Nevertheless, in some systems it
may be necessary to synchronize the CPU bus timing to an
external reference. The SYNC input signal can be used to
initialize the phase relationship between CLK and BCLK.
SYNC can also be used to stretch BCLK (Low) while CLK is
toggling.

SYNC is sampled on each rising edge of CLK. As shown in
Figure 3-20, whenever SYNC is sampled low, BCLK stops
toggling and stays low. On the first rising edge that SYNC is
sampled high, BCLK is driven high and then toggles on each
subsequent rising edge of CLK.

Every rising edge of BCLK defines a transition in the timing
state (“T-State”) of the CPU.

One T-State represents the execution of one microinstruc-
tion within the CPU and/or one step of an external bus
transfer.

Note: The CPU requirement on the maximum period of BCLK must be satis-
fied when SYNC is asserted at times other than reset.

3.6.3 Resetting

The RST input pin is used to reset the NS32GX320. The
CPU samples RST synchronously on the rising edge of
BCLK. Whenever a low level is detected, the CPU responds
immediately. Any instruction being executed is terminated;
any results that have not yet been written to memory are
discarded; and any pending interrupts, and traps are elimi-
nated. The internal latches for the edge-sensitive NMI and
DBG signals are cleared.

The CPU stores the PC contents in the RO Register and the
PSR contents in the least-significant word of R1, leaving the
most-significant word undefined. The PC is then cleared to 0
and so are all the implemented bits in the PSR, CFG and the
control registers of the on-chip peripheral devices. The
DEN-bit in the DCR Register is also cleared to 0. After reset,
the remaining implemented bits in DCR and the contents of
all other registers are undefined. The CPU begins executing
the instruction at Address O.

On application of power, RST must be held low for at least
50 us after Vg is stable. This is to ensure that all on-chip
voltages are completely stable before operation. Whenever
a Reset is applied, it must also remain active for not less
than 64 BCLK cycles. See Figures 3-21 and 3-22.

While in the Reset state, the CPU drives the signals ADS,

BE0-3, BMT, CONF, ICONF, PAGE, HLDA and DAKO-1

inactive. The data bus is floated and the state of all other

output signals is undefined.

Note 1: If HOLD is active at the time RST is deasserted, the CPU acknowi-
edges HOLD before performing any bus cycle.

Note 2: It SYNC is asserted while the CPU is being reset, then BCLK does
not toggle. Consequently, SYNC must be high for at least 128 CLK
cycles white FIST is low.
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] = 64 CLOCK
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250 us
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FIGURE 3-21. Power-On Reset Requirements
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FIGURE 3-22. General Reset Timing

3.6.4 Bus Cycles

The NS32GX320 will perform bus cycles for one of the fol-
lowing reasons:

. To fetch instructions from memory.

2. To write or read data to or from memory or external pe-
ripheral devices.

3. To acknowledge an interrupt, or to acknowledge comple-
tion of an interrupt service routine.

4. To notify external logic of any accesses to the on-chip
peripheral devices registers.

5. To transter information to or from a Slave Processor.

-
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3.0 Functional Description (continued)

3.6.4.1 Bus Status

The CPU presents four bits of Bus Status information on
pins STO-ST3. The various combinations on these pins in-
dicate why the CPU is performing a bus cycle, or, if it is idle
on the bus, then why is it idle.

The Bus Status pins are interpreted as a four-bit value, with
STO the least significant bit. Their values decode as follows:
0000 The bus is idle because the CPU does not yet need
to access the bus.

The bus is idle because the CPU is waiting for an
interrupt following execution of the WAIT instruction.
Reserved

The bus is idle because the CPU is waiting for a
Slave Processor to complete executing an instruc-
tion.

Interrupt Acknowledge.

The CPU is performing a dummy read cycle to inform
external circuitry that an interrupt is being acknowi-
edged.

Reserved

End of interrupt.

The CPU is performing a dummy read cycle to indi-
cate that it is executing a Return from Interrupt
(RETI) instruction at the completion of an interrupt’s
service procedure.

Reserved

Sequential Instruction Fetch.

The CPU is fetching the next double-word in se-
quence from the instruction stream.

Non-Sequential Instruction Fetch.

The CPU is fetching the first double-word of a new
sequence of instruction. This will occur as a result of
any JUMP or BRANCH, any exception, or after the
execution of certain instructions.

Data Transfer.

The CPU is reading or writing an operand for an in-
struction, or it is referring to memory while process-
ing an exception.

Read RMW Class Operand.

The CPU is reading an operand with access class of
read-modify-write.

Read for Effective Address Calculation.

The CPU is reading a pointer from memory in order
to caiculate an effective address for Memory Rela-
tive or External addressing modes.

Transfer Slave Processor Operand.

The CPU is transferring an operand to or from a
Slave Processor.

0001

0010
0011

0100

0101
0110

ot11
1000

1001

1010

1011

1100

1101

1110 Read Slave Processor Status.

The CPU is reading a status word from a slave proc-
essor after the slave processor has activated the

FSSR signal.
Broadcast Slave Processor ID + OPCODE.

The CPU is initiating the execution of a Slave In-
struction by transferring the first 3 bytes of the in-
struction, which specify the Slave Processor identifi-
cation and operation.

3.6.4.2 Basic Read and Write Cycles

The sequence of events occurring during a basic CPU ac-
cess to either memory or peripheral device is shown in Fig-
ure 3-23 for a read cycle, and Figure 3-24 for a write cycle.

The cases shown assume that the selected memory or pe-
ripheral device is capable of communicating with the CPU at
full speed. If not, then cycle extension may be requested
through the RDY line. See Section 3.6.4.4.

A full speed bus cycle is performed in two cycles of the
BCLK clock, labeled T1 and T2. For both read and write bus
cycles the CPU asserts ADS during the first half of T1 indi-
cating the beginning of the bus cycle. From the beginning of
T1 until the completion of the bus cycle the CPU drives the
Address Bus and other relevant control signals as indicated
in the timing diagrams. For cacheable data read cycles the
GPU also drives the CASEC signal to indicate the block in
the DC set where the data will be stored. If the bus cycle is
not cancelled (e.g., state T2 is entered in the next clock
cycle), the confirm signal (CONF) is asserted in the middle
of T1. Note that due to a bus cycle cancellation, the BMT
signal may be asserted at the beginning of T1, and then
deasserted before the time in which it is guaranteed valid
(see Section 4.4.2).

A confirmed bus cycle is completed at the end of T2, unless
a cycle extension is requested. Following state T2 is either
state T1 of the next bus cycle, or an idie T-state, if the CPU
has no bus cycle to perform.

In case of a read cycle the CPU samples the data bus at the
end of state T2.

If a bus exception is detected, the data is ignored.

For write bus cycles, valid data is output from the middle of
T1 until the end of the cycle. When a write bus cycle is
immediately followed by another write cycle, the CPU keeps
driving the bus with the data related to the previous cycle
until the middle of state T1 of the second bus cycle.

The CPU always inserts an idie state before a write cycle

when the write immediately follows a confirmed read cycle.

Note: The CPU can initiate a bus cycie with a T1-state and then cancel the
cycle, such as when a Cache hit occurs. In such a case, the CONF
signal remains High and the BMT signal is driven High; the T1-state is
followed by another T1-state or an idle T-state.

111
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3.0 Functional Description (continued)
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FIGURE 3-23. Basic Read Cycle
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3.0 Functional Description (continued)

3.6.4.3 Burst Cycles

The NS32GX320 is capable of performing burst cycles in
order 1o increase the bus transfer rate. Burst is only avail-
able in instruction fetch cycles and data read cycle from
32-bit wide memories. Burst is not supported in operand
write cycles or slave cycles.

The sequence of events for burst cycles is shown in Figure
3-25. The case shown assumes that the selected memory is
capable of communicating with the CPU at full speed. If not,
then cycle extension can be requested through the RDY
line. See Section 3.6.4.4.

A Burst cycle is composed of two parts. The first part is a
regular cycle (opening cycle), in which the CPU outputs the
new status and asserts all the other relevant control signals.
In addition, the Burst Out Signal (BOUT) is activated by the
CPU indicating that the CPU can perform Burst cycles. If the
selected memory allows Burst cycles, it will notify the CPU
by activating the burst in signal (BIN). BIN is sampled by the
CPU in the middle of T2 on the falling edge of BCLK. If the
memory does not aliow burst (BIN high), the cycle will termi-
nate at the end of T2 and BOUT will go inactive immediate-
ly. If the memory allows burst (BIN low), and the CPU has
not deasserted BOUT, the second part of the Burst cycle
will be performed and BOUT will remain active until termina-
tion of the Burst.

The second part consists of up to 3 nibbles, labeled T2B. In
each of them a data item is read by the CPU. For each
nibble in the burst sequence the CPU forces the 2 least-sig-
nificant bits of the address to 0 and increments address bits
2 and 3 to select the next double-word; all the byte enable
signals (BEO-3) are activated.

As shown in Figures 3-25 and 4-8 (in Section 4), the CPU
samples RDY at the end of each nibble. It extends the ac-
cess time for the burst transfer if RDY is inactive.

The CPU initiates burst read cycles in the following cases.

1. An instruction must be fetched (Status = 1000 or 1001),
and the instruction address does not fall within the last
double-word in an aligned 16-byte block (e.g., address
bits 2 and 3 are not both equal to 1).

2. A data item must be read (Status = 1010, 1011 or 1100),
and both of the following conditions are met.
® The data cache is enabled and not locked. (DC = 1

and LDC = 0 in the CFG register.)

* The bus cycle is not an interlocked data access per-
formed while executing a CBIT! or SBIT! instruction.
The Burst sequence will be terminated when one of the

following events occurs.

1. The last instruction double-word in an aligned 16-byte
block has been fetched.

2. The CPU detects that the instructions being prefetched
are no longer needed due to an alteration of the flow of
control. This happens, for example, when a Branch in-
struction is executed or an exception occurs.

3. 4 double-words of data have been read by the CPU. The
double-words are transferred within an aligned 16-byte
block in a wrap-around order. For example, if a source
operand is located at address 104g, then the burst read
cycle transfers the double-words at 104, 108, 10C, and
100, in that order.
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3.0 Functional Description (continued)
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3.0 Functional Description (continued)
4. The BIN signal is deasserted.
5. BRT is asserted to signal a bus retry.

6. 1ODEC is asserted or the BWO-1 signals indicate a bus
width other than 32-bits. The CPU samples these signals
during state T2 of the opening cycle. During T2B-states
BWO-1 are ignored and IODEC must be kept HIGH.

The CPU uses only the values of the above signals sampled

during the last state of the transfer when the cycle is ex-

tended. See Section 3.6.4.4.

Note: A burst sequence is not stopped by the assertion of CIIN. See Note 3
in Section 3.6.5.

3.6.4.4 Cycle Extension

To allow sufficient access time for any speed of memory or
peripheral device, the NS32GX320 provides for extension of
a bus cycle. Any type of bus cycle except a slave processor
cycle can be extended.

A bus cycle can be extended by causing state T2 for a
normal cycle or state T2B for a Burst cycle to be repeated.
At the end of each T2 or T2B state, on the rising edge of
BCLK, the RDY line is sampled by the CPU. if RDY is active,
then the transfer cycle will be completed. If RDY is inactive,
then the bus cycle is extended by repeating the T-state for
another clock cycle. These additional T-states inserted by
the CPU in this manner are called ‘WAIT’ states.

During a transfer the CPU samples the input control signals
BIN, BRT, BW0-1, PLAT, EOT, CIiN and TODEC.

When wait states are inserted, only the values of these sig-
nals sampled during the last wait state are significant.
Figure 3-26 illustrates a normal read cycle with wait states
added through the RDY pin.

Note: If RST is asserted during a bus cycle, then the cycle is terminated
without regard of RDY.

3.6.4.5 Interlocked Bus Cycles

The NS32GX320 supports indivisible read-modify-write
transactions by asserting the TLO signal during consecutive
read and write operations. See Figure 4-7 in Section 4.
Interlocked transactions are always preceded and followed
by one or more idle T-states.

The TLO signal is asserted in the midde of the idle T-state
preceding state T1 of the read operation, and is deasserted
in the middle of one of the idle T-states following completion
of the write operation, including any retried bus cycles.

No other bus operations (e.g., instruction fetches) will occur
while an interlocked transaction is taking place.

Interlocked transactions are required in multiprocessor sys-
tems to handle shared resources. The CPU uses them to
reference data while executing a CBITIi or SBITIi instruction,
during which a single byte of data is read and written.

The TLO signal is always released for one or more clock
cycles in the middle of two consecutive interlocked transac-
tions.
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FIGURE 3-26. Cycle Extension of a Basic Read Cycle
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3.0 Functional Description (Continued)

3.6.4.6 Special Bus Cycles

Special bus cycles are performed during CPU accesses to
some locations in the top area of the address space. These
cycles may be used by external logic to track CPU activities
involving the on-chip 170 devices as well as to monitor inter-
rupt acknowledges and returns. Two types of special bus
cycles are provided: Type-1 and type-2. Type-1 special cy-
cles are identical to normal cycles, except that the CPU
ignores the data placed on the bus in case of reads. The
external logic must assert RDY in order for the cycle to
complete. This is the case, for example, of the acknowledge
cycle for a Non-Maskable Interrupt.

Type-2 special cycles are significantly different from normal
cycles. They still start with the assertion of ADS and take 2
clock cycles to execute, but instead of BMT and CONF,
they use the special signal ITCONF. The RDY, BRT, IODEC,
PLAT and BWO0-1 signals are ignored, and the CPU always
places data on the external data bus, regardiess of whether
the cycle is a read or a write. Type-2 cycles are performed
when the CPU accesses any of the on-chip peripheral de-
vices registers, and during acknowledges and returns of
Maskable Interrupts. Figure 3-27 shows the timing diagram
of a type-2 special cycle.
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FIGURE 3-27. Type-2 Special Bus Cycle
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3.0 Functional Description (continued)

3.6.4.7 DMA Controlier Bus Cycles

DMA bus cycles are executed by the NS32G X320 whenever
a data transfer is performed by one of the on-chip DMA
channels. These cycles can be differentiated from normal
CPU cycles by the fact that either DAKO or DAK1 is assert-
ed. The following restrictions apply to DMA cycles:

— Dynamic bus width is not supported, therefore the BWO-
1 input signals are ignored.

— Burst mode is not supported.

— The reserved 8 Mbyte address range starting from
FF8000004¢ cannot be accessed. Figures 3-28 to 3-30
show DMA cycle timings for different situations.
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FIGURE 3-28. Flyby DMA Transfer Cycles (Bus Initially Not idle).
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3.0 Functional Description (continueq)
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FIGURE 3-29. Indirect (Memory-to-Memory) DMA Transfer Cycles (Bus Initially Idle).
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3.0 Functional Description (continueq)

3.6.4.8 Slave Processor Bus Cycles

The NS32GX320 performs bus cycles to transfer informa-
tion to or from slave processors while executing floating-
point or custom-slave instructions.

The CPU uses slave write bus cycles to broadcast the iden-
tification and operation codes of a slave instruction as well
as to transfer operands from memory or general purpose
registers to a slave.

Figure 3-31 shows the timing for a slave write bus cycle.
The CPU asserts SPC during T1; the status is valid during
T1 and T2. The operation code or operand is output on the
data bus from the middle of T1 until the end of T2.

The CPU uses a slave read bus cycle to transfer a result
operand from a slave to either memory or a general purpose
register. A slave read cycle is also used to read a status
word when the FSSR signal is asserted. Figure 3-32 shows
the timing for a slave read bus cycle.
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FIGURE 3-31. Slave Processor Write Cycle

During T1 and T2 the CPU drives the status lines and as-
serts SPC. The data from the slave is sampled at the end of
T2.

The CPU will never perform a slave cycle immediately fol-
lowing a memory read or siave read cycle. In fact, the TRI-
STATE following state T2 of a slave read cycle is either an
idle TRI-STATE or the T1 state of a memory cycle.

Slave processor data transfers are always 32 bits wide. If
the operand is a single byte, then it is transferred on DO
through D7. if it is a word, then it is transferred on DO
through D15.

When two operands are transferred, operand 1 is trans-
ferred before operand 2. For double-precision operands, the
least-significant double-word is transferred before the most-
significant double-word.

During a slave bus cycle the output signals BE0O-3 are un-
defined while the input signals BW0-1, PLAT and RDY are
ignored. BRT must be kept high.
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FIGURE 3-32. Slave Processor Read Cycle
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3.0 Functional Description (continued)
TABLE 3-7. Interrupt Sequences

Data Bus
r * N
Cycle Status Address DDIN BE3 BEZ BE1 BE0O Byte3 Byte2 Byte1 Byte 0
A. Non-Maskable Interrupt Control Sequences

Interrupt Acknowledge

1 0100 FFFFFF004g 0 1 1 1 4] X X X X
Interrupt Return
None: Performed through Return from Trap (RETT) instruction.

B. Non-Vectored Interrupt Control Sequences

Interrupt Acknowledge

1 0100 FFFFFEQO4¢ 0 1 1 1 0 X X X X
Interrupt Return

1 0110 FFFFFEOO4g 0 1 1 1 0 X X X X

C. Vectored Interrupt Sequences

Interrupt Acknowledge

1 0100 FFFFFEOO¢g 0 1 1 1 0 X X X Vector:

Range: 111g—1F g

Interrupt Return

1 0110 FFFFFEQO4¢ 0 1 1 1 0 X X X IVCT Register

Content

3.6.5 Bus Retry Figures 3-33 and 4-10 (in Section 4) show the BRT timing
The NS32GX320 has the capability of handling errors oc- for a basic access cycle and for burst cycles respectively.
curring during the execution of a bus cycle. The CPU always waits for BRT to be HIGH before repeating
When an error occurs, the CPU may be requested to repeat the bus cycle. While BRT is LOW, the CPU places all the
the erroneous bus cycle. The request is done by asserting output signals shown in Figure 4-71in a TRI-STATE® condi-
the BRT signal. BRT is sampled at the end of state T2 or tion.
T2B.

3.6.6 Dynamic Bus Configuration

The NS32GX320 is tuned to operate with 32-bit wide memo-
ry and peripheral devices. The bus also supports 8-bit and
16-bit data widths, but at reduced efficiency. The CPU can

When the CPU detects that BRT is active, it completes the
bus cycle normally, but ignores the data read in case of a
read cycle, and maintains a copy of the data to be written in

case of a wiite cycle. Then, after a delay of two clock cy- switch from one bus width to another dynamically; the only

cles, it will start exec'utmg the bus cycle again. . restriction is that the bus width cannot change for locations
if the transfer cycle is multiple (e.g., for non-aligned data), within an aligned 16-byte block.

only the problematic part will be repeated.

. . ) . R The CPU determines the bus width in effect for a bus cycle
For instance, if a non-aligned double-word is being trans-

by using the values of the BWO and BW1 signals sampled

ferred and the second half of the transfer fails, only the during the last T2 state. Values of BWO and BW1 sampled
second part will be repeated. before the last T2 state or during T2B states are ignored.
The same applies for a retry during a burst sequence. The Whenever a bus width other than 32-bit is detected by the
repeated cycle will begin where the read operation failed CPU, two idle states are inserted before the next bus cycle
(rather than the first address of the burst) and will finish the is initiated. These idle states are only inserted once during
original burst. an operand access, even if more than two bus cycles are

needed to complete the access.

59




3.0 Functional Description (continued)
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3.0 Functional Description (continued)

The various combinations for BWO and BW1 are shown be-
low.

BW1 BWO
0 0 Reserved
0 1 8-Bit Bus
1 0 16-Bit Bus
1 1 32-Bit Bus

The bus width is always 32 bits during slave cycles (see
Section 3.6.4.8). An important feature of the NS32GX320 is
that it does not impose any restrictions on the data align-
ment, regardless of the bus width.

Bus accesses are performed in double-word units. Access-
es of data operands that cross double-word boundaries are
decomposed into two or more aligned double-word access-
es.

The CPU provides four byte enable signals (BE0-3) which
facilitate individual byte accessing on either a 32-bit or a
16-bit bus.

Figures 3-34 and 3-35 show the basic interfaces for 32-bit
and 16-bit memories. An 8-bit memory interface (not shown)
is even simpler since it does not use any of the BEO-3
signals and its single bank is always enabled whenever the
memory is selected. Each byte location in this case is se-
lected by address bits A0-31.

The NS32G X320 does not keep track of the bus width used
in previous instruction fetches or data accesses. At the be-
ginning of every memory transaction, the CPU always as-
sumes that the bus is 32-bit wide and the BE0-3 signals are
activated accordingly.

The BOUT signal is also asserted during instruction fetches
or data reads if the conditions for bursting are satisfied. If
the bus is other than 32-bit wide, the BIN signal is ignored
and BOUT is deasserted at the beginning of the TRI-STATE
following T2, since burst cycles are not allowed for 8-bit or
16-bit buses.

BE3 BEZ BE1 BED
oD ] } } !
sems | sems | sems | sems

A2-31

L6
3
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37
e
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BYTE BYTE
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BYTE
#
Do =31 <
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FIGURE 3-34. Basic Interface for 32-Bit Memories

The following subsections provide detailed descriptions of

the access sequences performed in the various cases.

Note: Although the NS32GX320 ignores the BIN signal during DMA cycles,
and for 8-bit and 16-bit bus widths, it is recommended that BIN be
asserted only if the system supports burst transfers. This is to ensure
compatibility with future versions of the NS32GX320 that might sup-
port burst transfers in the above cases.

A0
BE3
BE1
DDIN
8 BITS 8 BITS
Al=31
=) = )
BYTE BYTE
#1 #0
po-15

TL/EE/10564-39
FIGURE 3-35. Basic Interface for 16-Bit Memories

3.6.6.1 Instruction Fetch Sequences

The CPU performs two types of instruction fetch cycles: se-
quential and non-sequential. These can be distinguished
from each other by the differing status combinations on pins
ST0-4. For non-sequential instruction fetches the CPU
presents on the address bus the exact byte address of the
first instruction in the instruction stream that is about to be-
gin; for sequential instruction fetches, the address of the
next aligned instruction double-word is presented on the ad-
dress bus. The CPU always activates all byte enable signals
(BE0-3) for both sequential and non-sequential fetches.
BOUT is also asserted during T2 if the addressed double-
word is not the last in an aligned 16-byte block. Tables 3-8
to 3-10 show the fetch sequence for the various bus widths.
32-Bit Bus Width

The CPU reads the entire double-word present on the data
bus into its internal instruction buffer.

If BOUT and BIN are both active, the CPU reads up to 3
consecutive double-words using burst cycles. Burst cycles
are used for instruction fetches regardiess of whether the
accesses are cacheable.
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3.0 Functional Description (continued)

Example: JUMP @5

* The CPU performs a fetch cycle at address 5 with BEO-3
all active.

® Two burst cycles are then performed and addresses 8 and
12 are output while BEO-3 are kept active.

16-Bit Bus Width

The word on the least-significant half of the data bus is read

by the CPU. This is either the even or the odd word within

the required instruction double-word, as determined by ad-

dress bit 1.

The CPU then complements address bit 1, clears address

bit 0 and initiates a bus cycle to read the other word, while

keeping all the BEO-3 signals active.

These two words are then assembled into a double-word

and transferred into the instruction buffer.

In case of a non-sequential fetch, if the access is not cache-

able and the instruction address selects the odd word within

the instruction double-word, the even word is not fetched.

Example JUMP @6

¢ A fetch cycle is performed at address 6 with BEO-3 all
active.

* The word at address 4 is then fetched if the access is
cacheable.

8-Bit Bus Width

The instruction byte on the bus lines D0-7 is fetched. The
CPU performs three consecutive cycles to read the remain-
ing bytes within the required double-word, while keeping
BEO-3 all active. The 4 bytes are then assembled into a
double-word and transferred into the instruction buffer. For
a non-sequential fetch, if the access is not cacheable, the
CPU will only read the upper bytes within the instruction
double-word starting with the byte at the instruction ad-
dress.

Example: JUMP @7

® The CPU performs a fetch cycle at address 7 with BE0-3
all active.

® Bytes at addresses 4, 5 and 6 are then fetched consecu-
tively if the access is cacheable.

TABLE 3-8. Cacheable/Non-Cacheable Instruction Fetches from a 32-Bit Bus
1. In a burst access four bytes are fetched with the L.S. bits of the address set to 00.

2. A'C’ on the data bus refers to cacheable fetches and indicates that the byte is placed in the instruction cache. An ‘I’ refers
to non-cacheable fetches and indicates that the byte is ignored.

Number Address Address S
of Bytes LSB Bytes to be Fetched Bus BEO-3 Data Bus
1 11 BO — — — A LLLL BO c/ [o7}] cN
2 10 B1 BO — — A LLLL B1 BO C/I C/
3 01 B2 B1 BO — A LLLL B2 B1 BO (o7]]
4 00 B3 B2 B1 BO A LLLL B3 B2 B1 BO
TABLE 3-9. Cacheable/Non-Cacheable Instruction Fetches from a 16-Bit Bus
1. A bus access marked with **’ in the ‘Address Bus’ column is performed only if the fetch is cacheable.
Number Address Address =
of Bytes LSB Bytes to be Fetched Bus BE0-3 Data Bus
1 1 BO — — — A LLLL — — BO C/I
*A-3 LLLL — — o] Cc
2 10 B1 BO — — A LLeL — — B1 BO
*A—2 LLLL — — (o] o]
3 o1 B2 B1 B8O — A LLLL — — BO C/I
A+1 LLLL — — B2 B1
4 00 B3 B2 B1 BO A LLLL — — B1 BO
A+2 LLLL — — B3 B2
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3.0 Functional Description (continued)
TABLE 3-10. Cacheable/Non-Cacheable Instruction Fetches from an 8-Bit Bus

Number Address Address ==
of Bytes LSB Bytes to be Fetched Bus BEO-3 Data Bus
1 1 BO -— - — A LLLL — — BO
*A-3 LLLL — — C
*A-2 LLLL —-— — [¢]
*A-1 LLLL — — Cc
2 10 B1 BO — — A LLLL — — BO
A+1 LLLL — — B1
*A-2 LLLL — —_ C
*A-1 LLLL — — C
3 01 B2 B1 BO — A LLLL — — BO
A+1 LLLL — — B1
A+2 LLLL — — B2
*A-1 LLLL — — C
4 00 B3 B2 B1 BO A LLLL — — BO
A+1 LLLL — — B1
A+2 LLLL — — B2
A+3 LLLL — — B3

3.6.6.2 Data Read Sequences

The CPU starts a data read access by placing the exact
address of the operand on the address bus. The byte en-
able lines are activated to select only the bytes required by
the instruction being executed. This prevents spurious ac-
cesses to peripheral devices that might be sensitive to read
accesses, such as those which exhibit the characteristic of
destructive reading. If the on-chip data cache is internally
enabled for the read access, the BOUT signal is asserted at
the beginning of state T2. BOUT will be deasserted if the
data cache is externally inhibited (through CIIN or TODEC),
or the bus width is other than 32 bits. During cacheable
accesses the CPU always reads all the bytes in the double-
word, whether or not they are needed to execute the in-
struction, and stores them into the data cache. The external
memory, in this case, must place the data on the bus re-
gardless of the state of the byte enable signals.

If the data cache is either internally or externally inhibited
during the access, the CPU ignores the bytes not selected
by the BEO-3 signals. Data read sequences for the various
bus widths are shown in tabies 3-11 to 3-13.

32-Bit Bus Width

The entire double-word present on the bus is read by the
CPU. If the access is cacheable and the memory allows
burst accesses, the CPU reads up to 3 additional double-
words within the aligned 16-byte block containing the first
byte of the operand. These burst accesses are performed in
a wrap-around fashion within the 16-byte block.

Example: MOVW @5, RO

* The CPU reads a double-word at address 5 while keeping
BE1 and BE2 active.

o If the access is not-cacheable, BOUT is deasserted and
the data bytes 0 and 3 are ignored.

* |f the access is cacheable, the CPU performs burst cycles
with BEO-3 all active, to read the double-words at ad-
dresses 8, 12, and 0.

16-Bit Bus Width

The word on the least-significant half of the data bus is read
by the CPU. The CPU can then perform another access
cycle with address bit 1 complemented and address bit 0
cleared to read the other word within the addressed double-
word.

If the access is cacheable, the entire double-word is read
and stored into the cache.

If the access is not cacheabie, the CPU ignores the bytes in
the double-word not selected by BEO-3. In this case, the
second access cycle is not performed, unless selected
bytes are contained in the second word.

Example: MOVB @5, RO

® The CPU reads a word at address 5 while keeping BE1
active.

* |f the access is not cacheabie, the CPU ignores byte 0.

¢ |f the access is cacheable, the CPU performs another ac-
cess cycle, with BEO-3 all active, to read the word at
address 6.

8-Bit Bus Width

The data byte on the bus lines DO-7 is read by the CPU.

The CPU can then perform up to 3 access cycles to read

the remaining bytes in the double-word.

If the access is cacheable, the entire double-word is read

and stored into the cache.

If the access is not cacheable, the CPU will only perform

those access cycles needed to read the selected bytes.

Example: MOVW @5, RO

¢ The CPU reads the byte at address 5 while keeping BE1
and BE2 active.

* If the access is not cacheable, the CPU activates BE2 and
reads the byte at address 6.

® If the access is cacheable, the CPU performs three bus

cycles with BEO-3 all active, to read the bytes at address-
es 6, 7 and 4.
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3.0 Functional Description (continued)

TABLE 3-11. Cacheable/Non-Cacheable Data Reads from a 32-Bit Bus
1. In a burst access four bytes are read with the L.S. bits of the address set to 00.

2. A‘C’ onthe data bus refers to cacheable reads and indicates that the byte is placed in the data cache. An ‘I’ refers to non-
cacheable reads and indicates that the byte is ignored.

:'u;';::; Adesr;ss Bytes to be Read AdBd;:ss BE0-3 Data Bus
1 00 — — — BO A HHHL C/I C/1 C/I BO
1 01 — — BO — A HHLH [e7]] o4] BO C/1
1 10 — BO — — A HLHH c/ BO [e73] C/1
1 11 BO — — -— A LHHH BO C/1 C/1 C/I
2 00 — — B1 BO A HHLL C/I C/\ B1 BO
2 01 — B1 BO — A HLLH C/l B1 BO C/N
2 10 B1 BO — — A LLHH B1 BO C/| C/1
3 00 — B2 B1 BO A HLLL C/\ B2 B1 BO
3 01 B2 B1 BO — A LLLH B2 B1 BO C/l
4 00 B3 B2 B1 BO A LLLL B3 B2 B1 BO

TABLE 3-12. Cacheable/Non-Cacheable Data Reads from a 16-Bit Bus
1. A bus access marked with **’ in the ‘Address Bus’ column is performed only if the read is cacheable.

N'u;n ber Adesr;ss Data to be Read Ad: ress BEO-3 Data Bus
of Bytes us Cach. | NonCach.
1 00 — — — BO A HHHL HHHL — — C/\ BO
*A+2 LLLL — — C C
1 01 — — BO — A HHLH HHLH — — BO C/1
*A+1 LLLL — _ C C
1 10 — BO —_ —_ A HLHH HLHH — — C/I BO
*A-2 LLLL — — C C
1 11 BO — — —_ A LHHH LHHH — — BO C/I
*A-3 LLLL — —_ C (o}
2 00 — — B1 BO A HHLL HHLL — — B1 BO
*A+2 LLLL — — C C
2 01 — B1 BO — A HLLH HLLH - — BO C/1
A+ 1 LLLL HLHH — — C/\ B1
2 10 B1 BO — — A LLHH LLHH — — B1 BO
*A-2 LLLL — — C C
3 00 — B2 B1 BO A HLLL HLLL —_ —_ B1 BO
A+ 2 LLLL HLHH — — C/| B2
3 03] B2 B1 BO - A LLLH LLLH — — BO C/1
A+1 LLLL LLHH — — B2 B1
4 00 B3 B2 B1 BO A LLLL LLLL — — B1 BO
A+2 LLLL LLHH — — B3 B2
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3.0 Functional Description continued)

TABLE 3-13. Cacheable/Non-Cacheable Data Reads from an 8-Bit Bus D8-12

Number Address Data to be Read Address BEO-3 Data Bus
of Bytes LsB Bus Cach. Non Cach.
1 00 — — — BO A HHHL HHHL — — — BO
A+ 1 LLLL — — — C
*A+ 2 LLLL — — — C
*A+ 3 LLLL — — — o]
1 01 — — BO - A HHLH HHLH — — — BO
A+ 1 LLLL — — — C
*A+ 2 LLLL — — — C
A1 LLLL — - — o]
1 10 — BO — — A HLHH HLHH — — — BO
*A+ 1 LLLL — — — C
*A-2 LLLL — — — ]
*A—1 LLLL — — — C
1 11 BO — — — A LHHH LHHH — — — BO
*A -3 LLLL — — — C
*A -2 LLLL — — — C
*A -1 LLLL — — — C
2 00 — — B1 BO A HHLL HHLL — — — BO
A+ 1 LLLL HHLH — — — B1
*A+ 2 LLLL — — — Cc
*A+3 LLLL —_ — —_ o]
2 01 — B1 BO — A HLLH HLLH — — — BO
A+1 LLLL HLHH — — — B1
A+ 2 LLLL — — — o]
*A—1 LLLL — — — C
2 10 B1 BO — @ — A LLHH LLHH - — — BO
A+1 LLLL LHHH — — — B1
*A-2 LLLL — — — o]
*A—1 LLLL — — — C
3 00 — B2 B1 BO A HLLL HLLL — — — BO
A+1 LLLL HLLH — — — B1
A+2 LLLL HLHH — — — B2
*A+ 3 LLLL — — — C
3 01 B2 B1 BO — A LLLH LLLH — — — BO
A+1 LLLL LLHH — — — B1
A+2 LLLL LHHH — — — B2
*A -1 LLLL — — — (o]
4 00 B3 B2 B1 BO A LLLL LLLL — — — BO
A+1 LLLL LLLH — — - B1
A+ 2 LLLL LLHH — — — B2
A+3 LLLL LHHH — — — B3

3.6.6.3 Data Write Sequences

In a write access the CPU outputs the operand address and
asserts only the byte enable lines needed to select the spe-
cific bytes to be written.

In addition, the CPU duplicates the data to be written on the
appropriate bytes of the data bus in order to handle 8-bit
and 16-bit buses.

The various access sequences as well as the duplication of
data are summarized in Tables 3-14 to 3-16.

32-Bit Bus Width

The CPU performs only one access cycle to write the se-

lected bytes within the addressed double-word.

Example: MOVB RO, @6

* The CPU duplicates byte 2 of the data bus_into byte 0 and
performs a write cycle at address 6 with BE2 active.

16-Bit Bus Width

Up to two access cycles are needed to complete the write
operation.
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3.0 Functional Description (continued)

Example: MOVW RO, @5

® The CPU duplicates byte 1 of the data bus i@ byte 0 Ed
performs a write cycle at address 5 with BE1 and BE2
active.

® A write at address 6 is then performed with BE2 active
and the original byte 2 of the data bus placed on byte 0.

8-Bit Bus Width

Up to 4 access cycles are needed in this case to complete

the write operation.

Example: MOVB RO, @7

* The CPU duplicates byte 3 of the data bus into bytes 0
and 1, and then performs a write cycle at address 7 with
BES3 active.

3.6.7 Bus Access Control

The NS32G X320 has the capability of relinquishing its con-
trol of the bus upon request from an external DMA device or
another CPU. This capability is implemented with the HOLD

and HLDA signals. By asserting HOLD, an external device
requests access to the bus. On receipt of HLDA, the device
may perform bus cycles, as the CPU at this point has placed
all the output signals shown in Figure 3-36 into the TRI-
STATE condition.

To return control of the bus to the CPU, the external device
sets HOLD inactive, and the CPU acknowledges return of
the bus by setting HLDA inactive.

The CPU samples HOLD at the beginning of each TRI-
STATE on the rising edge of BCLK. If HOLD is asserted
when the bus is idle between access sequences, then the
bus is granted immediately (see Figure 3-36). If HOLD is
asserted during an access sequence, then the bus is grant-
ed immediately after the access sequence, including any
retried bus cycles, has completed (see Figure 4-15). Note
that an access sequence can be composed of several bus
cycles if the bus width is 8 or 16 bits.

TABLE 3-14. Data Writes to a 32-Bit Bus

1. Bytes on the data bus marked with ‘®’ are undefined.

:fu:y !::; Ade sr;ss Data to be Written Ad;::ss BE0-3 Data Bus
1 00 — — — BO A HHHL . . . BO
1 01 — — BO — A HHLH . . BO BO
1 10 — BO — — A HLHH . BO . BO
1 1" BO — — — A LHHH BO . BO BO
2 00 — — B1 BO A HHLL L . B1 BO
2 01 — B1 BO — A HLLH . B1 BO BO
2 10 B1 BO — —_ A LLHH B1 B0 B1 BO
3 00 —_ B2 B1 BO A HLLL L B2 B1 BO
3 01 B2 B1 BO - A LLLH B2 B1 BO BO
4 00 B3 B2 B1 BO A LLLL B3 B2 B1 BO
TABLE 3-15. Data Writes to a 16-Bit Bus
:fu:y::; Ad:sr;ss Data to be Written Ad:l::ss BE0-3 Data Bus

1 00 — —_ —_ BO A HHHL . ] . BO
1 01 — — BO — A HHLH . . BO BO
1 10 — BO — — A HLHH J BO . BO
1 11 BO — — — A LHHH BO U BO BO
00 — — B1 BO A HHLL . . B1 BO

2 01 — B1 BO — A HLLH . B1 BO BO
A+ 1 HLHH . . . B1

2 10 B1 BO - — A LLHH B1 B0 B1 BO
3 00 — B2 B1 BO A HLLL . B2 B1 BO
A+2 HLHH . . . B2

3 01 B2 B1 BO — A LLLH B2 Bt BO BO
A+1 LLHH . . B2 B1

4 00 B3 B2 B1 BO A LLLL B3 B2 B1 BO
A+2 LLHH . . B3 B2
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3.0 Functional Description (continued)

TABLE 3-16. Data Writes to an 8-Bit Bus

Number Address Address f—
of Bytes LSB Data to be Written Bus BEO-3 Data Bus
1 00 —_ — — BO A HHHL . ] . BO
1 0t — — BO — A HHLH . . BO BO
1 10 —_ BO —_ — A HLHH . BO . BO
1 1 BO — — — A LHHH BO . BO BO
2 00 — — B1 BO A HHLL o . B1 BO
A+1 HHLH . . . B1
2 0t — B1 BO — A HLLH . B1 BO BO
A+1 HLHH . . . B1
2 10 B1 BO — — A LLHH B1 BO B1 BO
A+1 LHHH . . ] B1
3 00 —_— B2 B1 BO A HLLL . B2 B1 BO
A+1 HLLH . . U B1
A+2 HLHH . . J B2
3 01 B2 B1 BO - A LLLH B2 B1 BO B0
A+1 LLHH U . . B1
A+2 LHHH . . . B2
4 00 B3 B2 B1 BO A LLLL B3 B2 B1 BO
A+ LLLH . . . B1
A+2 LLHH . . . B2
A+ 3 LHHH . . . B3
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3.0 Functional Description (continued)
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FIGURE 3-36. Hold Acknowledge (Bus Initially Idie)
Note: The status indicates 'IDLE’ while the bus is granted. lf the cause of the IDLE changes (e.g., CPU starts waiting for an interrupt), the status also changes.

The CPU will never grant the bus between interlocked read
and write bus cycles.

Note: If an external device requires a very short latency to get control of the
bus, the bus retry signal (BRT) can be used instead of hold. See
Section 3.6.5.

3.6.8 Interfacing Memory-Mapped 1/0 Devices

In Section 3.1.3.2 it was mentioned that some special pre-
cautions are needed when interfacing 1/0 devices to the
NS32G X320 due to its internal pipelined implementation.
Two special signals are provided for this purpose: TOINH
and TODEC. The CPU asserts IOINH during a read bus cycle
to indicate that the bus cycle should be ignored if an 1/0
device is selected. The system responds by asserting

JODEC to indicate to the CPU that an I/0 device has been
selected. IODEC is sampled by the CPU in the middle of
state T2. If the cycle is extended, then the CPU uses the
IODEC value sampled during the last wait state. If a bus
retry occurs, the sampled TODEC value is ignored. IODEC is
ignored during burst transfer cycles.

When [ODEC is active during a bus cycle for which TOINH is
asserted, the CPU discards the data and applies the special
handling required for 1/0 devices. The CPU aiso adds idle
states (at least one) after the transaction, regardless of
I0INH, as long as the TODEC input is active. Deasserting
IODEC during an idle state allows the CPU to start a new
transaction on the next clock cycle.
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3.0 Functional Description (continued)

During the idle states the A0-31, DDIN, BE0-3, PAGE, and
U/S signals have the same value they had on the last trans-
action. If the last bus reference was a write, the value of
D0-D31 is also unchanged.

In case of |/0 transactions involving two or more bus cycles
(bus width smaller than the operand’s length), extra idle
states can be added only on the last access. In this case
the CPU inserts 2 idle cycles after the first accesses and
then performs the remaining accesses back-to-back without
extra idles, regardless of IODEC. If on the last access
IODEC is sampled active, extra idle states are added as
long as TODEC is active. 1/0 devices requiring this “Slow
Peripheral” support should always be accessed by specify-
ing operand lengths smaller than or equal to the physical
bus width of the device.

Figures 3-37, 3-38 and 3-39 show the timing diagrams for
simple read and write accesses as well as for a multi-cycle

JENERENE)

read access. Figure 3-40 shows a possible implementation
of an 1/0 device interface where the address mapping of
the I/0 devices is fixed.

In an open system configuration, IODEC could be generated
by the decoding logic of each 1/O device subsystem.

Note 1: When TODEC is active in response to a read bus cycle, the CPU
treats the reference as noncacheable.

Note 2: TOINH is kept inactive during write cycles.

Note 3: If the CPU samples both HOLD and 1ODEC active, IODEC has high-
er priority, and the HOLD request will be acknowledged after TODEC
is sampled inactive.

Note 4: It TODEC is sampled active in the last T2 state of a bus cycle togeth-
er with BRT active, BRT has the higher priority. In this case the
NS32GX320 ignores TODEC.

Note 5: On interlocked bus cycles idle states can be added after each bus
access. If IODEC is sampled active in the last T2 state of the last
write reference, ILO will be deasserted regardless of the vaiue of
TODEC. Idle states will be added until IODEC is sampled high.

T2(W) T T TMorT

-(DATA IN)---

Sinigin
s [ X
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= | \/
e | AL/
s [ X
= [ X

TL/EE/10564-42

FIGURE 3-37. Read Cycle from a Memory-Mapped 1/0 Device
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3.0 Functional Description (continued)
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FIGURE 3-38. Write Cycle to a Memory-Mapped 1/0 Device
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3.0 Functional Description (continued)
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Note: Two idie states are added after the first reference due to the change in the bus width to 8 bits. Three more bus cycles are needed to complete the double-
word reference. These bus cycles are executed back-to-back regardless of the TODEC state. Idie states can be added after the last reference using TODEC.

FIGURE 3-39. Multi-Cycle Read from an 8-Bit Memory-Mapped 1/0 Device
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3.0 Functional Description (continued)

CHIP

I0INH
- SELECT /o
DEVICE
ADDRESS
.

T4F112

NS326x320

TL/EE/10564-45
FIGURE 3-40. Typical I/0 Device Interface

3.6.9 Interrupt and Debug Trap Requests

Six signals are provided by the NS32GX320 to externally
request interrupts and/or a debug trap. IR0-3 and NMI are
for_maskable and non-maskable interrupts respectively.
DBG is used for requesting an external debug trap. All of
these signals are sampled on every rising edge of BCLK.

TR0O-3 are level sensitive and, as such, once asserted they
must be kept asserted until acknowledged. They can be
asynchronous to BCLK, since the NS32GX320 internaily
synchronizes them. Nevertheless, if TRO-3 mest the re-
quired setup and hold times, then they are recognized deter-
ministically. The on-chip synchronization circuitry compares
the values of TR0-3 samped in two consecutive BCLK edg-
es. An interrupt request that is held constant for two con-
secutive edges is considered valid. The sampled value of
1R0-3 indicates an external interrupt request at the encod-
ed priority. When TR0-3 are all high, then no external inter-
rupt is requested. When they are all low, then a level-15
request is generated.

NMI and DBG are both edge sensitive; a high-to-low tran-
sition is detected by the CPU and stored in an internal latch,
so that there is not need to keep these signals asserted until
the request is acknowledged. NMi and DBG can be assert-
ed asynchronously to BCLK, but they should be at least 2
clock cycles wide in order to be recognized.

if NMi and DBG meet the specified setup and hold times,
they will be recognized on the rising edge of BCLK determi-
nistically.

Refer to Figures 4-20 and 4-21 for more details on the tim-
ing of the above signals.

74F148
F ]
(HIGHEST)  iNT15 >——3 17 =3 » iR3
NT14 p—>T6  _
s >—wTs A2 —:D—> R2
NT12 > R _
iNT11 >—p] T3 __D—> RR1
NTIo >—>f T2 40 —1
WMo >—>| 71 D—> Ro
s —n{T0
74F148
Bl
N7 >—» 17  Gp—»
e >—p 6
iNts >—>p{ 75 A2
INT3 >——p1 T3
N2 >—172 A0
(LOWEST)  iNT1 )——] Tt =
s >—pT0 P

TL/EE/10564-47

FIGURE 3-41. Interrupt Request Encoding Logic
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3.0 Functional Description (continued)

3.6.10 Internal Status

The NS32GX320 provides information on the system inter-
face concerning its internal activity.

The U/S signal will indicate the state of the U bit in the PSR.

The PFS signal is asserted for one BCLK cycle when the
CPU begins executing a new instruction. The BP signal is
asserted for one BCLK cycle when an address-compare or
PC-match condition is detected. If the BP signal is asserted
one BCLK cycle after PFS, it indicates that an address-com-
pare debug condition has been detected. If BP is asserted
at any other time, it indicates that a PC-Match debug condi-
tion has been detected.

While executing a CINV instruction, the CPU displays the
operation code and source operand using slave processor
write bus cycles.

During idle bus cycles, the signals STO-ST3 indicate wheth-
er the CPU is waiting for an interrupt or is waiting for a Slave
Processor to complete executing an instruction.

3.6.11 Page-Mode and Static-Column DRAM Support

The access time in systems using Page-Mode or Static-Col-
umn DRAMs can be shortened on consecutive references
to the same DRAM page. The NS32GX320 provides circuit-
ry to detect whether the current access is to the same
8 kbyte page as the previous access. The PAGE signal is
asserted when the above condition is met. The external log-
ic uses the PLAT signal to indicate to the CPU whether to
latch the current address for such comparisons. The PAGE
signal can be used even for DRAMs with smaller page by
latching and comparing 1 or 2 bits of the address externally.
The PLAT signal must not change within an aligned 16-byte
block.

When PAGE is active together with ADS, it indicates that
the current address is to the same page as the last valid
latched address. Addresses are latched when PLAT is as-
serted on the last T2 state of the bus access. Whenever a
new address is latched a valid bit is set to indicate a valid
address in the latch. The valid bit is reset whenever the CPU
relinquishes the bus due to HOLD acknowledge, Extended-
Retry, or Reset. The reason for invalidating the address is
that another bus master may perform memory references to
a page different from the one addressed in the last CPU
transaction. After clearing the valid bit, the CPU will not as-
sert PAGE unless a new address is latched using PLAT. The
PAGE signal is floated whenever the NS32GX320 releases
the bus.
Note 1: The PAGE signal may toggle at the beginning of T1, before the time
in which it is guaranteed valid.
Note 2: On muiti-cycle references to 8- and 16-bit wide buses, PAGE is
evaluated for each bus access.
A new address is latched using PLAT only in the last T2 state of the
first bus cycle.
Note 3: On burst accesses the PAGE signal is set during T1 of the opening
cycle and does not change throughout the transaction.
A new address is latched using PLAT only in the last T2 state of the

opening cycle.
Note 4: PLAT is not sampled during Slave Processor Bus cycles.
m 12 TorT
ac | 1L LT
[ e—
PAGE :X X
PLAT

TL/EE/10564-48
FIGURE 3-42. PAGE and PLAT Signals Timing
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A13-31) | LATCH
PLAT ) I >
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RELEASED >

VALID
BIT

TL/EE/10564-49

FIGURE 3-43. PAGE Signal Generation Logic
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4.0 Device Specifications
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FIGURE 4-1. NS32G X320 Interface Signais

4.1 NS32GX320 PIN DESCRIPTIONS

Descriptions of the NS32GX320 pins are given in the follow-
ing sections.

Included are also references to portions of the functional
description, Section 3.

Figure 4-1 shows the NS32GX320 interface signals grouped
according to related functions.

Note: An asterisk next to the signal name indicates a TRI-STATE condition
for that signal when HOLD is acknowledged or during an extended
retry.

4.1.1 Supplies

vCcC Power.
1 5V positive supply.
GND Ground.

Ground reference for both on-chip logic and
output drivers.

4.1.2 Input Signals

CLK Clock.
Input Clock used to derive all CPU Timing.
SYNC Synchronize.

When SYNC is active, BCLK will stop tog-
gling. This signal can be used to synchronize
two or more CPUs (Section 3.6.2).

Note:

1f BYNC is not used, it should be pulled up to Vce.

HOLD

Hold Request.

When active, causes the CPU to release the
bus for external DMA or multiprocessing pur-
poses (Section 3.6.7).

Note:

If HOLD is generated asynchronously, its set up and hoid
times may be violated. In this case it is recommended to
synchronize it with the rising edge of BCLK to minimize
the possibility of metastable states.

The CPU provides only one synchronization stage to min-
imize the HLDA latency. This is to avoid speed degrada-
tions in cases of heavy HOLD activity (i.e. external DMA
controlier cycles interleaved with CPU cycles).

Reset.

When RST is active, the CPU is initialized to
a known state (Section 3.6.3).

Interrupt Request.

Low levels on these signals request a priori-
tized interrupt (Section 3.6.9).
Nonmaskable Interrupt.

A High-to-Low transition of this signal re-
quests a nonmaskable interrupt (Section
3.6.9).
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4.0 Device Specifications (continued)

DBG

DRGO-1

TXB0-2

CIIN

-
2

[
(=
F 4

Debug Trap Request.

A High-to-Low transition of this signal re-
quests a debug trap (Section 3.6.9).

DMA End of Transfer.

When asserted in the last T2 state of any
DMA bus cycle in Flyby, or the last T2 state
of the write cycle in Indirect mode, causes
the DMA channel currently in control of the
bus to terminate the data transfer.

DMA Requests.

When active, these signals request DMA
service from channels 0 and 1. DRQO-1 are
sampled on each rising edge of BCLK. Once
asserted, these signals should not be deas-
serted until the request has been acknowl-
edged. To avoid multiple DMA cycles, they
should be deasserted before the end of each
cycle.

Note:

1f DRQ0-1 are generated asynchronously, the set up and
hold times may be violated. in this case it is recommend-
ed to synchronize them with the rising edge of BCLK to
minimize the possibility of metastable states.

Timer Trigger Signals.

A low-to-high transition on any of these pins
will signal a trigger event to the correspond-
ing timer. (Section 3.5.3.3).

Page Address Latch.

When active, the page address for the cur-
rent access is internally latched. (Section
3.6.11).

Cache Inhibit In.

When active, indicates that the location refer-
enced in the current bus cycle is not cache-
able. CIIN must not change within an aligned
16-byte block.

Cache Invalidate.

When low, both the instruction and data
cache contents are invalidated.

170 Decode.

Indicates to the CPU that a peripheral device
is addressed by the current bus cycle. The
value of IODEC must not change within an
aligned 16-byte block (Section 3.6.8).

Force Slave Status Read.

When asserted, indicates that the slave
status word should be read by the CPU (Sec-
tion 3.1.4.1). An external 10 k! resistor
should be connected between FSSR and
Veo-

Slave Done.

Used by a slave processor to signal the com-
pleton of a slave instruction (Section
3.1.4.1). An external 10 k(2 resistor should be
connected between SDN and Vcc.

Burst In.

When active, indicates to the CPU that the
memory supports burst cycles (Section
3.6.4.3).

BWO-1

l

@
b+
-c

Ready.

While this signal is not active, the CPU ex-
tends the current bus cycle to support a slow
memory or peripheral device.

Bus Width.

These lines define the bus width (8, 16 or 32
bits) for each data transfer; BWO is the least
significant bit. The bus width must not
change within an aligned 16-byte block—en-
codings are:

00—Reserved

01—8 Bits

10—16 Bits

1132 Bits

BWO-1 are ignored during DMA transfers.
Bus Retry.

When active, the CPU will reexecute the last
bus cycle (Section 3.6.5).

4.1.3 Output Signals

BCLK

BCLK

CASEC

Bus Clock.

Output clock for bus timing (Section 3.6.2).
Bus Clock Inverse.

Inverted output clock.

Note:

In the QFP package BCLK and BCLK are each output on
two pins that must be externally connected together.
Hold Acknowledge.

Activated by the CPU in response to the
HOLD input to indicate that the CPU has re-
leased the bus.

Program Flow Status.

A pulse on this signal indicates the beginning
of execution for each instruction (Section
3.6.10).

User/Supervisor.

User or supervisor mode status (Section
3.6.10).

DMA Acknowledge Signals.

Activated in response to DMA requests to
notify external devices that the correspond-
ing request has been acknowledged.
*In-Page Access.

When active, indicates that the current bus
access is to the same 8 kbyte page as the
previous access.

Break Point.

This signal is activated when the CPU de-
tects a PC or operand-address match debug
condition (Section 3.3.2).

*Cache Section.

For cacheable data read bus cycles indicates
the Section of the on-chip Data Cache where
the data will be placed; undefined for other
bus cycles.
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4.0 Device Specifications (continued)

IOINH

o
Q
<
5

170 Inhibit.

Indicates that the current bus cycle should
be ignored if a peripheral device is ad-
dressed. 1OINH is always inactive during
DMA bus cycles.

Slave Processor Control.
Data strobe for slave processor transfers.
*Burst Out.

When active, indicates that the CPU is re-
questing to perform burst cycles.

Interlocked Operation.

When active, indicates that interlocked cy-
cles are being performed (Section 3.6.4.5).

*Data Direction.

Indicates the direction of a data transfer. It is
low for reads and high for writes.

Confirm Special Bus Cycle.

When active, indicates a type-2 special bus
cycle. (Section 3.6.4.6).

*Confirm Bus Cycle.

When active, indicates that a bus cycle initia-
ted by ADS is valid; that is, the bus cycle has
not been cancelled (Section 3.6.4.2).
*Begin Memory Transaction.

When Stable Low indicates that the current
bus cycle is valid; that is, the bus cycle has
not been cancelled (Section 3.6.4.2).

*Address Strobe.

When active, indicates that a bus cycle has
begun and a valid address is on the address
bus.

*Byte Enables.

Used to selectively enable data transfers on
bytes 0-3 of the data bus.

S§T0-3

A0-31

Status.

Bus cycle status code; STO is the least signif-
icant. Encodings are:

0000—Idle: CPU Inactive on Bus.
0001—Idle: WAIT Instruction.
0010—Reserved

0011—Idle: The bus is idle while the slave
processor is executing an instruction.

0100—Interrupt Acknowledge.
0101—Reserved.

0110—End of Interrupt.
0111—Reserved.

1000—Sequential Instruction Fetch.
1001—Non-Sequential Instruction Fetch.
1010—Data Transfer.

1011—Read Read-Modify-Write Operand.
1100—Read for Effective Address.
1101—Transfer Slave Operand.
1110—Read Slave Status Word.
1111—Broadcast Slave ID.

*Address Bus.

Used by the CPU to output a 32-bit address
at the beginning of a bus cycle. A0 is the
least significant.

4.1.4 Input/Output Signals

TXA0~-2

D0-31

Timer Control Signals.

These signals are used to either output the
timer waveforms or to signal trigger events.
(Section 3.5.3)

*Data Bus.

Used by the CPU to input or output data dur-
ing a read or write cycle respectively.
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4.0 Device Specifications (continued)

4.2 ABSOLUTE MAXIMUM RATINGS

If Miiitary/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.

Case Temperature Under Bias 0°Cto +95°C
Storage Temperature —65°Cto +150°C

All Input or Output Voltages with

Respect to GND —-0.5Vto +7V
Power Dissipation 4W
Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation
at these limits is not intended;; operation should be limited to
those conditions specified under Electrical Characteristics.

4.3 ELECTRICAL CHARACTERISTICS NS32GX320-20, 25: Tcase = 0° to +95°C, Vo = 5V +10%, GND = OV
NS32GX320-30: Tcage = 0° to +95°C, Vog = 5V 5%, GND = OV.

Symbol Parameter Conditions Min Typ Max Units
Viu High Level Input Voltage 2.0 Ve + 0.5 \
ViL Low Level Input Voltage -05 0.8 v
VoH High Level Output Voltage lon = —400 pA 2.4 v
VoL Low Level Output Voltage
A0-11,D0-31, DDIN loL = 4 mA 0.45 v
CONF, BMT loL = 6 MA 0.45 v
BCLK, BCLK oL = 16 mA 0.45 v
All Other Outputs loL=2mA 0.45 v
I Input Load Current 0 <V|N< Voo —-20 20 pA
IL Leakage Current (Output and 04 < V)N < Voo —20 20 BA
1/0 pins in TRI-STATE/Input Mode)
Cin CLK Input Capacitance 15 pF
lec Active Supply Current loutr = 0, Tp = 25°C 700 @ 30 MHz | 800 @ 30 MHz
Voo = 5V 600 @ 25 MHz 700 @ 25 MHz mA
470 @ 20 MHz 575 @ 20 MHz
Connection Diagram
S(EPERPOEPEPORPEEEE O
RIPPOOEOOROPROROO®
4 [OXCXOXORCRONOXOXCXOROROXOXOXOXO)
H CJOXOROXCXOROXOXOROXOJOROXOXORC)
MEB O @O0
JCJoXO] OJOXO)
K®@©® © OJOXC)
‘0o ® NS326X320 ©e 0
HEe® ® OJORO)
(e ©@O00
Flo® ® OJORC),
410J0X0;] ®e e
H [OXOROROROROXONOXOXOROROXOXOXOXO)]
4 [CJOXORONOXOJONORONOXOXOXOROXOXO)
L [OXOXOXORORONCROXOROXOXONONOROXO)
MPPRPRPROORPOEPLRE
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
TL/EE/10564-89
Bottom View

FIGURE 4-2. 175-Pin Plastic PGA Package
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4.0 Device Specifications (continued)
NS32GX320 Pinout Descriptions

Desc Pin Desc Pin Desc Pin Desc Pin Desc Pin Desc Pin
GND A1 | D26 B16 | GND D14 GND | J14 | GND Ng | ST3 R6
VvCC A2 | GND C1 | vcC D15 VCC | J15 | CONF N10 | vCC R7
vCC A3 | GND C2 | D23 D16 D12 J16 | RDY N11 | BOUT R8
BP A4 | vcC C3 | U/S E1 vecC K1 | PLAT N12 | BE3 R9
PFS A5 | VCC C4 | A31 E2 A22 K2 | EOT N13 | BE1 R10
RST A6 | VCC C5 | GND E3 GND K3 | GND N14 | vCC R11
NMi A7 | FSSR Ccé | D22 E14 GND | K14 | DO N15 | BW1 R12
GND A8 | RESERVED | C7 | D21 E15 D11 K15 | D5 N16 | ITCONF | R13
RO A9 | BCLK Cc8 | D20 E16 D10 K16 | A15 P1 | CIN R14
iR3 A10 | VCC C9 | CASEC | F1 A20 Lt vCC P2 | TXB1 R15
HOLD Al1 | TR1 C10 | A30 F2 A21 L2 | GND P3 | D3 R16
TXA1 A12 | DR(1 C11 | 1OINH | F3 vCC L3 | A5 P4 | AN1 St
D31 A13 | DAK1 C12 | D19 F14 D7 L14 | A3 P5 | A10 S2
D29 At14 | RESERVED | C13 | D18 F15 D8 L15 | A1 P6 | A7 S3
vCC A15 | D27 C14 | D17 F16 D9 L16 | STO P7 | A6 S4
GND B1 | D25 C15 | A28 G1 A19 M1 | GND P8 | A0 S5
VvCC B2 | D24 C16 | A29 G2 GND | M2 | vcC P9 | ST2 S6
GND B3 | GND Dt | vCC G3 A18 M3 | BEO P10 | PAGE S7
VCC B4 | Ilo D2 | GND G14 D1 M14 | GND P11 | HLDA S8
vCC B5 | GND D3 | D16 G15 D6 M15 | BIN P12 | DDIN S9
DBG B6 | GND D4 | D15 G16 vCcC | Mit6 | TODEC P13 | BE2 S10
RESERVED | B7 | GND D5 | A26 H1 A17 N1 RESERVED | P14 | ADS S11
SYNC 88 | SDN D6 | A27 H2 A16 N2 | TXB2 P15 | BMT S12
GND B9 | RESERVED | D7 | GND H3 A12 N3 | D4 P16 | BRT S13
R2 B10 | BCLK D8 | vce H14 A8 N4 | A14 R1 | BWO S14
CINV B11 | GND D9 | D14 H15 VCC N5 | A13 R2 | TXBO S15
TXAO B12 | CLK D10 | D13 H16 GND N6 | A9 R3 | D2 S16
TXA2 B13 | DRQO D11 | A23 J1 ST1 N7 | A4 R4
D30 B14 | DAKO D12 | A24 J2 3PC N8 | A2 R5
D28 B15 | GND D13 | A25 J3
4.4 SWITCHING CHARACTERISTICS
4.4.1 Definitions ABBREVIATIONS:

All the timing specifications given in this section refer to
0.8V or 2.0V on all the signals as illustrated in Figures 4-3
and 4-4, unless specifically stated otherwise.

The capacitive load is assumed to be 100 pF on the clock
signals and 50 pF on ali the other output signals. A minimum
capacitive load of 50 pF on BCLK an BCLK is also as-

sumed.
L 2.0v
BCLK
\ 0.8V
" e————— 2.4V
—tsiG1h 2.0v
SIG1 t
SIG1v 0.8
L 0.45v
[ tsic2v 20V 2.4V
$IG2 t
S162h 0.8v

.45V
TL/EE/10564-52
FIGURE 4-3. Output Signals Specification Standard

L.E.—leading edge
T.E.—training edge

R.E.—ising edge
F.E.—falling edge

BCLK

{ 2.0v
. 0.8V

SIG1

v tsiGts 08
| R S .

SIG2

20v [
/ tsicas

0.45v
TL/EE/10564-53

FIGURE 4-4. Input Signals Specification Standard
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4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation Delays, NS32GX320-20, NS32GX320-25, NS32GX320-30

¢ The output to input timings (e.g., Address to RDY are at least 2 ns better than the worst case values calculated from the
output valid and input setup times relative to BCLK or BCLK.

Name Figure Description Reference/Conditions NS32GX320-20 | NS32GX320-25 | NS32GX320-30 Units
Min Max Min Max Min Max
tac 4-29 Bus Clock Period |R.E., BCLK to Next
P RE. BCLK 50 100 40 100 333 100 ns
tacy, 4-29 |BCLKHigh Time |At2.0VonBCLK 0.5tgc, 051G, 05 tgc ns
(Both Edges) -5 —4 —368
tac) 4-29 BCLK Low Time | At 0.8V on BCLK 0.5 tBCp 0.5 tBCp 0.5 g, ns
(Both Edges) -5 —4 —368
tsc 4-29 BCLK Rise Time |0.8Vto2.0Von
(Note 1) R.E., BCLK 5 4 3 | ms
i 1o 4-29 BCLK Fall Time 2.0Vt00.8Von 5 4 3 ns
(Note 1) F.E., BCLK
tNBCh 4-29 |BCLK High Time |At2.0VonBCLK 0.5tac, 0.5tac,, 0.51tgg ns
(Both Edges) -5 —4 —3.6!
tNee 4-29 BCLK Low Time | At 0.8V on BCLK 0.5 tBCp 0.5 tBCp 0.5 1g¢, ns
(Both Edges) -5 —4 —-3.6
INBC, 4-29 BCLK Rise Time |0.8V to 2.0V on 5 4 3 ns
{Note 1) R.E., BCLK ;
tNecy 4-29 BCLK Fall Time 2.0Vt00.8Von
(Note 1) F.E., BCLK 5 4 8 | s
toacy 4-29 |CLKtoBCLK 2.0VonRE., CLK to
' R.E. Delay 2.0V on R.E., BCLK 20 7 15| s
tCBC4 4-29 |CLKtoBCLK 2.0VonRE., ClLKto
F.E. Delay 0.8V on F.E., BCLK 20 v 15| ns
toNBCy 4-29 |CLKtoBCIK 20VonRE., ClKto
' R.E. Delay 0.8V on R.E., BCLK 20 i 15 | ns
tonBCy | 4-29  |CLKto BCLK 2.0VonR.E., CLK to
F.E. Delay 0.8V on F.E., BOLK 20 7 5| e
tBONBC ¢ 4-29 Bus Clocks Skew [2.0V onR.E., BCLK to _ _ _
(Note 1) 0.8V on F.E., BCLK 2| *2 2 | *2 2 | t2 s
tBONBC; 4-29 Bus Clocks Skew [0.8VonF.E., BCLK to _ _ _
(Note 1) 2.0V on R.E., BCLK 2| *2 2| 2 2 | t2 | ms
tay 4-5,4-6 Ad(_iress Bits 0-31 | After R.E., BCLK T1 1 9 9 ns
Valid
tan 4-5,4-6 |Address Bits 0-31| After R.E.,, BCLK T1 or Ti 0 0 0 ns
Hold
tay 4-11,4-14 Addr(.ess Bits 0-31 | After F.E., BCLK Ti 21 17 13 ns
Floating
tan 4-11,4-14| Address _Bits 0-31 | After F.E.,, BCLK Ti 0 0 0 ns
Not Floating

Note 1: Guaranteed by characterization. Due to tester conditions, this parameter is not 100% tested.
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4.0 Device Specifications (continued)
4.4.2.1 Output Signals: Internal Propagation Delays, NS32GX320-20, NS32GX320-25, NS32GX320-30 (Continued)

Name | Figure Description Reference/Conditions NS32GX320-20 | NS32GX320-25 | NS32GX320-30 Units
Min Max Min Max Min Max

taB, 4-8 Adt.iress Bits A2, A3 |After R.E., BCLK T2B 11 9 9 ns
Valid (Burst Cycle)

tagy, 4-8 Address Bits A2, A3 |After R.E., BCLK T2B 0 0 0 ns
Hold (Burst Cycle)

tbo, 4-6, 4-17 |Data Out Valid After R.E., BCLK T1 0.5 tgg, 0.5 tgg, 0.5 tg¢

0.5 tBCp +13 P|0.5 tBCp +12 P10.5 thp +11 Pl ns

Yoo, 4-12 Internal Data QOut After R.E., BCLK T2 0.5 thp 0.5 tBCp 0.5 tscp ns
Valid +15 +13 +11

toop 4-6, 4-17 |Data Out Hold After R.E., BCLK T1 or Ti 0 0 0 ns

tDospc 4-17  |Data Out Setup Before SPC T.E. s 6 5 ne
(Slave Write)

tooy 4-7 Data Bus Floating After R:E., BCLK 21 17 13 ns

TiorTi

tDOp 4-7 Data Bus After F.E., BCLK T1 0 0 0 ns
Not Floating

tgmT, | 4-5,4-7 [BMT Signal Valid After R.E., BCLK T1 32 27 22 ns

temT, | 4-5,4-7 |BMT Signal Hold After R.E., BCLK T2 0 0 0 ns

tamT; |4-11,4-14|BMT Signal Floating |After F.E., BCLK Ti 21 17 13 ns

My [4-11, 4-14|BMT Signal After F.E., BCLK Ti 0 0 0 ns
Not Floating

tconF, | 4-5,4-8 [CONF Signal Active |After R.E., BCLK T1 0.5tgc 0.5 tgg, 0.51gc

a 0.5 tgcp +14 P|0.5 tBCp +9 P|0.5 tBCp irs P| ns
{CONFj, | 4-5,4-8 |CONF Signal Inactive |After R.E., BCLK T1 or Ti 1 9 9 ns
tconF; [4-11,4-14 CONF Signal Floating | After F.E., BCLK Ti 21 17 13 ns
tcoNF,, (411, 4-14 CONF Signal After F.E., BCLK Ti 0 0 0 ns

Not Floating
ticONF 4-12 ICONF Signal Active |After R.E., BCLK T1 0.5tgg 0.5 tge, 0.5 tgg,

a 0.5 tBCp +11 P|0.5 tBCp +9 P|0.5 thp +9 Pl ns
ticonF,| 4-12 ICONF Signal Inactive|After R.E., BCLK next T+, Ti 11 9 9 ns
taps, | 4-5.4-8 ADS Signal Active After R.E., BCLK Tt 1 9 9 ns
taDs;, | 4-5,4-8 |ADS Signal Inactive |After F.E., BCLK T1 11 9 9 ns
taDs,, 4-6 ADS Puise Width At 0.8V (Both Edges) 16 12 10 ns
taps; |4-11,4-14/ADS Signal Floating |Atter F.E., BCLK Ti 21 17 13 ns
taps, |4-11.4-14|ADS Sigqal After F.E.,, BCLK Ti 0 0 0 ns

Not Floating
tBE, 4-6,4-8 |BE, Signals Valid After R.E., BCLK T1 1 9 9 ns
tBE), 4-6, 4-8 |BE, Signals Hold After R.E., BCLK T1, 0 0 0 ns
Tior T2B
=1 4-11, 4-14 |BE,, Signals Floating |After F.E., BCLK Ti 21 17 13 ns
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4.0 Device Specifications (continueq)
4.4.2.1 Output Signals: Internal Propagation Delays, NS32GX320-20, NS32GX320-25, NS32GX320-30 (Continued)

NS32GX320-20

NS32GX320-25

NS32GX320-30

Name | Figure Description Reference/Conditions Units
Min Max Min Max Min Max
8, [4-11,4-14|BE;, Sign{als After F.E., BCLK Ti 0 0 0 ns
Not Floating
tooin, | 4-5,4-6 |DDIN Signal Valid After R.E.,, BCLK T1 11 9 9 ns
tooiny, | 4-5.4-6 DDIN Signal Hold After R.E., BCLK T1 or Ti 0 0 0 ns
tppin; (4-11,4-14 DDIN Signal Fioating  |After F.E., BCLK Ti 21 17 13 ns
1DDING; [4-11.4-14 DDIN Sigpal After F.E, BCLKTi 0 0 0 ns
Not Floating
tPAGE, 4-23 |PAGE Signal Valid After R.E., BCLK T1 22 18 15 ns
PAGE, 4-23 |PAGE Signal Hold After R.E., BCLK next T1, Ti 0 0 0 ns
tPAGE; 4-14 |PAGE Signal Floating {After F.E., BCLK Ti 21 17 13 ns
tPAGE,;| 4-14 |PAGE Signal After F.E., BCLK Ti 0 0 0 ns
Not Floating
tspc, [4-16,4-17 SPC Signal Active After R.E., BCLK T1 19 15 12 ns
tspc;, [4-16.4-17 SPC Signal Inactive After R.E., BCLK Ti, T1 or T2 19 15 12 ns
topspc | 4-16  [DDIN Valid to Before SPC L.E. 0 0 0 ns
(Note 2) SPC Active
tHLDA, |4-14, 4-15[HLDA Signal Active After F.E., BCLK Ti 15 1 10 ns
tHLDAja 4-14 |HLDA Signal Inactive |After F.E., BCLK Ti 15 11 10 ns
tDAK, 4-13 |DAK, Signals Active  |After F.E., BCLK Ti 15 11 10 ns
tDAKiy 4-13 |DAK, Signal Inactive  |After F.E., BCLK Ti 15 11 10 ns
tsTy 4-5,4-16 [Status (ST0-4) Valid |After R.E., BCLK T1 1 9 9 ns
tsTh, 4-5,4-16 |Status (ST0-4) Hold  |After R.E., BCLK T1 or Ti 0 o] 0 ns
tgouT, | 4-8.4-9 BOUT Signal Active After R.E., BCLK T2 15 12 11 ns
tgouT, | 4-8,4-9 |BOUT Signal Inactive ﬁ:;r%g’.,ﬁccl).r}ﬁ_i 15 12 11 ns
tgouty |4-11,4-14|BOUT Signal Floating  |After F.E., BCLK Ti 21 17 13 | ns
t8OUTy [4- 11, 4-14|BOUT Signal After F.E., BCLK Ti 0 o o ns
Not Floating
tiLo, 4-7 Interlock Signal Active |After F.E., BCLK Ti 11 9 9 ns
HLO4, 4-7 Interlock Signal Inactive|After F.E., BCLK Ti 11 9 9 ns
tPEs, 4-22 |PFS Signal Active After F.E., BCLK 15 1 10 ns
tPES, 4-22 |PFS Signal Inactive  |After F.E., Next BCLK 15 1 10 ns
tBp, 4-22 |BP Signal Active After F.E., BCLK 15 11 10 ns
tBp;, 4-22 |BP Signal Inactive After F.E., Next BCLK 15 11 10 ns
tus, 4-5 U/S Signal Valid After R.E., BCLK T1 11 9 9 ns
tusy, 4-5 U/S Signal Hold After R.E.,,BCLK T1 or Ti 0 0 0 ns
tcas, 4-5  |CASEC Signal Valid After F.E., BCLK T1 15 11 10 ns
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4.0 Device Specifications (continueq)
4.4.2.1 Output Signals: Internal Propagation Delays, NS32GX320-20, NS32GX320-25, NS32GX320-30 (Continued)

Name Figure Description Reference/Conditions NS32GX320-20 | NS32GX320-25 | NS32GX320-30 Units
Min Max Min Max Min Max
tcasy, 4-5 CASEC Signal Hold After R.E., BCLK T1 or Ti 0 0 0 ns
tcasy | 4-11,4~-14| CASEC Signal Floating | After F.E., BCLK Ti 21 17 13 ns
tcAsy | 4-11, 4-14 | CASEC Signal After F.E., BCLK Ti 0 0 0 ns
Not Floating
tiol, 4-5 TOINH Signal Valid After R.E., BCLK T1 15 11 10 ns
tiol, 4-5 TOINH Signal Hold After RE,BCLKT1or Ti 0 0 0 ns
trxay 4-26 TXAp Outputs Valid After R.E., BCLK 15 11 10 ns
XA, 4-26 | TXA, Outputs Hold After R.E., BCLK 0 0 0 ns
trxag 4-27 TXA\, Signals Floating | After F.E., BCLK 21 17 13 ns
1TXAnt 4-27 TXAp Signals After F.E., BCLK 0 0 0 ns
Not Floating

Note 1: Guaranteed by characterization. Due to tester conditions, this parameter is not 100% tested.
Note 2: tppspc and all the parameters related to the “‘Floating/Not Floating” conditions are guaranteed by characterization. Due to tester conditions, these
parameters are not 100% tested.

4.4.2.2 Input Signal Requirements: NS32GX320-20, NS32GX320-25, NS32GX320-30

Name | Figure Description Reference/Conditions NS32GX320-20 | NS32GX320-25 | NS32GX320-30 Units
Min Max Min Max Min Max
tc 4-29 |Input Clock Period [R.E., CLK to Next
] X
RE. CLK 25 50 20 50 16.6 50 ns
tch 4-29 |CLK High Time At2.0VonCLK 0.5 tcp 0.5 tc, 0.5 tc, ns
(Note 3) (Both Edges) ~5 -5 —4
te, 4-29 |[CLK Low Time At 0.8V on CLK 0.5 tcp 0.5 tcp 0.5 tcp ns
(Note 3) (Both Edges) -5 -5 —4
tc, 4-29 |CLK Rise Time 0.8Vto2.0VonR.E, CLK 5 4 3 ns
(Note 3)
4-29 [CLK Fall Time 2.0Vto0.8VonF.E,CLK
5 4 3 ns
(Note 3)
tDig 4-5,4-16|Data In Setup Before R.E., BCLK T1 or Ti 13 11 8 ns
to, 4-5, 4-16|Data In Hold After R.E., BCLK T1 or Ti 1 1 1 ns
trDY, 4-5 RDY Setup Time |Before RE BCLK T2(W), 22 18 12 ns
TtorTi
tRDY 4-5 RDY Hold Time Ater R.E., BCLK T2(W),
h ; 1 1 1 ns
T1orTi
tew, 4-5 BWO-1 Setup Time|Before F.E., BCLK T2 or T2(W)| 21 17 13 ns
twy, 4-5 |BWO-1 Hold Time |After F.E., BCLK T2 or T2(W) 1 1 1 ns
tPLAT, 4-23 |PLAT Setup Time |Before F.E., BCLK T2 21 17 13 ns
PLATH 4-23 [PLAT Hold Time After F.E., BCLK T2 1 1 1 ns
tbRQg 4-13 |DRQ, Setup Time |Before R.E., BCLK 21 17 14 ns
toran 4-13 [DRQqHold Time |After REE., BCLK 1 1 1 ns
teoTg 4-13 |EOT Setup Time [Before R.E., BCLK next T1, Ti 23 19 16 ns
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4.0 Device Specifications (continued)

4.4.2.2 Input Signal Requirements: NS32GX320-20, NS32GX320-25, N$32GX320-30 (Continued)

NS32GX320-20

NS32GX320-25

NS32GX320-30

Name Figure Description Reference/Conditions Units
Min Max Min Max Min Max
teoTy, 4-13 |EOTHold Time  |After R.E., BCLK 1 1 1 ns
tHoLD, |4—14, 4-15HOLD Setup Time |Before R.E., BGLK 19 15 12 ns
tHOLDy, 4-14 |HOLD Hold Time [After R.E., BCLK 1 1 1 ns
tBINg 4-8 BIN Setup Time Before F.E., BCLK T2 or T2(W)| 21 17 13 ns
taINg 4-8 |BiNHoldTime |After F.E., BCLK T2 or T2(W) 1 1 1 ns
tBRT, 4-6,4-8 |BRT Setup Time |Before R.E., BCLK T1 or Ti 21 17 13 ns
BRT), 4-6,4-8 |BRT Hold Time After R.E., BCLK T1 or Ti 1 1 1 ns
tioDg 4-5  |IODEC Setup Time{Before F.E., BCLK T2 or T2(W)| 21 17 13 ns
tioy, 4-5  |TODEC Hold Time |After F.E., BCLK T2 or T2(W) 1 1 1 ns
:;v;:; 3 4-31 ;oge:fsﬁtas_l;le to |After VCC Reaches 4.5V 50 40 30 us
tRST, 4-32 |RST Setup Time |Before R.E., BCLK 14 12 11 ns
tRsT,, 4-32 |RST Pulse Width |At 0.8V (Both Edges) 64 64 64 t8c,
tolig 4-5 |CIIN Setup Time  |Before F.E., BCLK T2 21 17 13 ns
toiy, 4-5 |CliNHold Time  {After F.E., BCLK T2 1 1 1 ns
tCiNvs 4-28 |CINV Signal Setup |Before R.E., BCLK 14 12 1 ns
tciNv, 4-28 |CINV Signal Hold |After R.E., BCLK 1 1 1 ns
tiRg 4-20 IR, Setup Time |Before R.E., BCLK 14 12 11 ns
tiRg 4-20 |IR,Hold Time After R.E., BCLK 1 1 1 ns
tMig 4-20 |NMIiSetup Time |Before R.E., BCLK 20 17 16 ns
tNMI, 4-20 |NMIHold Time After R.E., BCLK 1 1 1 ns
1D 4-18 |SDN Setup Time |Before R.E., BCLK 14 12 1 ns
tSDh 4-18 SDN Hold Time After R.E., BCLK 1 1 1 ns
trssR, 4-19 |FSSR Setup Time |Before R.E., BCLK 14 12 1 ns
tFSSRy, 4-19 |FSSRHold Time |After R.E., BCLK 1 1 1 ns
tSYNG, 4-30 |SYNC Setup Time |Before R.E., CLK 10 8 7 ns
tSyNCy, 4-30 [SYNC Hold Time |After R.E., CLK 1 1 1 ns
1DBGg 4-21 |DBG Setup Time |Before R.E., BCLK 14 12 11 ns
toBGY, 4-21 |DBGHold Time |After R.E., BCLK 1 1 1 ns
tTxABg 4-25 T-)(An and TXB, (Before F.E., BCLK 14 12 1 ns
Signals Setup
tTxaBy 4-25 T?(An and TXBp, After F.E., BCLK 1 1 1 ns
Signals Hold

Note 3: Guaranteed by characterization. Due 1o tester conditions, this parameter is not 100% tested.
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4.0 Device Specifications (continued)

4.4.3 Timing Diagrams

BCLK

A0 =31

BMT

CONF

BW0 -1

BEO-3

ST0-3

u/s

CIIN

CASEC

IODEC

I0INH

X

ANY
|T=STATE; T | T2 | T2(W) [TIORTi
| et —{ f+tan

tols

e
4

Y05 ]

] b toomn

L S My ytmm\
f /
- —;coura - =tconria
7\ —
I -—tRDYs
/ :L rd
towe = =] L“RDYh
G
X
- sty -~ = tsm
. K
-~ [=tlusy | 1=tush
. X
toust> =
-t ——%'f:uh
X X
‘ Yops > {+ | )
Z KO
tow—> o = p— Yot

) 4

FIGURE 4-5. Basic Read Cycle Timing
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4.0 Device Specifications (continued)
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4.0 Device Specifications (continued)
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4.0 Device Specifications (continued)
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4.0 Device Specifications (continued)
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4.0 Device Specifications (continued)
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4.0 Device Specifications (continued)
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4.0 Device Specifications (continued)
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4.0 Device Specifications (continued)
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4.0 Device Specifications (continued)
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4.0 Device Specifications (continued)
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FIGURE 4-20. TR0-3 and NMI Signals Sampling
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Note 2: fR0-3 are level sensitive, and once asserted, they should not be deasserted until they are acknowledged.
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4.0 Device Specifications (continued)
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4.0 Device Specifications (continued)
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Appendix A: Instruction Formats

NOTATIONS:
i = Integer Type Field
B = 00 (Byte)
W = 01 (Word)
D = 11 (Double Word)
f = Floating Point Type Field
F = 1 (Std. Floating: 32 bits)
L = 0 (Long Floating: 64 bits)
¢ = Custom Type Field
D = 1 (Double Word)
Q = 0 (Quad Word)
op = Operation Code
Valid encodings shown with each format.
gen, gen 1, gen 2=General Addressing Mode Field
See Section 2.2 for encodings.
reg = General Purpose Register Number
cond = Condition Code Field
0000 = EQual: Z = 1
0001 = NotEqual: Z = 0
0010 = Carry Set: C = 1
0011 = Carry Clear: C = 0
0100 = Higher: L = 1
0101 = Lower or Same: L = 0
0110 = Greater Than: N = 1
0111 = Lessor Equal: N = 0
1000 = Flag Set: F = 1
1001 = Flag Clear: F = 0
1010 = LOwer: L = 0and Z = 0
1011 = Higher or Same: L = 1 orZ = 1
1100 = Less Tham:N = 0andZ = 0
1101 = Greater or Equal: N = 1 orZ = 1
1110 = (Unconditionally True)
1111 = (Unconditionally False)
short = Short Immediate value. May contain:
quick: Signed 4-bit value, in MOVQ, ADDQ,
CMPQ, ACB.
cond: Condition Code (above), in Scond.
areg: CPU Dedicated Register, in LPR, SPR.

0000 = US

0001 = DCR
0010 = BPC
0011 = DSR
0100 = CAR
0101-0111 = (Reserved)
1000 = FP

100t = SP

1010 = SB

1011 = USP
1100 = CFG
1101 = PSR
1110 = INTBASE
1111 = MOD

Options: in String Instructions

[uw]s]T]

T = Translated

B

= Backward

U/W = 00: None

01: While Match
11: Until Match

Configuration bits, in SETCFG Instruction:

[ClRes[F||—|

Note: Reserved bit must be set to 0 when executing SETCFG.

7 0

eona [t 010

Format 0
Bcond (BR)
7 0
o0 [o010]
Format 1
BSR -0000 ENTER -1000
RET -0001 EXIT -1001
CXP -0010 NOP -1010
RXP -0011 WAIT -1011
RETT -0100 DIA -1100
RETI -0101 FLAG -1101
SAVE -0110 SvC -1110
RESTORE -0111 BPT ~1111
15 8 | 7 0
T T T T T T T T T T T
gen l short | op | 11 I i ’
Format 2
ADDQ -000 ACB -100
CMPQ -001 MOvQ -101
SPR -010 LPR -110
Scond -011
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Appendix A: Instruction Formats (continueq)

15 8l7 0
LI T T 1 LI T
| gen I op |1 111 11 i ]
Format 3

CXPD -0000 ADJSP -1010
BICPSR -0010 JSR -1100
JUMP -0100 CASE -1110
BISPSR -0110
Trap (UND) on XXX1, 1000

15 8|7 0

T T T T T T T T T T T T
| gen 1 | gen2 | op l i J
Format 4

ADD -0000 SuB -1000
CMP -0001 ADDR -1001
BIC -0010 AND -1010
ADDC -0100 SUBC -1100
MOV -0101 TBIT -1101
OR -0110 XOR -1110
23 1G| 15 8|7 0

T T r 11 11T

L T 171 T T 7T
|ooooo| short |o| op |i 00001110

Format §
MOVS -0000 SETCFG -0010
CMPS -0001 SKPS -0011
Trap (UND) on 1XXX, 01XX
23 16] 15 8|7 0

T T T T T T T T L T T T T T T T T

|gen1 | gen2| op |i01001110J

Format 6
ROT -0000 NEG -1000
ASH -0001 NOT -1001
CBIT -0010 Trap (UND) -1010
CBITI -0011 SuBP -1011
Trap (UND) -0100 ABS -1100
LSH -0101 coM -1101
SBIT -0110 IBIT -1110
SBITI -0111 ADDP -1111
23 16' 15 8|7 0

T T T T T T T T T T T T T T T T T T T

'gen1 l genzl op1i11001110|

Format 7
MOVM -0000 MUL -1000
CMPM -0001 MEI -1001
INSS -0010 Trap (UND) -1010
EXTS -0011 DEI -1011
MOVXBW -0100 Quo -1100
MOVZBW -0101 REM -1101
MOVZiD -0110 MOD -1110
MOVXiD -0111 DIv BRRRI

23 16415 8|7 0
T 11 T T 11 T 1 T T T T T 11
gen 1 gen 2 | reg i 101110

Cops
TL/EE/10564-82
Format 8

EXT -0 00 INDEX -100

CvTP -001 FFS -101

INS -010

CHECK 011

MOVSU -110, reg = 001

MOVUS -110,reg = 011

Trap (UND) on 110, 111

23 16| 15 8(7 0
T T T T T T T T T T T T T T T T T 7T

| geni I gen 2 |op|fli00111110

Format 9

MOVif -000 ROUND -100

LFSR -001 TRUNC -101

MOVLF -010 SFSR -110

MOVFL -011 FLOOR -1

7 0

TL/EE/10564-83

Format 10
Trap (UND) Always
23 16|15 8|7 0
T T T T T 1T 1T T T 7T T T T T T T T T
| gen1 1 gen2 ] op |0]f10111110|
Format 11
ADDf -0000 DIVf -1000
MOVS -0001 Note 1 -1001
CMPf -0010 Note 3 -1010
Note 3 -0011 Note 1 -1011
Susf -0100 MULf -1100
NEGf -0101 ABSf -1101
Note 2 -0110 Note 2 -1110
Note 1 -0111 Note 1 -1111
23 16| 15 8|7 0
T T LI T T T T T T T 1 T T T T T
‘ gen 1 I gen 2 | op ]0|f11111110
Format 12
Note 2 -0000 Note 2 -1000
Note 1 -0001 Note 1 -1001
POLYf -0010 Note 3 -1010
DOTf -0011 Note 1 -1011
SCALBf -0100 Note 2 -1100
LOGBf -0101 Note 1 -1101
Note 2 -0110 Note 2 -1110
Note 1 -0111 Note 1 -1111
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Appendix A: Instruction Formats continued)

TL/EE/10564-84

Format 13
Trap (UND) Always
23 16] 15 8|7 0
T T T T T 1 T T T T T T T T T 71
| gen 1 |short IOI op |i0001111j;|
Format 14
CINV —1001

Trap (UND) on 00XX, 01XX, 1000, 101X, 11XX

23 16{ 15 8|7 0
T T T T T T
nnn10110
Operation Word ID Byte
Format 15
(Custom Slave)
nnn Operation Word Format
23 16! 15 8
T T T T T T T T T T T
000 gen 1 | short |x| op l i
Format 15.0
LCR -0010
SCR -0011

Trap (UND) on all others

23 16| 15 8
T T T T T T T T T T T
001 gen 1 | gen 2 I op ] cl i
Format 15.1
CCv3 -000 CCv2 -100
LCSR -001 CCv1 -101
CCV5 -010 SCSR -110
CCv4 -011 CCVvo =111

23 1GI 15 8
T T T 7T LI L T 7T T
101 gen 1 , gen2 l op ]xlc
Format 15.5
CCALO -0000 CCAL3 -1000
CMOVO0 -0001 CMOV3 -1001
CCMPO -0010 Note 3 -1010
CCMP1 -0011 Note 1 -1011
CCAL1 -0100 CCAL2 -1100
CMOV2 -0101 CMOWV1 -1101
Note 2 -0110 Note 2 -1110
Note 1 -0111 Note 1 1111
23 16| 15 8
T T T T T T T T T T T
111 gen 1 l gen 2 [ op ]xlc
Format 15.7
Note 2 -0000 Note 2 -1000
Note 1 -0001 Note 1 -1001
Note 3 -0010 Note 3 -1010
Note 3 -0011 Note 1 -1011
Note 2 -0100 Note 2 -1100
Note 1 -0101 Note 1 -1101
Note 2 -0110 Note 2 -1110
Note 1 -0111 Note 1 -1111
If ann = 010, 011, 100, 110 then Trap (UND) Always.
7 0

TL/EE/10564-85

Format 16
Trap (UND) Always
..-7 o
o TL/EE/10564-86
Format 17
Trap (UND) Always
23 16/15 7 0
TTTT T T T T [T T T[T T T T TT 7171
gan1|gen2 op ij10001110
TL/EE/10564-87
Format 18
MULWD -0000 CMACD -0010
CMULD -0001 MACTD -0011

Trap (UND) on 1XXX, 01XX
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Appendix A: Instruction Formats (continued)

7 0

TL/EE/10564-88

Format 19
Trap (UND) Always
Implied Immediate Encodings:

T T T T T T T

r7|r61r5|r4|r31r21r1|r0

Register Mark, Appended to SAVE, ENTER

7 0
T T T T T T T

rOlr1lr21r3Lr4|r5|r6|r7

Register Mark, Appended to RESTORE, EXIT

T T T T T T

offset length - 1
| I | [ ]

Offset/Length Modifier Appended to INSS, EXTS

Note 1: Opcode not defined; CPU treats like MOVy or CMOV,. First operand
has access class of read; second operand has access class of write; f or ¢
field selects 32- or 64-bit data.
Note 2: Opcode not defined; CPU treats like ADDy or CCAL,. First operand
has access ciass of read;, second operand has access class of read-modify-
write; f or ¢ field selects 32- or 64-bit data.
Note 3: Opcode not defined; CPU treats like CMPs or CCMPg. First operand
has access class of read;, second operand has access class of read; f or ¢
field selects 32- or 64-bit data.

Appendix B. Compatibility Issues

The NS32GX320 is compatible with the Series 32000 archi-
tecture implemented by the NS32532, NS32GX32 and pre-
vious microprocessors. Compatibility means that within cer-
tain limited constraints, programs that execute on one of the
earlier Series 32000 microprocessors will produce identical
results when executed on the NS32GX320. Compatibility
applies to privileged operating systems programs, as well as
to non-privileged applications programs. This appendix ex-
plains both the restrictions on compatibility with previous
Series 32000 microprocessors and the extensions to the
architecture that are implemented by the NS32GX320.

B.1 RESTRICTIONS ON COMPATIBILITY

If the following restrictions are observed, then a program
that executes on an earlier microprocessor of the Series
32000 architecture will produce identical results when exe-
cuted on the NS32GX320 in an appropriately configured
system:

1. The program is not time-dependent. For example, the
program should not use instruction loops to control real-
time delays.

2. The program does not use any encodings of instruc-
tions, operands, addresses, or control fields identified to
be reserved or undefined. For example, if the count op-
erand’s value for an LSHi instruction is not within the
range specified by the Series 32000 Instruction Set Ref-

erence Manual, then the results produced by the
NS32G X320 may differ from those of the NS32032.

3. The program does not depend on the use of a Memory
Management Unit (MMU).

4. The program does not depend on the detection of bus
errors according to the implementation of the NS32332.
For example, the NS32G X320 distinguishes between re-
startable and nonrestartable bus errors by transferring
control to the appropriate bus-error exception service
procedure through one of two distinct entries in the In-
terrupt Dispatch Table. In contrast, the NS32332 uses a
single entry in the Interrupt Dispatch Table for all bus
errors.

5. The program does not modify itself. Refer to Section B.4
for more information.

6. The program does not depend on the execution of cer-
tain complex instructions to be non-interruptible. Refer
to Section B.5 on. ‘““Memory-Mapped 1/0” for more in-
formation.

7. The program does not use the custom slave instructions
CATSTO and CATST1, as they are not supported by the
NS32G X320 and will result in a Trap (UND) when their
execution is attempted.

B.2 ARCHITECTURE EXTENSIONS

The NS32GX320 implements the following extensions of

the Series 32000 architecture using previously reserved

control bits, instruction encodings, and memory locations.

Extensions implemented earlier in the NS32332, such as

32-bit addressing, are not listed.

1. The DC, LDC, IC, and LIC bits in the CFG register have
been defined to control the on-chip Instruction and Data
Caches. The DE-bit in the CFG register has been de-
fined to enable Direct-Exception Mode.

2. The V-flag in the PSR register has been defined to en-
able the Integer-Overflow Trap.

3. The DCR, BPC, DSR, and CAR registers have been de-
fined to control debugging features. Access to these
registers has been added to the definition of the LPR
and SPR instructions.

4. Access to the CFG and SP1 registers has been added
to the definition of the LPR and SPR instructions.

5. The CINV instruction has been defined to invalidate
control of the on-chip Instruction and Data Caches.

6. The instructions MULWD, CMULD, CMACD and
MACTD have been defined to improve DSP support.

7. Direct-Exception Mode has been added to support fast-
er interrupt service time and systems without module
tables.

8. A new entry has been added to the Interrupt Dispatch
Table for supporting vectors to distinguish between re-
startable and nonrestartable bus errors. Two additional
entries support Trap (OVF) and Trap (DBG).

B.3 INTEGER OVERFLOW TRAP

A new trap condition is recognized for integer arithmetic
overflow. Trap (OVF) is enabled by the V-flag in the PSR.
This new trap is important because detection of integer
overflow conditions is required for certain programming lan-
guages, such as ADA, and the PSR flags do not indicate the
occurrence of overflow for ASHi, DIVi and MULI instructions.
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Appendix B. Compatibility Issues (continued)

More details on integer overflow are given in Section 3.2.5,
where a description of all the cases in which an overflow
condition is detected is aiso provided.

INTEGER ARITHMETIC

The V-flag in the PSR enables Trap (OVF) to occur following
execution of an integer arithmetic instruction whose result
cannot be represented exactly in the destination operand’s
location.

If the number of bits required to represent the resulting quo-
tient of a DEI instruction exceeds half the number of bits of
the destination, then the contents of both the quotient and
remainder stored in the destination are undefined.

The ADDR instruction can be used in place of integer arith-
metic instructions to perform certain calculations. In this
case however, integer overflow is not detected by the CPU.

LOGICAL INSTRUCTIONS

The V-flag in the PSR enables Trap (OVF) to occur following
execution of an ASHi instruction whose result cannot be
represented exactly in the destination operand's location.

ARRAY INSTRUCTIONS

The V-flag in the PSR enables Trap (OVF) to occur following
execution of a CHECK:i instruction whose source operand is
out of bounds.

PROCESSOR CONTROL INSTRUCTIONS

The V-flag in the PSR enables Trap (OVF) to occur following
execution of an ACBi instruction if the sum of the “inc” val-
ue and the “index” operand cannot be represented exactly
in the “index’” operand's location.

DSP INSTRUCTIONS

The V-flag in the PSR enables Trap (OVF) to occur following
execution of a CMULD, CMACD or MACTD instruction if
either the final result or the result of any intermediate calcu-
lation is longer than a double word.

B.4 SELF-MODIFYING CODE

The Series 32000 architecture does not have special provi-

sions to optimally support self-modifying programs.

Nevertheless, on the NS32332 and previous Series 32000

microprocessors it is possible to execute self-modifying

code according to the following sequence:

1. Modify the appropriate instruction.

2. Execute a JUMP instruction or other instruction that
causes the microprocessor’s instruction queue to be
flushed.

3. Execute the modified instruction.

For example, an interactive debugger may follow the se-

quence above after reaching a breakpoint in a program be-

ing monitored.

The same program may not produce identical results when

executed on the NS32GX320 due to effects of the Instruc-

tion Cache and branch prediction. In order to execute self-
modifying code on the NS32GX320 it is necessary to do the
following:

1. Modify the appropriate instruction.

2. If the modified instruction is on a cacheable page, exe-
cute CINV to invalidate the contents of the Instruction
Cache.

3. Execute an instruction that causes a serializing opera-
tion. See Section 3.1.3.3.

4. Execute the modified instruction.

B.5 MEMORY-MAPPED I/0

As was mentioned in Section 3.1.3.2, certain peripheral de-
vices exhibit characteristics identified as “destructive-read-
ing” and “side-effects of writing” that impose requirements
for special handling of memory-mapped 1/0O references.
The NS32GX320 supports two methods to use on refer-
ences to memory-mapped peripheral devices that exhibit ei-
ther or both of these characteristics.

For peripheral devices that exhibit only side-effects of writ-
ing, correct operation can be ensured either by locating the
device between addresses FFO00000 (hex) and FF7FFFFF

(hex) in the address space or by observing the first 2 restric-

tions listed below. For peripheral devices that exhibit de-

structive-reading, all the following restrictions must be ob-
served to ensure correct operation:

1. References to the device must be inhibited while the
CPU asserts the output signal TOINH.

2. The input signal IODEC must be asserted by the system
on references to the device.

3. The device cannot be used for instruction fetches, reads
of effective addresses.

4. If an instruction that reads a source operand from the
device crosses a page boundary, then no Trap (ABT) or
restartable bus error can occur during fetches from the
page with higher addresses.

5. The device can be used as a source operand only for
instructions in the list below.

ABSi CBITi MOVMi SBITIi
ADDi CBITIi MOVXi SUBI
ADDCi CMPi MOVZi SUBCi
ADDPi CMPQi NEGi SUBPI
ADDQi COMiI NOTi TBITi
ANDi IBITi ORi XORi
ASHi LSHi ROTi

BICi MOVi SBITi

This restriction arises because the CPU can respond to
interrupt requests during the execution of complex in-
struction in order to reduce interrupt latency. Thus, the
CPU may read the source operands for a DEID instruc-
tion (extended-precision divide), begin calculating the in-
struction’s results, and then respond to an interrupt re-
quest before completing the instruction. In such an
event, the instruction can be executed again and com-
pleted correctly after the interrupt service procedure re-
turns unless one of the source operands was altered by
destructive-reading.

Appendix C. Instruction Set
Extensions

The following sections describe the differences and ex-
tensions to the Series 32000 instruction set (as present-
ed in the “Series 32000 Instruction Set Reference Man-
ual”) implemented by the NS32GX320.
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Appendix C. Instruction Set Extensions (continued)

C.1 PROCESSOR SERVICE INSTRUCTIONS

The CFG register, User Stack Pointer (SP1), and Debug
Registers can be loaded and stored using privileged forms
of the LPRi and SPRi instructions.

When the SETCFG instruction is executed, the CFG register
bits 0 through 3 are loaded from the instruction’s short field,
bits 4 through 7 are forced to 1, and bits 8 through 12 are
forced to 0.

The contents of the on-chip Instruction Cache and Data
Cache can be invalidated by executing the privileged in-
struction CINV. While executing the CINV instruction, the
CPU generates 2 slave bus cycles on the system interface
to display the first 3 bytes of the instruction and the source
operand.

C.2 INSTRUCTION DEFINITIONS

This section provides a description of the operations and
encodings of the new NS32GX320 privileged instructions.

Load and Store Processor Registers

Syntax: LPRi procreg, src
short gen
read.i
SPRi procreg dest
short gen
write.i

The LPRi and SPRi instructions can be used to load and
store the User Stack Pointer (USP or SP1), the Configura-
tion Register (CFG) and the Debug Registers in addition to
the Processor Registers supported by the previous Series
32000 CPUs. Access to these registers is privileged.
Figure C-1 and Table C-1 show the instruction formats and
the new ‘short’ field encodings for LPRi and SPRi.

Flags Affected: No flags affected by loading or storing the
USP, CFG, or Debug Registers.

lliegal instruction Trap (ILL) occurs if an
attempt is made to load or store the USP,
CFG or Debug Registers while the U-flag

Traps:

is 1.

15 8|7 0

L LR T 1T 7 LI T
gen I short |1 101 1[ i
src procreg LPRi

15 8|7 0

LI T T T 7T T T ¢ T T T
gen I short ]0 101 1| i
dest procreg SPRi

FIGURE C-1. LPRi/SPRI Instruction Formats

TABLE C-1. LPRi/SPRi New ‘Short’ Field Encodings

Register procreg | short field
Debug Condition Register DCR 0001
Breakpoint Program Counter BPC 0010
Debug Status Register DSR 0011
Compare Address Register CAR 0100
User Stack Pointer usP 1011
Configuration Register CFG 1100

Cache Invalidate

Syntax: CINV [options), src

gen
read. D

The CINV instruction invalidates the contents of locations in
the on-chip Instruction Cache and Data Cache. The instruc-
tion can be used to invalidate either the entire contents of
the on-chip caches or only a 16-byte block. In the latter
case, the 28 most-significant bits of the source operand
specify the physical address of the aligned 16-byte block;
the 4 least-significant bits of the source operand are ig-
nored. If the specified block is not located in the on-chip
caches, then the instruction has no effect. If the entire
cache contents is to be invalidated, then the source oper-
and is read, but its value is ignored.
Options are specified by listing the letters A (invalidate All), |
(Instruction Cache), and D (Data Cache). If neither the | nor
D option is specified, the instruction has no effect.
In the instruction encoding, the options are represented in
the A, |, and D fields as follows:
A: O—invalidate only a 16-byte block

1—invalidate the entire cache
I:  0—do not affect the Instruction Cache

1—invalidate the Instruction Cache
D: 0—do not affect the Data Cache

1—invalidate the Data Cache
Flags Affected: None

Traps: lllegal Operation Trap (ILL) occurs if an at-
tempt is made to execute this instruction
while the U-flag is 1.

Examples:

1.CINV[A,D,1],R3 1EA7 1B

2.CINV [I], R3 1E 27 18

Example 1 invalidates the entire Instruction Cache and Data
Cache.

Example 2 invalidates the 16-byte block whose physical ad-
dress in the Instruction Cache is contained in R3.
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Appendix C. Instruction Set Extensions (continued)

23 15 8|7 0
LI T T 1T 1T 77 1 17 17T 1T ¢ 71
gen |0|A|ID|010011100011110
src options CINV

FIGURE C-2. CINV Instruction Format
Multiply Word to Double

Syntax: MULWD src, dest
gen gen
read W rmw.D

The MULWD instruction reads a word source operand and a
double-word destination operand, and multiplies source and
the lower 16 bits of destination signed 16-bit numbers to
form a signed 32-bit result in destination. Overflow does not
occur in this instruction.

Flags Affected: None

Traps: None
23 16]15 8|7 o
T 1T 1 T T T T 1 1 1 T T 1T 17T T 17 TT
gen I gen2 |00001110001110
src DST MULWD

FIGURE C-3. MULWD Instruction Format
Complex Multiply Doubie

Syntax: CMULD src, src2
gen gen
read.D read. D

The CMULD instruction reads two double-word source oper-
ands, representing complex numbers. Each operand con-
sists of a signed 16-bit real part in the low-order word, and a
signed 16-bit imaginary part in the high-order word. The re-
sult consists of a signed 32-bit real part in RO, and a signed
32-bit imaginary part in R1, as follows:

Assuming: src1 = (A2, A1)

src2 = (B2, B1)

RO <« A1*B1 — A2*B2

R1 <« A1*B2 + A2*B1

If the result of any of the operations shown above is longer
than a double-word, then the high-order bits are truncated,
and Overflow Trap (OVF) occurs if the V-flag in the PSR is
set to 1. The F-flag is not affected. Note that the order of the
instruction’s intermediate operations is implementation-de-
pendent, and is not necessarily as presented above.

The CMULD result is:

Restrictions: The two instructions following a CMULD,
CMACD or MACTD instruction (see be-
low) must not access the RO or R1 regis-
ters, unless there was either: 1) a serial-
izing operation after the execution of the
instruction and before the access of any
of these registers, or 2) the instruction is
followed by another CMULD, CMACD or
MACTD that does not use any of these
registers as a source operand. If this
condition is violated, the result is unpre-
dictable. Note that interrupt handlers can
access RO and R1 upon entry, because
an interrupt acknowledge involves a seri-
alizing operation.

Flags Affected:
Traps:

None

Trap (OVF) occurs if the V-flag is set to
1, and an overflow occurred in any of the
intermediate operations performed by
the instruction.

23 16|15 87 o

T 1T 1T 7T
gen

T T T T T T T T T T T T T T
| gen2 100011110001110

srcl src2 CMULD

FIGURE C-4. CMULD instruction Format
Complex Multiply and Accumuiate Double

Syntax: CMACD srci, src2
gen gen
read.D read.D

The CMACD instruction reads two double-word source op-
erands, representing complex numbers. Each operand con-
sists of a sighed 16-bit real part in the low-order word, and a
signed 16-bit imaginary part in the high-order word. The re-
sult consists of a signed 32-bit real part in RO, and a signed
32-bit imaginary part in R1, as follows:

Assuming: srcl = (A2, A1)

src2 = (B2, B1)

RO «— RO + A1*B1 — A2*B2
R1 <— R1 + A1*B2 + A2*B1
If the result of any of the operations shown above is longer
than a double-word, then the high-order bits are truncated,
and Overflow Trap (OVF) occurs if the V-flag is set to 1. The
F-flag is not affected. Note that the order of the instruction’s
intermediate operations is implementation-dependent, and
is not necessarily as presented above.

The CMACD resuit is:
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Appendix C. Instruction Set Extensions (Continued)

Restrictions: Same as for the CMULD instruction above.
Flags Affected: None

Traps: Trap (OVF) occurs if PSR V-bit is set to 1,
and an overflow occurred in any of the in-
termediate operations performed by the in-
struction,

23 16/15 8|7 0

T T T T T 7T T T T T T T T T T T 7T T T
gen I gen2 ]00101110001110
src src2 CMACD

FIGURE C-5. CMACD Instruction Format
Multiply and Accumulate Twice Double

Syntax: MACTD srci, src2
gen gen
read.D read. D

The MACTD instruction reads two double-word source oper-
ands, where each operand consists of two signed 16-bit
values. The result is a signed 32-bit value in RO, as follows:
Assuming: src1 = (A2, A1)

src2 = (B2, B1)
The MACTD result is: RO <« RO + A1*B1 + A2*B2
If the result of any of the operations shown above is longer
than a double-word, then the high-order bits are truncated,
and Overflow Trap (OVF) occurs if the V-flag is set to 1. The
F-flag is not affected. Note that the order of the instruction’s
intermediate operations is implementation-dependent, and
is not necessarily as presented above.

Restrictions: Same as for the CMULD instruction above.

Flags Atfected: None

Traps: Trap (OVF) occurs if the V-flag is set to 1,

and an overflow occurred in any of the in-
termediate operations performed by the in-
struction.

23 1615 8l7 o
T 1T 11 rr 17151111 1 17 1 7 TT7T
gen ]genz 100111110001110
srcl src2 MACTD

FIGURE C-6. MACTD instruction Format

Appendix D. Instruction

Execution Times

The NS32GX320 achieves its performance by using an ad-
vanced implementation incorporating a 4-stage Instruction
Pipeline, an Instruction Cache and a Data Cache into a sin-
gle integrated circuit.

As a consequence of this advanced implementation, the
performance evaluation for the NS32GX320 is more com-
plex than for the previous microprocessors in the Series
32000 family. In fact, it is no longer possible to determine
the execution time for an instruction using only a set of ta-
bles for operations and addressing modes. Rather, it is nec-
essary to consider dependencies between the various in-
structions executing in the pipeline, as well as the occur-
rence of misses for the on-chip caches.

The following sections explain the method to evaluate the
performance of the NS32GX320 by calculating various tim-
ing parameters for an instruction sequence. Due to the high
degree of parallelism in the NS32GX320, the evaluation
techniques presented here include some simplifications and
approximations.

D.1INTERNAL ORGANIZATION
AND INSTRUCTION EXECUTION

The NS32GX320 is organized internally as 8 functional units
as shown in Figure 1. The functional units operate in parallel
1o execute instructions in the 4-stage pipeline. The structure
of this pipeline is shown in Figure 3-2. The Instruction Fetch
and Instruction Decode pipeline stages are implemented in
the loader along with the 8-byte instruction queue and the
bufter for a decoded instruction. The Address Calculation
pipeline stage is implemented in the address unit. The Exe-
cute pipeline stage is implemented in the Execution Unit
along with the write data buffer that holds up to two results
directed to memory.

The Address Unit and Execution Unit can process instruc-
tions at a peak rate of 2 clock cycles per instruction, en-
abling a sustained pipeline throughput at 30 MHz of
15 MIPS (million instructions per second) for sequences of
register-to-register, immediate-to-register, memory-to-regis-
ter instructions and register-to-memory. Nevertheless, the
execution of instructions in the pipeline is reduced from the
peak throughput of 2 cycles by the following causes of de-
lay:

. Complex operations, like division, require more than 2 cy-
cles in the Execution Unit, and complex addressing
modes, like memory relative, require more than 2 cycles
in the Address Unit.

. Dependencies between instructions can limit the flow
through the pipeline. A data dependency can arise when
the resuit of one instruction is the source of a following
instruction. Control dependencies arise when branching
instructions are executed. Section D.3 describes the
types of instruction dependencies that impact perform-
ance and explains how to calculate the pipeline delays.

3. Cache misses can cause the flow of instructions through
the pipeline to be delayed, as can non-aligned refer-
ences. Section D.4 explains the performance impact for
these forms of storage delays.

The effective time Ty needed to execute an instruction is
given by the following formula:

Tott = Te + Tg + Tg
Te is the execution time in the pipeline in the absence of
data dependencies between instructions and storage de-
lays, Ty is the delay due to data dependencies, and Ty is the
effect of storage delays.

D.2 BASIC EXECUTION TIMES

Instruction flow in sequence through the pipeline stages im-
plemented by the Loader, Address Unit, and Execution Unit.
In almost all cases, the Loader is at least as fast at decod-
ing an instruction as the Address Unit is at processing the
instruction. Consequently, the effects of the Loader can be
ignored when analyzing the smooth flow of instructions in
the pipeline, and it is only necessary to consider the times
for the Address Unit and Execution Unit. The time required
by the Loader to fetch and decode instructions is significant

-
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Appendix D. Instruction Execution Times (continued)

only when there are control dependencies between instruc-
tions or Instruction Cache misses, both of which are ex-
plained later.

The time for the pipeline to advance from one instruction to
the next is typically determined by the maximum time of the
Address Unit and Execution Unit to complete processing of
the instruction on which they are operating. For example, if
the Execution Unit is completing instruction n in 2 cycles
and the Address Unit is completing instruction n+ 7 in 4
cycles, then the pipeline will advance in 4 cycles. For certain
instructions, such as RESTORE, the Address Unit waits until
the Execution Unit has completed the instruction before
proceeding to the next instruction. When such an instruction
is in the Execution Unit, the time for the pipeline to advance
is equal to the sum of the time for the Execution Unit to
complete instruction 7 and the time for the Address Unit to
complete instruction n+ 7. The processing times for the
Loader, Address Unit, and Execution Unit are explained be-
low.

D.2.1 Loader Timing

The Loader can process an instruction field on each clock
cycle, where a field is one of the following:

® An opcode of 1 to 3 bytes including addressing mode
specifiers.

¢ Up to 2 index bytes, if scaled index addressing mode is
used.

* A displacement.

* An immediate value of 8, 16 or 32 bits.

The Loader requires additional time in the following cases:

® 1 additional cycle when 2 consecutive double-word fields
begin at an odd address.

* 2 cycles in total to process a double-precision floating-
point immediate value.

D.2.2 Address Unit Timing

The processing time of the Address Unit depends on the
instruction’s operation and the number and type of its gen-
eral addressing modes. The basic time for most instructions
is 2 cycles. A relatively small number of instructions require
an additional address unit time, as shown in the timing ta-
bles in Section D.5.5. Floating-point instructions as well as
Custom-Slave instructions require an additionai 3 cycles
plus 2 cycles for each quad-word operand in memory.

For instructions with 2 general addressing modes, 2 addi-
tional cycles are required when both addressing modes re-
fer to memory. Certain general addressing modes require an
additional processing time, as shown in Table D-1. For ex-
ample, the instruction MOVD 4(8(FP)), TOS requires 7 cy-
cles in the Address Unit; 2 cycles for the basic time, an
additional 2 cycles because both modes refer to memory,
and an additional 3 cycles for Memory Relative addressing
mode.

TABLE D-1. Additional Address Unit Processing
Time for Complex Addressing Modes

Mode Additional
Cycles
Memory Relative 3
External 8
Scaled Indexing 2

D.2.3 Execution Unit Timing

The Execution Unit processing times for the various
NS32G X320 instructions are provided in Section D.5.5. Cer-
tain operations cause a break in the instruction flow through
the pipeline.

Some of these operation simply stop the Address Unit,
while others flush the instruction queue as well. The infor-
mation on how to evaluate the penalty resulting from in-
struction flow breaks is provided in the following sections.

D.3 INSTRUCTION DEPENDENCIES

Interactions between instructions in the pipeline can cause
delays. Two types of interactions can arise, as described
below.

D.3.1 Data Dependencies

In certain circumstances the flow of instructions in the pipe-
line will be delayed when the result of an instruction is used
as the source of a succeeding instruction. Such interlocks
are automatically detected by the microprocessor and han-
dled with complete transparency to software.

D.3.1.1 Register Interlocks

When an instruction uses a base register that is the destina-
tion of either of the previous 2 instructions, a delay occurs.
Modifications of the Stack Pointer resulting from the use of
TOS addressing mode do not cause any delay. Also, there
is no delay for a data dependency when the instruction that
modifies the register is one for which the Address Unit
stops. The delay is 3 cycles when, as in the following exam-
ple, the base register is modified by the immediately preced-
ing instruction.

n: ADDD R1,RO
n+l: MOVD 4(RO),R2

;s modify RO
; RO is base register,
delay 3 cycles

The delay is 1 cycle when the register is modified 2 instruc-
tions before its use as a base register, as shown in this
example.

n: ADDD R1,RO
n+l: MOVD 4(SP),R3
n+2: MOVD 4(RO),R2

;s modify RO

; RO not used

; RO is base register,
delay 1 cycle
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Appendix D. Instruction Execution Times (continued)

When an instruction uses an index register that is the desti-
nation of the previous instruction, a delay of 1 cycle occurs,
as shown in the example below. If the register is modified 2
or more instructions prior to its use as an index register,
then no delay occurs.
n: ADDD R1,RO s modify RO
n+l: MOVD 4(SP)[RO:B],R2
; RO is index register
delay 1 cycle
Bypass circuitry in the Execution Unit generally avoids delay
when a register modified by one instruction is used as the
source operand of the following instruction, as in the follow-
ing example.

n: ADDD R1,RO ; modify RO
n+l: MOVD RO,R2 ; RO is source register,
no delay

For the uncommon case where the operand in the source
register is larger than the destination of the previous instruc-
tion, a delay of 2 cycles occurs. Here is an example.
n: ADDB R1,RO modify byte in RO
n+l: MOVD RO,R2 RO dw source operand,
2 cycle delay

Note: The Address Unit does not make any differentiation between CPU
and FPU registers. Therefore, register interiocks can occur between
integer and floating-point instructions.

’
s

D.3.1.2 Memory Interlocks
When an instruction reads a source operand (or address for
effective address calculation) from memory that depends on
the destination of either of the previous 2 instructions, a
delay occurs. The CPU detects a dependency between a
read and a write reference in the following cases, which
include some false dependencies in addition to all actual
dependencies:
* Either reference crosses a double-word boundary
¢ Address bits 0 through 11 are equal
* Address bits 2 through 11 are equal and either reference

is for a word
¢ Address bits 2 through 11 are equal and either reference

is for a double-word
The delay for a memory interlock is 4 cycles when, as in the
following example, the memory location is modified by the
immediately preceding instruction.

n: ADDQD 1,4(SP) ; modify 4(SP)
n+l: CMPD 10,4(SP) ; read, 4(SP),

4 cycle delay

The delay is 2 cycles when the memory location is modified
2 instructions before its use as a source operand or effec-
tive address, as shown in this example.

n: ADDQD 1,4(SP) ; modify 4(SP)
n+l: MOVD RO,R1l ; no reference to 4(SP)
n+2: CMPD 10, 4(SP); read 4(SP),

2 cycles delay

Cenrtain sequences of read and write references can cause
a delay of 1 cycle although there is no data dependency
between the references. This arises because the Data
Cache is occupied for 2 cycles on write references. In the
absence of data dependencies, read references are given
priority over write references. Therefore, this delay only oc-
curs when an instruction with destination in memory is fol-
lowed 2 instructions later by an instruction that refers to
memory {read or write) and 3 instructions later by an instruc-
tion that reads from memory. Here is an example:

n: MOVD RO,4(SP) ; memory write
n+l: MOVD R6,R7 s any instruction
n+2: MOVD 8(SP),R0 ; memory read or write
n+3: MOVD 12(SP),Rl; memory read
delayed 1 cycle

D.3.2 Control Dependencies

The flow of instructions through the pipeline is delayed
when the address from which to fetch an instruction de-
pends on a previous instruction, such as when a conditional
branch is executed. The Loader includes special circuitry to
handie branch instructions (ACB, BR, Bcond, and BSR) that
serves to reduce such delays. When a branch instruction is
decoded, the Loader calculates the destination address and
selects between the sequential and non-sequential instruc-
tion streams. The non-sequential stream is selected for un-
conditional branches. For conditional branches the selec-
tion is based on the branch’s direction (forward or back-
ward) as well as the tested condition. The branch is predict-
ed taken in any of the following cases.

* The branch is backward.
® The tested condition is either NE or LE.

Measurements have shown that the correct stream is se-
lected for 64% of conditional branches and 71% of total
branches.

If the Loader selects the non-sequential stream, then the
destination address is transferred to the Instruction Cache.
For conditional branches, the Loader saves the address of
the alternate stream (the one not selected). When a condi-
tional branch instruction reaches the Execution Unit, the
condition is resolved, and the Execution Unit signals the
Loader whether or not the branch was taken. If the branch
had been incorrectly predicted, the Instruction Cache be-
gins fetching instructions from the correct stream.

The delay for handling a branch instruction depends on
whether the branch is taken and whether it is predicted cor-
rectly. Unconditional branches have the same delay as cor-
rectly predicted, taken conditional branches.

Another form of delay occurs when 2 consecutive condition-
al branch instructions are executed. This delay of 2 cycles
arises from contention for the register that holds the alter-
nate stream address in the Loader.

Control dependencies also arise when JUMP, RET, and oth-
er non-branch instructions alter the sequential execution of
instructions.

D.4 STORAGE DELAYS

The flow of instructions in the pipeline can be delayed by
off-chip memory references that result from misses in the
on-chip storage buffers and by misalignment of instructions
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and operands. These considerations are explained in the
following sections. The delays reported assume no wait
states on the external bus and no interference between in-
struction and data references.

D.4.1 Instruction Cache Misses

An Instruction Cache miss causes a 5 cycle gap in the fetch-
ing of instructions. When the miss occurs for a non-sequen-
tial instruction fetch, the pipeline is idle for the entire gap, so
the delay is 5 cycles. When the miss occurs for a sequential
fetch, the pipeline is not idle for the entire gap because
instructions that have been prefetched ahead and buffered
can be executed. The delay for misses on non-sequential
instruction fetches can be estimated to be approximately
half the gap, or 2.5 cycles.

D.4.2 Data Cache Misses

A Data Cache miss causes a delay of 2 cycles. When a
burst read cycle is used to fill the cache block, then 3 addi-
tional cycles are required to update the Data Cache. In case
a burst cycle is used and either of the 2 instructions follow-
ing the instruction that caused the miss also reads from
memory, then an additional delay occurs: 3 cycle delay
when the instruction that reads from memory immediately
follows the miss, and 2 cycle delay when the memory read
occurs 2 instructions after the miss.

D.4.3 Instruction and Operand Alignment

When a data reference (either read or write) crosses a dou-
ble-word boundary, there is a delay of 2 cycles.

When the opcode for a non-sequential instruction crosses a
double-word boundary, there is a delay of 1 cycle. No delay
occurs in the same situation for a sequential instruction.

D.5 EXECUTION TIME CALCULATIONS

This section provides the necessary information to calculate
the T¢ portion of the effective time required by the CPU to
execute an instruction.

The effects of data dependencies and storage delays are
not taken into account in the evaluation of T, rather, they
should be separately evaluated through a careful examina-
tion of the instruction sequence.

The following assumptions are made:

— The entire instruction, with displacements and immedi-
ate operands, is present in the instruction queue when
needed.

All memory operands are available to the Execution Unit
and Address Unit when needed.

Memory writes are performed at full speed through the
write buffer.

Where possible, the values of operands are taken into
consideration when they affect instruction timing, and a
range of times is given. When this is not done, the worst
case is assumed.

D.5.1 Definitions

Teu Time required by the Execution Unit to execute an
instruction.
Tau Total processing time in the Address Unit.

Extra time needed by the Address Unit, in addition
to the basic time, to process more complex cases.
Tad can be evaluated as follows:
Tad = T + Ty1 + Ty
Tx = 2 if the instruction has two general operands
and both of them are in memory.
0 otherwise.

Ty and Ty2 are related to operands 1 and 2 re-
spectively. Their values are given below.

Ty1,2) = 8 if Memory Relative
8 if External
2 if Scaled Indexing
0 if any other addressing mode

The following parameters are only used for floating-point
execution time calculations.

Additional Address Unit time needed to process

floating-point instructions (Section D.2.2). Tanp can

be calculated as follows:

Tanp = 3 + 2 (Number of 64-bit operands in
memory)

Time required to transfer ID and Opcode, if no op-
erand needs to be transferred to the slave. Other-
wise, it is the time needed to transfer the last 32
bits of operand data to the slave. In the latter case
the transfer of 1D and Opcode as well as any oper-
and data except the last 32 bits is included in the
Execution Unit timing.

Time required by the CPU to complete the floating-
point instruction upon receiving the DONE signal
from the slave. This includes the time to process
the DONE signal itself in addition to the time need-
ed to read the result (if any) from the slave.

| This parameter is related to the floating-point oper-
and size as follows:
Standard floating (32 bits): | = 0
Long floating (64 bits): =1

D.5.2 Notes on Table Use

1. In the T, column the notation n1 — n2 means n1 mini-
mum, n2 maximum.

2. In the notes column, notations held within angle brackets
<> indicate alternatives in the operand addressing
modes which affect the execution time. A table entry
which is affected by the operand addressing may have
multiple values, corresponding to the alternatives. This
addressing notations are:

Tad

Tanp

Tics

Tisc

<I>  Immediate

<R> CPU register

<M> Memory

<F> FPU register, either 32 or 64 bits
<m> Memory, except Top of Stack
<T> Top of Stack

<x>  Any addressing mode
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<ab> aand b represent the addressing modes of oper-
ands 1 and 2 respectively. Both of them can be
any addressing mode. (e.g., <MR> means
memory to CPU register).

3. The notation ‘Break K’ provides pipeline status informa-
tion after executing the instruction to which ‘Break K’ ap-
plies. The value of K is interpreted as follows:

K =0 The Address Unit was stopped by the instruction
but the pipeline was not flushed. The Address
Unit can start processing the next instruction im-
mediately.
The pipeline was flushed by the instruction. The
Address Unit must wait for K cycles before it can
start processing the next instruction.
The Address Unit was stopped at the beginning
of the instruction but it was restarted |K| cycles
before the end of it. The Address Unit can start
processing the next instruction {K| cycles before
the end of the instruction to which ‘Break K’ ap-
plies.

4. Some instructions must wait for pending writes to com-
plete before being able to execute. The number of cycles
that these instructions must wait for, is between 6 and 7
for the first operand in the write buffer and 2 for the sec-
ond operand, if any.

. The CBITli and SBITIi instructions will execute a RMW
access after waiting for pending writes. The extra time
required for the RMW access is only 3 cycles since the
read portion is overlapped with the time in the Execution
Unit.

6. The keyword defined for the Bcond instruction have the

following meaning:

BTPC Branch Taken, Predicted Correctly
BTPI  Branch Taken, Predicted Incorrectly
BNTPC Branch Not Taken, Predicted Correctly

BNTP! Branch Not Taken, Predicted Incorrectly

K>0

K <0

(4]

D.5.3 Te4 Evaluation

The T, portion of the effective execution time for a certain

instruction in an instruction sequence is obtained by per-

forming the following steps:

1. Label the current and previous instruction in the se-
quence with n and n—1 respectively.

2. Obtain from the tables the values of Tgy and Ty, for in-
struction n and Ty, for instruction n—1.

3. For fioating-point instructions, obtain the values of Tycg
and Tige.

4. Use the following formula to determine the execution time
Te-
Te = func (Tay(n), Teu(n—1), T{n—1),

Break (n—1)) + Tgu(n) + Tiy(n)

func provides the amount of processing time in the Address
Unit that cannot be hidden. its definition is given below.

Y it Taun) < (Teuln—1) + Tat
(n—1)
AND NOT Break (n—1)
if Tay() > (Teu(n—1) + Tpin—1))
AND NOT Break (n—1)
if (Tau(n) + K) > 0
AND Break (n—1)
0 if Tau(n) + KY <0
AND Break (n—1)
K is the value associated with Break (n—1).

Tau(n) — Teu(n—1)

Tauln) + K

Tqy only applies to floating-point instructions and is al-
ways O for other instructions. It is evaluated as follows:

Tit = tes + Tisc + Tipu
Tipu is the execution time in the Floating-Point Unit.

5. Calculate the total execution time T by using the follow-
ing formula:
Tetf = Te + Tg+ Ty
Where T4 and Tg are dependent on the instruction se-

quence, and can be obtained using the information pro-
vided in Section D.4.

D.5.4 instruction Timing Example

This section presents a simple instruction timing example
for a procedure that recursively evaluates the Fibonacci
function. In this example there are no data dependencies or
storage buffer misses; only the basic instruction execution
times in the pipeline, control dependencies, and instruction
alignment are considered.

The following is the source of the procedure in C.
unsigned fib(x)

int x;
{
it (x > 2)
return (fib(x-1l) + fib(x-2));
else

return(l) ;
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The assembly code for the procedure with comments indicating the execution time is shown below. The procedure requires 26
cycles to execute when the actual parameter is less than or equal to 2 (branch taken) and 99 cycles when the actual parameter
is equal to 3 (recursive calls).

_fib: movd r3,tos ;5 2 cycles
movd r4,tos ; 2 cycles
movd rl,r3 s 2 eycles
cmpqd $(2),r3 s 2 cycles
bge L1l 7 2 cyeles, Break 2 If Branch Taken
movd r3,rl ;s 2 cycles
addqd $(-2),rl ; 2 cycles
bsr _fib ;s 3 cycles
movd r0,r4 ;5 2 cycles + 4 Cycles due to RET
movd r3,rl ; 2 cycles
addqd $(-1),rl ; 2 cycles
bsr _fib ;s 3 cycles
addd r4,r0 ; 2 cycles + 1 cycle alignment + 4 cycles due to RET
movd tos,rd s 2 cycles
movd tos,r3 ;s 2 cycles
ret $(0) ;s 4 cycles, break 4
.align 4

_Ll: movqd $(1),r0 3 4 cycles + 4 cycles due to BGE
movad tos,r4 s 2 cycles
movd tos,r3 s 2 cyeles
ret $(0) ; 4 cycles, Break 4
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D.5.5 Execution Timing Tables

The following tables provide the execution timing information for all the NS32G X320 instructions. The table for the floating-point
instructions provides only the CPU portion of the total execution time. The FPU execution times can be found in the NS32381
datasheet.

D.5.5.1 Basic Instructions

Mnemonic [ Tgy Tau Notes Mnemonic Teu Tau Notes
ABSi 5 |2+ Tag CHECKi 10 2 + Taq | Break —3.
ACBi 5 2 + Taq | Wincorrect prediction ”fSRC 's out
then Break 1 o bouqd_s and
- the V bitin the
ADDi 2 2+ Tag PSR is set,
ADDCi 2 2+ Tay then add trap
time.
ADDPi 9 |2+ Ty
- CINV 10 2 + Tag |Wait for
ADDQi 2 2+ Ta pending
ADDR 2 |4+ T writes.
- - Break 5
ADJSPi 5 2+ Taq|i=BW Break 0
3 |2+ T4l|i=D Break 0 CMACD 12 2+ Tag
ANDi 2 2+ Tag CMPi 2 2 + Tag
ASHi 7 2 + Taq | Right CMPMi 6+8*n n = number
5 |2+ Tuq | Left .AND. PSR-V of elements.
Bit=10 Break 0
9 2 + Tgaq | Left AND. PSR-V CMPQi 2 2+ Tag
Bit =1 CMPSi 7+13"n |2+ Tag |n = number
Bconp 2—3 2 BTPC of elements.
2 2 BTPI Break 2 Break 0
2 2 BNTPC CMPST 6+20*n 2 + Taq [n = number
2 2 BNTPI Break 2 of elements.
(see Note 5in Break 0
Section D.5.2)
CMULD 12 2+ Tag
BIGi 2 |2+ Ty
COMi 2 2+ Tag
BICPSRi 6 2 + Tag | Wait for pending writes.
Break 5 Cvtp 5 4+ Tag
BISPSRi 6 2 + Toq | Wait for pending writes. Cxp 17 13 Break 5
Break 5 CXPD 21 11 + Taq|Break 5
BPT 30 2 Modular DEli 28 + 4% 5+ Taq |i = 0/4/12f0r
21 2 Direct B/W/D.
Break 0
Break 5
DIA 3 2 Break 5
BR 2—3 2
R > >3 DIvi (B0—>40) + 4*i| 2 + Taq |i = 0/4/12
BS 8+ Tag for B/W/D
CASEi ’ 2 + Tad | Breaks ENTER 15+2*n 3 n = number
CBITi 8 2 <R> of registers
9 2+ Taq | <M> Break 0 saved.
CBITIi 18 |2+ Tog| <M> Break 0
Wait for pending writes. EXIT 8+2*n 2 n = number
Execute interlocked of registers
RMW access. Break 5 restored
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D.5.5.1 Basic Instructions (Continued)

Mnemonic Teu Tau Notes Mnemonic Teu Tau Notes
EXTi 12 8 <R> MOVSi n = number
13 8 + Tag| <M> of elements.
12 + 4 * n|2 + Taq|No options.
Break —3 14 + 8* n|2 + To4|B, Wand/orU
EXSi 11 6 <R> Options in effect.
14 6 + Tag| <M> Break 0
_ MOVST 116 + 9* n[2 + Tag|n = number
Break —3 of elements.
FFSi 11+ 3*i |2 + Tag|i = number Break 0
of bytes MOVXii 2 |2+ Tag
FLAG 4 2 No trap "
32 2 | Trap, Modular MOV Zii 2 2+ Tad
21 2 Trap, Direct MULB 6 2 + T,g|PSR-VBit = 0
If trap then: 13 2 + Tag|PSR-V Bit = 1
{waitfor MULW 6 |2+ Tag|PSR-VBIt =0
gend;(nsg}wmes; 21 2 + Taq|PSR-VBit = 1
: rea MULD 11 |2+ Tag|PSR-VBiIt= 0
iBITi 10 2 | <R> 37 |2 + Taq|PSR-VBit = 1
14 2+ Tad| <M> 24 |2 + T4|PSR-VBIt = 1
:fh <MB> Ko AND. 0 < src < 255
INDEXi 16 |5+ = MULWD 8 12+ Ta
INSi I 15 8 . <R> NEGH 2 |2+ Tad
i
18 |8 + Tag| <M> NOP 2 2
INSSi 14 6 |[<R> NOTi 3 2+ Tag
19 |6+ Tag| <M> ORi 2 2+ Taq
QUOI (30 = 40)[2 + T4li = 074712
= PR P E’eat: +ar for B/W/D
ad} °red REMi  |(32 — 42)|2 + Tag|i = 0/4/12
JUMP 3 4 + T,q|Break 5 + 4% for B/W/D
LPRi 6 2 + Tad|CPUReg = FP, RESTORE|7 +2*n |2 n = number
SP, USP, SP, MOD. of registers
Break 0 restored.
5 2 + Taq|CPU Reg = CFG, Break 0
INTBASE, DSR,
BPC, UPSR. RET 4 3 Break 4
Wait for pending writes. RETI 19 5 Noncascaded, Modular
Break 5 13 5 Noncascaded, Direct
7 2 + Tag|CPU Reg = DCR, 29 5 Cascaded, Modular
PSR CAR. Wait for 22 5 Cascaded, Direct
pending writes. )
Break 5 Wait for
din ites.
LSHi 3 |2+ Tag Preak s S
MACTD N {2+ Tag RETT 14 5 [Modular
MEi 13+ 2*i |5+ Tuq|i = 074712 8 5 |Direct
for B/W/D. .
Break 0 Wa':’_fof "
MODi (34 —> 49) |2 + Tagi = 0/4/12 Broaks
+4%i for B/W/D mom 5 Py
MOVi 2 |2+ Tag RXPI . ; ad o
MOVMi |5+ 4°n |2+ Taq|n = number , i
of elements. SCONDi 3 2 + Tag
Break O SAVE 8+2*n 2 n = number
MOVQi 2 2+ Tag of registers.
Break 0
SBITi 8 2 <R>
9 2 + Tagl <M>

Break 0

111




Appendix D. Instruction Execution Times (continued)
D.5.5.1 Basic Instructions (Continued)

Mnemonic Teu Tau Notes Mnemonic | Tey Tau Notes
SBITIi 10 2 <R> SUBI 2 |2+ Tag
18 |2+ Tag| <M> SUBGI 2 |2+ Tag
Wait for pending SUBPi 6 | 2+ Ty
writes. Execute
h SVvC 32 2 Modular
interlocked RMW 21 2 Direct
access.
Break 5 Wait for
SETCFG 6 2 Break 5 pending writes.
- Break 5
SKPSi 8+ 6*n |2+ Taq|n = number of -
elements. TBITi 7 2 <R>
Break O 7 |2+ Ty ; h<Al\7|> then break 0
SKPST |6+ 20°n|2 + Taq|n = number of > Thon brea
elements. WAIT 3 2 Wait for pending
Break 0 writes. Wait
fori
SPRi 5 |2+ Tag|CPUReg — : or intermupt
PSR, CAR XORi 2 2+ Tag
3 2+ Taq| CPUReg =
all others
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Appendix D. Instruction Execution Times (continued)
D.5.5.2 Floating-Point instructions, CPU Portion

Mnemonic Teu Tau Ties Ttsc Notes
MOVI, NEGHf, 2 2 + Tanp 2 1 <FF>
ABSf, LOGBf 4+3*% 2+ Tanp + Tag 2 1 <MF>
6+3"I 2+ Tanp 2 1 <IF>
6+3*1} 2 + Tanp 2 1 <TF>
11+ 4% 2+ Tapp + Tad 2 3+2* <FM> Break — (1 + 1)
13+7*1 2+ Tanp + Tad 2 3+2*1 <MM>, <IM> Break — (1 + I)
ADDf, SUB, 2 2+ Tanp 2 1 <FF>
MUL, DIVS, 4+3*1I 2+ Tanp 2 1 <MF>
SCALBf 6+3*1 2 + Tanp 2 1 <IF>
6+3*I 2 + Tanp 2 1 <TF>
17+ 71 2+ Tanp + Tad 2 3+2*1 <FM> Break — (1 + I
19+ 10*1 2+ Tanp + Tad 2 3+2+1 <MM>, <IM> Break — (1 + |)
ROUNDfi, TRUNCHi, 11 2+ Tanp 2 3+2*1 <FR> Break — 1
FLOOR(i 11+ 4% 2+ Tanp + Tad 2 3+2*1 <FM> Break — (1 + 1)
13 2+ Tanp + Tad 2 3+2*1 <MR>, <IR> Break ~ 1
13+ 71t 2+ Tanp + Tad 2 3+2¢ <MM>, <IM> Break — (1 + I)
CMPf 18 2 + Tanp 2 <FF>
20 +3*1 2+ Tanp + Tag 2 <MF>
23 +3*1 2+ Tanp + Tad 2 <FM>
25+6*1 2+ Tanp + Tag 2 <MM>, <IM>, <MI>, <lI>
Break 3
POLYf, DOTf 2 2 + Tanp 2 1 <FF>
4+3*1 2+ Tanp + Tad 2 1 <MF>
6+3*1I 2+ Tanp 2 1 <IF>, <TF>
11 +4*) 2+ Tanp + Tad 2 1 <FM> Break — (1 + I
13+ 7*1 2+ Tanp + Tad 2 1 <MM>, <MI>, <IM>, <lI>
Break — (1 + I}
MOVif 6 2 + Tanp 2 1 <RF>
13 2+ Tanp + Tag 2 <RM> Break — 1
6+3*I 2+ Tanp + Tad 2 1 <MF>, <IF>, <TF>
13+ 7*1I 2+ Tapp + Tad 2 <MM>, <IM>
Break — (1 + 1)
LFSR 6 2 + Tanp 2 1 <R>
6+3*I 2+ Tanp + Tag 2 1 <M>
6+3*I 2 + Tanp 2 1 <I>
6+ 3*i 2+ Tanp 2 1 <T>
SFSR 11 2+ Tanp + Tad 2 3 Break — 1
MOVFL 4 2 + Tanp 2 1 <FF>
6 2+ Tanp + Tad 2 1 <MF>, <IF>, <TF>
15 2+ Tanp + Tad 2 <FM> Break 0
17 2+ Tanp + Tag 2 <MM>, <IM> Break 0
MOVLF 4 2+ Tanp 2 1 <FF>
9 2+ Tanp + Tag 2 1 <MF>, <IF>, <TF>
15 2+ Tapp + Tad 2 <FM> Break 0
20 2+ Tanp + Tad 2 <MM>, <IM> Break 0
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NS32GX320-20/NS32GX320-25/NS32GX320-30

High-Performance 32-Bit Integrated System Processor

Physical Dimensions inches (milimeters)

Lit. # 114303
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Plastic Pin Grid Array (NU)
Order Number NS32GX320NU-20, NS32GX320NU-25 or NS32GX320NU-30
NS Package Number NU175

LIFE SUPPORT POLICY

wirsaere)

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and whose
failure to perform, when properly used in accordance

2. A critical component is any component of a life
support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.
be reasonably expected to result in a significant injury Q23740 -
to the user. -
National Semiconductor National National National Nationat Semicondutores National Semiconductor
Corporation GmbH Japan Ltd. Hong K Lid. Do Brasil Lida. (Australia) PTY, Ltd
2900 . Drive i 10 Sanseido Bidg. 5F Suite 513, 5th Floor Av. Brig. Faria Lima, 1383 1st Floor, 441 St Kilda Rd.
P.O. Box 58090 D-8080 Furstenfeidbruck 4-15 Nishi Shinjuku 6.0 Andor-Conj. 62 Melbourna, 3004
Clara, CA 95052-8090  West Shinjuku-Ku, 77 Mody Road, Tsimshatsui East, 01451 Sao Paulo, SP, Brasi Victory, Austraka
Tek: 1(800) 272-9959 Tel: (0-81-41) 103-0 Tokyo 160, Japan Kowloon, Tel: (55/11) 212-5066 Tel: (03) 267-5000
TWX: {910) 339-9240 Telex: 527-649 Tel: 3-209-7001 Tel: 3-7231290 Fax: (55/11) 211-1181 NSBR BR  fax: 61-3-2677458
Fax: (08141) 103554 FAX: 3-208-7000 Telax: 52996 NSSEA HX
Fax: 3-3112536

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are impiied and National reserves the right at any time without notice to change said circuitry and specifications.
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