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NS32GX32-20/NS32GX32-25/NS32GX32-30
High-Performance 32-Bit Embedded System Processor

General Description
The NS32GX32 is a high-performance 32-bit embedded

system processor in the Series 32000É family. It is software

compatible with the previous microprocessors in the family

but with a greatly enhanced internal implementation.

The NS32GX32 integrates more than 320,000 transistors

fabricated in a 1.25 mm double-metal CMOS technology.

The advanced technology and mainframe-like design of the

device enable it to achieve peak performance of 15 million

instructions per second.

The high-performance specifications are the result of a four-

stage instruction pipeline, on-chip instruction and data

caches, and a significantly increased clock frequency. In ad-

dition, the system interface provides optimal support for ap-

plications spanning a wide range, from low-cost, real-time

controllers to highly sophisticated, embedded systems.

In addition to generally improved performance, the

NS32GX32 offers much faster interrupt service and task

switching for real-time applications.

Features
Y Software compatible with the Series 32000 family
Y 32-bit architecture and implementation
Y 4-GByte uniform addressing space
Y 4-Stage instruction pipeline
Y 512-Byte on-chip instruction cache
Y 1024-Byte on-chip data cache
Y High-performance bus

Ð Separate 32-bit address and data lines

Ð Burst mode memory accessing

Ð Dynamic bus sizing
Y Floating-point support via the NS32381
Y 1.25 mm double-metal CMOS technology
Y 175-pin PGA package

Block Diagram
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1.0 Product Introduction
The NS32GX32 is an extremely sophisticated microproces-

sor in the Series 32000 family with a full 32-bit architecture

and implementation optimized for high-performance appli-

cations.

By employing a number of mainframe-like features, the de-

vice can deliver 15 MIPS peaks performance with no wait

states at a frequency of 30 MHz.

The NS32GX32 is fully software compatible will all the other

Series 32000 CPUs. The architectural features of the Series

32000 family and particularly the NS32GX32 CPU, are de-

scribed briefly below.

Powerful Addressing Modes. Nine addressing modes

available to all instructions are included to access data

structures efficiently.

Data Types. The architecture provides for numerous data

types, such as byte, word, doubleword, and BCD, which may

be arranged into a wide variety of data structures.

Symmetric Instruction Set. While avoiding special case

instructions that compilers can’t use, the Series 32000 ar-

chitecture incorporates powerful instructions for control op-

erations, such as array indexing and external procedure

calls, which save considerable space and time for compiled

code.

Memory-to-Memory Operations. The Series 32000 CPUs

represent two-address machines. This means that each op-

erand can be referenced by any one of the addressing

modes provided.

This powerful memory-to-memory architecture permits

memory locations to be treated as registers for all usefull

operations. This is important for temporary operands as well

as for context switching.

Large, Uniform Addressing. The NS32GX32 has 32-bit

address pointers that can address up to 4 gigabytes without

requiring any segmentation.

Modular Software Support. Any software package for the

Series 32000 family can be developed independent of all

other packages, without regard to individual addressing. In

addition, ROM code is totally relocatable and easy to ac-

cess, which allows a significant reduction in hardware and

software costs.

Software Processor Concept. The Series 32000 architec-

ture allows future expansions of the instruction set that can

be executed by special slave processors, acting as exten-

sions to the CPU. This concept of slave processors is

unique to the Series 32000 family. It allows software com-

patibility even for future components because the slave

hardware is transparent to the software. With future ad-

vances in semiconductor technology, the slaves can be

physically integrated on the CPU chip itself.

To summarize, the architectural features cited above pro-

vide three primary performance advantages and character-

istics:

# High-level language support

# Easy future growth path

# Application flexibility

2.0 Architectural Description
2.1 REGISTER SET

The NS32GX32 CPU has 21 internal registers grouped ac-

cording to functions as follows: 8 general purpose, 7 ad-

dress, 1 processor status, 1 configuration, and 4 debug. All

registers are 32 bits wide except for the module and proces-

sor status, which are each 16 bits wide. Figure 2-1 shows

the NS32GX32 internal registers.

Address General Purpose
w 32 Bits x w 32 Bits x

PC R0

SP0 R1

SP1 R2

FP R3

SB R4

INTBASE R5

MOD R6

R7

Processor Status

PSR

Debug

DCR

DSR

CAR

BPC

Configuration

CFG

FIGURE 2-1. NS32GX32 Internal Registers
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2.0 Architectural Description (Continued)

2.1.1 General Purpose Registers

There are eight registers (R0–R7) used for satisfying the

high speed general storage requirements, such as holding

temporary variables and addresses. The general purpose

registers are free for any use by the programmer. They are

32 bits in length. If a general purpose register is specified for

an operand that is eight or 16 bits long, only the low part of

the register is used; the high part is not referenced or modi-

fied.

2.1.2 Address Registers

The seven address registers are used by the processor to

implement specific address functions. A description of them

follows.

PCÐProgram Counter. The PC register is a pointer to the

first byte of the instruction currently being executed. The PC

is used to reference memory in the program section.

SP0, SP1ÐStack Pointers. The SP0 register points to the

lowest address of the last item stored on the INTERRUPT

STACK. This stack is normally used only by the operating

system. It is used primarily for storing temporary data, and

holding return information for operating system subroutines

and interrupt and trap service routines. The SP1 register

points to the lowest address of the last item stored on the

USER STACK. This stack is used by normal user programs

to hold temporary data and subroutine return information.

When a reference is made to the selected Stack Pointer

(see PSR S-bit), the terms ‘SP Register’ or ‘SP’ are used.

SP refers to either SP0 or SP1, depending on the setting of

the S bit in the PSR register. If the S bit in the PSR is 0, SP

refers to SP0. If the S bit in the PSR is 1 then SP refers to

SP1.

The NS32GX32 also allows the SP1 register to be directly

loaded and stored using privileged forms of the LPRi and

SPRi instructions, regardless of the setting of the PSR S-bit.

When SP1 is accessed in this manner, it is referred to as

‘USP Register’ or simply ‘USP’.

Stacks in the Series 32000 family grow downward in memo-

ry. A Push operation pre-decrements the Stack Pointer by

the operand length. A Pop operation post-increments the

Stack Pointer by the operand length.

FPÐFrame Pointer. The FP register is used by a procedure

to access parameters and local variables on the stack. The

FP register is set up on procedure entry with the ENTER

instruction and restored on procedure termination with the

EXIT instruction.

The frame pointer holds the address in memory occupied by

the old contents of the frame pointer.

SBÐStatic Base. The SB register points to the global vari-

ables of a software module. This register is used to support

relocatable global variables for software modules. The SB

register holds the lowest address in memory occupied by

the global variables of a module.

INTBASEÐInterrupt Base. The INTBASE register holds

the address of the dispatch table for interrupts and traps

(Section 3.2.1).

MODÐModule. The MOD register holds the address of the

module descriptor of the currently executing software mod-

ule. The MOD register is 16 bits long, therefore the module

table must be contained within the first 64 kbytes of memo-

ry.

2.1.3 Processor Status Register

The Processor Status Register (PSR) holds status informa-

tion for the microprocessor.

The PSR is sixteen bits long, divided into two eight-bit

halves. The low order eight bits are accessible to all pro-

grams, but the high order eight bits are accessible only to

programs executing in Supervisor Mode.

C The C bit indicates that a carry or borrow occurred after

an addition or subtraction instruction. It can be used

with the ADDC and SUBC instructions to perform multi-

ple-precision integer arithmetic calculations. It may

have a setting of 0 (no carry or borrow) or 1 (carry or

borrow).

T The T bit causes program tracing. If this bit is set to 1, a

TRC trap is executed after every instruction (Section

3.3.1).

L The L bit is altered by comparison instructions. In a

comparison instruction the L bit is set to ‘‘1’’ if the sec-

ond operand is less than the first operand, when both

operands are interpreted as unsigned integers. Other-

wise, it is set to ‘‘0’’. In Floating-Point comparisons, this

bit is always cleared.

V The V-bit enables generation of a trap (OVF) when an

integer arithmetic operation overflows.

F The F bit is a general condition flag, which is altered by

many instructions (e.g., integer arithmetic instructions

use it to indicate overflow).

Z The Z bit is altered by comparison instructions. In a

comparison instruction the Z bit is set to ‘‘1’’ if the sec-

ond operand is equal to the first operand; otherwise it is

set to ‘‘0’’.

N The N bit is altered by comparison instructions. In a

comparison instruction the N bit is set to ‘‘1’’ if the sec-

ond operand is less than the first operand, when both

operands are interpreted as signed integers. Otherwise,

it is set to ‘‘0’’.

U If the U bit is ‘‘1’’ no privileged instructions may be exe-

cuted. If the U bit is ‘‘0’’ then all instructions may be

executed. When U e 0 the processor is said to be in

Supervisor Mode; when U e 1 the processor is said to

15 8 7 0

I P S U N Z F V L T C

FIGURE 2-2. Processor Status Register (PSR)
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2.0 Architectural Description (Continued)

be in User Mode. A User Mode program is restricted

from executing certain instructions and accessing cer-

tain registers which could interfere with the operating

system. For example, a User Mode program is prevent-

ed from changing the setting of the flag used to indicate

its own privilege mode. A Supervisor Mode program is

assumed to be a trusted part of the operating system,

hence it has no such restrictions.

S The S bit specifies whether the SP0 register or SP1

register is used as the Stack Pointer. The bit is automat-

ically cleared on interrupts and traps. It may have a

setting of 0 (use the SP0 register) or 1 (use the SP1

register).

P The P bit prevents a TRC trap from occuring more than

once for an instruction (Section 3.3.1). It may have a

setting of 0 (no trace pending) or 1 (trace pending).

I If I e 1, then all interrupts will be accepted. If I e 0,

only the NMI interrupt is accepted. Trap enables are not

affected by this bit.

2.1.4 Configuration Register

The Configuration Register (CFG) is 32 bits wide, of which

ten bits are implemented. The implemented bits enable vari-

ous operating modes for the CPU, including vectoring of

interrupts, execution of slave instructions, and control of the

on-chip caches. In the NS32332 bits 4 through 7 of the CFG

register selected between the 16-bit and 32-bit slave proto-

cols and between 512-byte and 4-Kbyte page sizes. The

NS32GX32 supports only the 32-bit slave protocol and no

memory management: consequently these bits are forced

to 1.

When the CFG register is loaded using the LPRi instruction,

bit 2 and bits 13 through 31 should be set to 0. Bits 4

through 7 are ignored during loading, and are always re-

turned as 1’s when CFG is stored via the SPRi instruction.

When the SETCFG instruction is executed, the contents of

the CFG register bits 0 through 3 are loaded from the in-

struction’s short field, bits 4 through 7 are ignored and bits 8

through 12 are forced to 0. Bit 2 must be set to 0.

The format of the CFG register is shown in Figure 2-3 . The

various control bits are described below.

I Interrupt vectoring. This bit controls whether maska-

ble interrupts are handled in nonvectored (Ie0) or

vectored (Ie1) mode. Refer to Section 3.2.3 for more

information.

F Floating-point instruction set. This bit indicates

whether a floating-point unit (FPU) is present to exe-

cute floating-point instructions. If this bit is 0 when the

CPU executes a floating-point instruction, a Trap

(UND) occurs. If this bit is 1, then the CPU transfers

the instruction and any necessary operands to the

FPU using the slave-processor protocol described in

Section 3.1.4.1.

C Custom instruction set. This bit indicates whether a

custom slave processor is present to execute custom

instructions. If this bit is 0 when the CPU executes a

custom instruction, a Trap (UND) occurs. If this bit is

1, the CPU transfers the instruction and any neces-

sary operands to the custom slave processor using

the slave-processor protocol described in Section

3.1.4.1.

DE Direct-Exception mode enable. This bit enables the

Direct-Exception mode for processing exceptions.

When this mode is selected, the CPU response time

to interrupts and other exceptions is significantly im-

proved. Refer to Section 3.2.1 for more information.

DC Data Cache enable. This bit enables the on-chip Data

Cache to be accessed for data reads and writes. Re-

fer to Section 3.4.2 for more information.

LDC Lock Data Cache. This bit controls whether the con-

tents of the on-chip Data Cache are locked to fixed

memory locations (LDCe1), or updated when a data

read is missing from the cache (LDCe0).

IC Instruction Cache enable. This bit enables the on-

chip Instruction Cache to be accessed for instruction

fetches. Refer to Section 3.4.1 for more information.

LIC Lock Instruction Cache. This bit controls whether the

contents of the on-chip Instruction Cache are locked

to fixed memory locations (LICe1), or updated when

an instruction fetch is missing from the cache

(LICe0).

31 12 8 7 0

Reserved LIC IC LDC DC DE 1 1 1 1 C Res F I

FIGURE 2-3. Configuration Register (CFG) Bits 13 to 31 are Reserved; Bits 4 to 7 are Forced to 1
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2.0 Architectural Description (Continued)

2.1.5 Debug Registers

The NS32GX32 contains 4 registers dedicated for debug-

ging functions.

These registers are accessed using privileged forms of the

LPRi and SPRi instructions.

DCRÐDebug Condition Register. The DCR Register en-

ables detection of debug conditions. The format of the DCR

is shown inFigure 2-4; the various bits are described below.

A debug condition is enabled when the related bit is set to 1.

CBE0 Compare Byte Enable 0; when set, BYTE0 of an

aligned double-word is included in the address com-

parison

CBE1 Compare Byte Enable 1; when set, BYTE1 of an

aligned double-word is included in the address com-

parison

CBE2 Compare Byte Enable 2; when set, BYTE2 of an

aligned double-word is included in the address com-

parison

CBE3 Compare Byte Enable 3; when set, BYTE3 of an

aligned double-word is included in the address com-

parison

CWR Address-compare enable for write references

CRD Address-compare enable for read references

CAE Address-compare enable

TR Enable Trap (DBG) when a debug condition is de-

tected

PCE PC-match enable

UD Enable debug conditions in User-Mode

SD Enable debug conditions in Supervisor Mode

DEN Enable debug conditions

The following 2 bits control testing features that can be

used during initial system debugging. These features are

unique to the NS32GX32 implementation of the Series

32000 architecture; as such, they may not be supported in

future implementations. For normal operation these 2 bits

should be set to 0.

SI Single-Instruction mode enable. This bit, when set

to 1, inhibits the overlapping of instruction’s execu-

tion.

BCP Branch Condition Prediction disable. When this bit is

1, the branch prediction mechanism is disabled. See

Section 3.1.3.1.

DSRÐDebug Status Register. The DSR Register indicates

debug conditions that have been detected. When the CPU

detects an enabled debug condition, it sets the correspond-

ing bit (BC, BEX, BCA) in the DSR to 1. When an address-

compare condition is detected, then the RD-bit is loaded to

indicate whether a read or write reference was performed.

Software must clear all the bits in the DSR when appropri-

ate. The format of the DSR is shown in Figure 2-5; the vari-

ous fields are described below.

RD Indicates whether the last address-compare condi-

tion was for a read (RD e 1) or write (RD e 0)

reference

BPC PC-match condition detected

BEX External condition detected

BCA Address-compare condition detected

Note 1: The content of the DSR register is not defined if a debug condition

was detected on a floating-point instruction in pipelined mode and a

trap was generated by a previous floating-point instruction.

Note 2: If an address compare is detected on a read and a write for the

same instruction then the RD-bit will remain clear.

CARÐCompare Address Register. The CAR Register

contains the address that is compared to operand reference

addresses to detect an address-compare condition. The ad-

dress must be double-word aligned; that is, the two least-

significant bits must be 0. The CAR is 32 bits wide.

15 8 7 0

Reserved CAE CRD CWR Res CBE3 CBE2 CBE1 CBE0

31 24 23 16

Reserved DEN SD UD PCE TR BCP SI Res

FIGURE 2-4. Debug Condition Register (DCR)

31 28 27 0

RD BPC BEX BCA Reserved

FIGURE 2-5. Debug Status Register (DSR)
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2.0 Architectural Description (Continued)

BPCÐBreakpoint Program Counter. The BPC Register

contains the address that is compared with the PC contents

to detect a PC-match condition. The BPC Register is 32 bits

wide.

2.2 MEMORY ORGANIZATION

The NS32GX32 implements full 32-bit addresses. This al-

lows the CPU to access up to 4 Gbytes of memory. The

memory is a uniform linear address space. Memory loca-

tions are numbered sequentially starting at zero and ending

at 232b1. The number specifying a memory location is

called an address. The contents of each memory location is

a byte consisting of eight bits. Unless otherwise noted, dia-

grams in this document show data stored in memory with

the lowest address on the right and the highest address on

the left. Also, when data is shown vertically, the lowest ad-

dress is at the top of a diagram and the highest address at

the bottom of the diagram. When bits are numbered in a

diagram, the least significant bit is given the number zero,

and is shown at the right of the diagram. Bits are numbered

in increasing significance and toward the left.

7 0

A

Byte at Address A

Two contiguous bytes are called a word. Except where not-

ed, the least significant byte of a word is stored at the lower

address, and the most significant byte of the word is stored

at the next higher address. In memory, the address of a

word is the address of its least significant byte, and a word

may start at any address.

15 8 7 0

Aa1 A

MSB LSB

Word at Address A

Two contiguous words are called a double-word. Except

where noted, the least significant word of a double-word is

stored at the lowest address and the most significant word

of the double-word is stored at the address two higher. In

memory, the address of a double-word is the address of its

least significant byte, and a double-word may start at any

address.

31 24 23 16 15 8 7 0

Aa3 Aa2 Aa1 A

MSB LSB

Double-Word at Address A

Although memory is addressed as bytes, it is actually orga-

nized as double-words. Note that access time to a word or a

double-word depends upon its address, e.g. double-words

that are aligned to start at addresses that are multiples of

four will be accessed more quickly than those not so

aligned. This also applies to words that cross a double-word

boundary.

2.2.1 Address Mapping

Figure 2-6 shows the NS32GX32 address mapping.

The NS32GX32 supports the use of memory-mapped pe-

ripheral devices and coprocessors. Such memory-mapped

devices can be located at arbitrary locations in the address

space except for the upper 8 Mbytes of memory (addresses

between FF800000 (hex) and FFFFFFFF (hex), inclusive),

which are reserved by National Semiconductor Corporation.

Nevertheless, it is recommended that high-performance pe-

ripheral devices and coprocessors be located in a specific 8

Mbyte region of memory (addresses between FF000000

(hex) and FF7FFFFF (hex), inclusive), that is dedicated for

memory-mapped I/O. This is because the NS32GX32 de-

tects references to the dedicated locations and serializes

reads and writes. See Section 3.1.3.3. When making I/O

references to addresses outside the dedicated region, ex-

ternal hardware must indicate to the NS32GX32 that special

handling is required.

In this case a small performance degradation will also re-

sult. Refer to Section 3.1.3.2 for more information on memo-

ry-mapped I/O.

Address (Hex)

00000000

Memory and I/O

FF000000

Memory-Mapped I/O

FF800000

Reserved by NSC

FFFFFE00

Interrupt Control

FFFFFFFF

FIGURE 2-6. NS32GX32 Address Mapping
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2.0 Architectural Description (Continued)

2.3 MODULAR SOFTWARE SUPPORT

The NS32GX32 provides special support for software mod-

ules and modular programs.

Each module in a NS32GX32 software environment con-

sists of three components:

1. Program Code Segment.

This segment contains the module’s code and constant

data.

2. Static Data Segment.

Used to store variables and data that may be accessed

by all procedures within the module.

3. Link Table.

This component contains two types of entries: Absolute

Addresses and Procedure Descriptors.

An Absolute Address is used in the external addressing

mode, in conjunction with a displacement and the current

MOD Register contents to compute the effective address

of an external variable belonging to another module.

The Procedure Descriptor is used in the call external pro-

cedure (CXP) instruction to compute the address of an

external procedure.

Normally, the linker program specifies the locations of the

three components. The Static Data and Link Table typically

reside in RAM; the code component can be either in RAM or

in ROM. The three components can be mapped into non-

contiguous locations in memory, and each can be indepen-

dently relocated. Since the Link Table contains the absolute

addresses of external variables, the linker need not assign

absolute memory addresses for these in the module itself;

they may be assigned at load time.

To handle the transfer of control from one module to anoth-

er, the NS32GX32 uses a module table in memory and two

registers in the CPU.

The Module Table is located within the first 64 kbytes of

memory. This table contains a Module Descriptor (also

called a Module Table Entry) for each module in the ad-

dress space of the program. A Module Descriptor has four

32-bit entries corresponding to each component of a mod-

ule:

# The Static Base entry contains the address of the begin-

ning of the module’s static data segment.

# The Link Table Base points to the beginning of the mod-

ule’s Link Table.

# The Program Base is the address of the beginning of the

code and constant data for the module.

# A fourth entry is currently unused but reserved.

The MOD Register in the CPU contains the address of the

Module Descriptor for the currently executing module.

The Static Base Register (SB) contains a copy of the Static

Base entry in the Module Descriptor of the currently execut-

ing module, i.e., it points to the beginning of the current

module’s static data area.

This register is implemented in the CPU for efficiency pur-

poses. By having a copy of the static base entry or chip, the

CPU can avoid reading it from memory each time a data

item in the static data segment is accessed.

In an NS32GX32 software environment modules need not

be linked together prior to loading. As modules are loaded,

a linking loader simply updates the Module Table and fills

the Link Table entries with the appropriate values. No modi-

fication of a module’s code is required. Thus, modules may

be stored in read-only memory and may be added to a sys-

tem independently of each other, without regard to their in-

dividual addressing. Figure 2-7 shows a typical NS32GX32

run-time environment.

TL/EE/10253–2

Note: Dashed lines indicate information copied to registers during transfer of control between modules.

FIGURE 2-7. NS32GX32 Run-Time Environment
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2.0 Architectural Description (Continued)

TL/EE/10253–5

FIGURE 2-8. General Instruction Format

TL/EE/10253–6

FIGURE 2-9. Index Byte Format

2.4 INSTRUCTION SET

2.4.1 General Instruction Format

Figure 2-8 shows the general format of a Series 32000 in-

struction. The Basic Instruction is one to three bytes long

and contains the Opcode and up to two 5-bit General Ad-

dressing Mode (‘‘Gen’’) fields. Following the Basic Instruc-

tion field is a set of optional extensions, which may appear

depending on the instruction and the addressing modes se-

lected.

Index Bytes appear when either or both Gen fields specify

Scaled Index. In this case, the Gen field specifies only the

Scale Factor (1, 2, 4 or 8), and the Index Byte specifies

which General Purpose Register to use as the index, and

which addressing mode calculation to perform before index-

ing. See Figure 2-9.

Following Index Bytes come any displacements (addressing

constants) or immediate values associated with the select-

ed addressing modes. Each Disp/Imm field may contain

one or two displacements, or one immediate value. The size

of a Displacement field is encoded with the top bits of that

field, as shown in Figure 2-10, with the remaining bits inter-

preted as a signed (two’s complement) value. The size of an

immediate value is determined from the Opcode field. Both

Displacement and Immediate fields are stored most signifi-

cant byte first. Note that this is different from the memory

representation of data (Section 2.2).

Some instructions require additional, ‘implied’’ immediates

and/or displacements, apart from those associated with ad-

dressing modes. Any such extensions appear at the end of

the instruction, in the order that they appear within the list of

operands in the instruction definition (Section 2.4.3).

2.4.2 Addressing Modes

The CPU generally accesses an operand by calculating its

Effective Address based on information available when the

operand is to be accessed. The method to be used in per-

forming this calculation is specified by the programmer as

an ‘‘addressing mode.’’

Byte Displacement: Range b64 to a63

Word Displacement: Range b8192 to a8191

Double Word Displacement:

Range b(229 b 224) to a (229 b 1)*

TL/EE/10253–7

FIGURE 2-10. Displacement Encodings

*Note: The pattern ‘‘11100000’’ for the most significant byte of the displace-

ment is reserved by National for future enhancements. Therefore, it

should never be used by the user program. This causes the lower

limit of the displacement range to be b(229b224) instead of b229.
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2.0 Architectural Description (Continued)

Addressing modes are designed to optimally support high-

level language accesses to variables. In nearly all cases, a

variable access requires only one addressing mode, within

the instruction that acts upon that variable. Extraneous data

movement is therefore minimized.

Addressing Modes fall into nine basic types:

Register: The operand is available in one of the eight Gen-

eral Purpose Registers. In certain Slave Processor instruc-

tions, an auxiliary set of eight registers may be referenced

instead.

Register Relative: A General Purpose Register contains an

address to which is added a displacement value from the

instruction, yielding the Effective Address of the operand in

memory.

Memory Space: Identical to Register Relative above, ex-

cept that the register used is one of the dedicated registers

PC, SP, SB or FP. These registers point to data areas gen-

erally needed by high-level languages.

Memory Relative: A pointer variable is found within the

memory space pointed to by the SP, SB or FP register. A

displacement is added to that pointer to generate the Effec-

tive Address of the operand.

Immediate: The operand is encoded within the instruction.

This addressing mode is not allowed if the operand is to be

written.

Absolute: The address of the operand is specified by a

displacement field in the instruction.

External: A pointer value is read from a specified entry of

the current Link Table. To this pointer value is added a dis-

placement, yielding the Effective Address of the operand.

Top of Stack: The currently-selected Stack Pointer (SP0 or

SP1) specifies the location of the operand. The operand is

pushed or popped, depending on whether it is written or

read.

Scaled Index: Although encoded as an addressing mode,

Scaled Indexing is an option on any addressing mode ex-

cept Immediate or another Scaled Index. It has the effect of

calculating an Effective Address, then multiplying any Gen-

eral Purpose Register by 1, 2, 4 or 8 and adding it into the

total, yielding the final Effective Address of the operand.

Table 2-2 is a brief summary of the addressing modes. For a

complete description of their actions, see the Instruction Set

Reference Manual.

2.4.3 Instruction Set Summary

Table 2-3 presents a brief description of the NS32GX32 in-

struction set. The Format column refers to the Instruction

Format tables (Appendix A). The Instruction column gives

the instruction as coded in assembly language, and the De-

scription column provides a short description of the function

provided by that instruction. Further details of the exact op-

erations performed by each instruction may be found in the

Instruction Set Reference Manual.

Notations:

i e Integer length suffix: B e Byte

W e Word

D e Double Word

f e Floating Point length suffix: F e Standard Floating

L e Long Floating

gen e General operand. Any addressing mode can be

specified.

short e A 4-bit value encoded within the Basic Instruction

(see Appendix A for encodings).

imm e Implied immediate operand. An 8-bit value append-

ed after any addressing extensions.

disp e Displacement (addressing constant): 8, 16 or 32

bits. All three lengths legal.

reg e Any General Purpose Register: R0–R7.

areg e Any Processor Register: Address, Debug, Status,

Configuration.

creg e A Custom Slave Processor Register (Implementa-

tion Dependent).

cond e Any condition code, encoded as a 4-bit field within

the Basic Instruction (see Appendix A for encodings).
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2.0 Architectural Description (Continued)

TABLE 2-2. NS32GX32 Addressing Modes

ENCODING MODE ASSEMBLER SYNTAX EFFECTIVE ADDRESS

Register

00000 Register 0 R0, F0, L0 None: Operand is in the

00001 Register 1 R1, F1, L1 specified register.

00010 Register 2 R2, F2, L2

00011 Register 3 R3, F3, L3

00100 Register 4 R4, F4, L4

00101 Register 5 R5, F5, L5

00110 Register 6 R6, F6, L6

00111 Register 7 R7, F7, L7

Register Relative

01000 Register 0 relative disp(R0) Disp a Register.

01001 Register 1 relative disp(R1)

01010 Register 2 relative disp(R2)

01011 Register 3 relative disp(R3)

01100 Register 4 relative disp(R4)

01101 Register 5 relative disp(R5)

01110 Register 6 relative disp(R6)

01111 Register 7 relative disp(R7)

Memory Relative

10000 Frame memory relative disp2(disp1(FP)) Disp2 a Pointer; Pointer found at

10001 Stack memory relative disp2(disp1(SP)) address Disp1 a Register. ‘‘SP’’ is either

10010 Static memory relative disp2(disp1(SB)) SP0 or SP1, as selected in PSR.

Reserved

10011 (Reserved for Future Use)

Immediate

10100 Immediate value None. Operand is input from

instruction queue.

Absolute

10101 Absolute @disp Disp.

External

10110 External EXT(disp1) a disp2 Disp2 a Pointer; Pointer is found

at Link Table Entry number Disp1.

Top of Stack

10111 Top of stack TOS Top of current stack, using either

User or Interrupt Stack Pointer,

as selected in PSR. Automatic

Push/Pop included.

Memory Space

11000 Frame memory disp(FP) Disp a Register; ‘‘SP’’ is either

11001 Stack memory disp(SP) SP0 or SP1, as selected in PSR.

11010 Static memory disp(SB)

11011 Program memory *adisp

Scaled Index

11100 Index, bytes mode[Rn:B] EA (mode) a Rn.

11101 Index, words mode[Rn:W] EA (mode) a 2 c Rn.

11110 Index, double words mode[Rn:D] EA (mode) a 4 c Rn.

11111 Index, quad words mode[Rn:Q] EA (mode) a 8 c Rn.

‘‘Mode’ and ‘n’ are contained

within the Index Byte.

EA (mode) denotes the effective

address generated using mode.
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2.0 Architectural Description (Continued)

TABLE 2-3. NS32GX32 Instruction Set Summary

MOVES

Format Operation Operands Description

4 MOVi gen,gen Move a value.

2 MOVQi short,gen Extend and move a signed 4-bit constant.

7 MOVMi gen,gen,disp Move Multiple: disp bytes (1 to 16).

7 MOVZBW gen,gen Move with zero extension.

7 MOVZiD gen,gen Move with zero extension.

7 MOVXBW gen,gen Move with sign extension.

7 MOVXiD gen,gen Move with sign extension.

4 ADDR gen,gen Move Effective Address.

INTEGER ARITHMETIC

Format Operation Operands Description

4 ADDI gen,gen Add.

2 ADDQi short,gen Add signed 4-bit constant.

4 ADDCi gen,gen Add with carry.

4 SUBi gen,gen Subtract.

4 SUBCi gen,gen Subtract with carry (borrow).

6 NEGi gen,gen Negate (2’s complement).

6 ABSi gen,gen Take absolute value.

7 MULi gen,gen Multiply.

7 QUOi gen,gen Divide, rounding toward zero.

7 REMi gen,gen Remainder from QUO.

7 DIVi gen,gen Divide, rounding down.

7 MODi gen,gen Remainder from DIV (Modulus).

7 MEIi gen,gen Multiply to Extended Integer.

7 DEIi gen,gen Divide Extended Integer.

PACKED DECIMAL (BCD) ARITHMETIC

Format Operation Operands Description

6 ADDPi gen,gen Add Packed.

6 SUBPi gen,gen Subtract Packed.

INTEGER COMPARISON

Format Operation Operands Description

4 CMPi gen,gen Compare.

2 CMPQi short,gen Compare to signed 4-bit constant.

7 CMPMi gen,gen,disp Compare Multiple: disp bytes (1 to 16).

LOGICAL AND BOOLEAN

Format Operation Operands Description

4 ANDi gen,gen Logical AND.

4 ORi gen,gen Logical OR.

4 BICi gen,gen Clear selected bits.

4 XORi gen,gen Logical Exclusive OR.

6 COMi gen,gen Complement all bits.

6 NOTi gen,gen Boolean complement: LSB only.

2 Scondi gen Save condition code (cond) as a Boolean variable of size i.

SHIFTS

Format Operation Operands Description

6 LSHi gen,gen Logical Shift, left or right.

6 ASHi gen,gen Arithmetic Shift, left or right.

6 ROTi gen,gen Rotate, left or right.
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2.0 Architectural Description (Continued)

TABLE 2-3. NS32GX32 Instruction Set Summary (Continued)

BITS

Format Operation Operands Description

4 TBITi gen,gen Test bit.

6 SBITi gen,gen Test and set bit.

6 SBITIi gen,gen Test and set bit, interlocked.

6 CBITi gen,gen Test and clear bit.

6 CBITIi gen,gen Test and clear bit, interlocked.

6 IBITi gen,gen Test and invert bit.

8 FFSi gen,gen Find first set bit.

BIT FIELDS

Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records used in

Pascal. ‘‘Extract’’ instructions read and align a bit field. ‘‘Insert’’ instructions write a bit field from an aligned source.

Format Operation Operands Description

8 EXTi reg,gen,gen,disp Extract bit field (array oriented).

8 INSi reg,gen,gen,disp Insert bit field (array oriented).

7 EXTSi gen,gen,imm,imm Extract bit field (short form).

7 INSSi gen,gen,imm,imm Insert bit field (short form).

8 CVTP reg,gen,gen Convert to Bit Field Pointer.

ARRAYS

Format Operation Operands Description

8 CHECKi reg,gen,gen Index bounds check.

8 INDEXi reg,gen,gen Recursive indexing step for multiple-dimensional arrays.

STRINGS

String instructions assign specific functions to Options on all string instructions are:

the General Purpose Registers: B (Backward): Decrement string pointers after each step

R4 - Comparison Value rather than incrementing.

R3 - Translation Table Pointer U (Until match): End instruction if String 1 entry

R2 - String 2 Pointer matches R4.

R1 - String 1 Pointer W (While match): End instruction if String 1 entry

R0 - Limit Count does not match R4.

All string instructions end when R0 decrements to zero.

Format Operation Operands Description

5 MOVSi options Move String 1 to String 2.

MOVST options Move string, translating bytes.

5 CMPSi options Compare String 1 to String 2.

CMPST options Compare translating, String 1 bytes.

5 SKPSi options Skip over String 1 entries.

SKPST options Skip, translating bytes for Until/While.
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2.0 Architectural Description (Continued)

TABLE 2-3. NS32GX32 Instruction Set Summary (Continued)

JUMPS AND LINKAGE

Format Operation Operands Description

3 JUMP gen Jump.

0 BR disp Branch (PC Relative).

0 Bcond disp Conditional branch.

3 CASEi gen Multiway branch.

2 ACBi short,gen,disp Add 4-bit constant and branch if non-zero.

3 JSR gen Jump to subroutine.

1 BSR disp Branch to subroutine.

1 CXP disp Call external procedure.

3 CXPD gen Call external procedure using descriptor.

1 SVC Supervisor Call.

1 FLAG Flag Trap.

1 BPT Breakpoint Trap.

1 ENTER [reg list],disp Save registers and allocate stack frame (Enter Procedure).

1 EXIT [reg list] Restore registers and reclaim stack frame (Exit Procedure).

1 RET disp Return from subroutine.

1 RXP disp Return from external procedure call.

1 RETT disp Return from trap. (Privileged)

1 RETI Return from interrupt. (Privileged)

CPU REGISTER MANIPULATION

Format Operation Operands Description

1 SAVE [reg list] Save General Purpose Registers.

1 RESTORE [reg list] Restore General Purpose Registers.

2 LPRi areg,gen Load Processor Register. (Privileged if PSR, INTBASE, USP, CFG

or Debug Registers).

2 SPRi areg,gen Store Processor Register. (Privileged if PSR, INTBASE, USP, CFG

or Debug Registers).

3 ADJSPi gen Adjust Stack Pointer.

3 BISPSRi gen Set selected bits in PSR. (Privileged if not Byte length)

3 BICPSRi gen Clear selected bits in PSR. (Privileged if not Byte length)

5 SETCFG [option list] Set Configuration Register. (Privileged)

FLOATING POINT

Format Operation Operands Description

11 MOVf gen,gen Move a Floating Point value.

9 MOVLF gen,gen Move and shorten a Long value to Standard.

9 MOVFL gen,gen Move and lengthen a Standard value to Long.

9 MOVif gen,gen Convert any integer to Standard or Long Floating.

9 ROUNDfi gen,gen Convert to integer by rounding.

9 TRUNCfi gen,gen Convert to integer by truncating, toward zero.

9 FLOORfi gen,gen Convert to largest integer less than or equal to value.

11 ADDf gen,gen Add.

11 SUBf gen,gen Subtract.

11 MULf gen,gen Multiply.

11 DIVf gen,gen Divide.

11 CMPf gen,gen Compare.

11 NEGf gen,gen Negate.

11 ABSf gen,gen Take absolute value.

12 POLYf gen,gen Polynomial Step.

12 DOTf gen,gen Dot Product.

12 SCALBf gen,gen Binary Scale.

12 LOGBf gen,gen Binary Log.

9 LFSR gen Load FSR.

9 SFSR gen Store FSR.
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2.0 Architectural Description (Continued)

TABLE 2-3. NS32GX32 Instruction Set Summary (Continued)

MISCELLANEOUS

Format Operation Operands Description

1 NOP No Operation.

1 WAIT Wait for interrupt.

1 DIA Diagnose. Single-byte ‘‘Branch to Self’’ for hardware

breakpointing. Not for use in programming.

14 CINV [options],gen Cache Invalidate. (Privileged)

8 MOVSUi gen,gen Move a value from Supervisor

Space to User Space. (Privileged)

8 MOVUSi gen,gen Move a value from User Space

to Supervisor Space. (Privileged)

CUSTOM SLAVE

Format Operation Operands Description

15.5 CCAL0c gen,gen Custom Calculate.

15.5 CCAL1c gen,gen

15.5 CCAL2c gen,gen

15.5 CCAL3c gen,gen

15.5 CMOV0c gen,gen Custom Move.

15.5 CMOV1c gen,gen

15.5 CMOV2c gen,gen

15.5 CMOV3c gen,gen

15.5 CCMP0c gen,gen Custom Compare.

15.5 CCMP1c gen,gen

15.1 CCV0ci gen,gen Custom Convert.

15.1 CCV1ci gen,gen

15.1 CCV2ci gen,gen

15.1 CCV3ic gen,gen

15.1 CCV4DQ gen,gen

15.1 CCV5QD gen,gen

15.1 LCSR gen Load Custom Status Register.

15.1 SCSR gen Store Custom Status Register.

15.0 LCR creg,gen Load Custom Register. (Privileged)

15.0 SCR creg,gen Store Custom Register. (Privileged)
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3.0 Functional Description
This chapter provides details on the functional characteris-

tics of the NS32GX32 microprocessor.

The chapter is divided into five main sections:

Instruction Execution, Exception Processing, Debugging,

On-Chip Caches and System Interface.

3.1 INSTRUCTION EXECUTION

To execute an instruction, the NS32GX32 performs the fol-

lowing operations:

# Fetch the instruction

# Read source operands, if any (1)

# Calculate results

# Write result operands, if any

# Modify flags, if necessary

# Update the program counter

Under most circumstances, the CPU can be conceived to

execute instructions by completing the operations above in

strict sequence for one instruction and then beginning the

sequence of operations for the next instruction. However,

due to the internal instruction pipelining, as well as the oc-

currence of exceptions, the sequence of operations per-

formed during the execution of an instruction may be al-

tered. Furthermore, exceptions also break the sequentiality

of the instructions executed by the CPU.

Details on the effects of the internal pipelining, as well as

the occurrence of exceptions on the instruction execution,

are provided in the following sections.

Note: 1 In this and following sections, memory locations read by the CPU to

calculate effective addresses for Memory-Relative and External ad-

dressing modes are considered like source operands, even if the

effective address is being calculated for an operand with access

class of write.

3.1.1 Operating States

The CPU has five operating states regarding the execution

of instructions and the processing of exceptions: Reset, Ex-

ecuting Instructions, Processing An Exception, Waiting-For-

An-Interrupt, and Halted. The various states and transitions

between them are shown in Figure 3-1 .

Whenever the RST signal is asserted, the CPU enters the

reset state. The CPU remains in the reset state until the

RST signal is driven inactive, at which time it enters the

Executing-Instructions state. In the Reset state the contents

of certain registers are initialized. Refer to Section 3.5.3 for

details.

In the Executing-Instructions state, the CPU executes in-

structions. It will exit this state when an exception is recog-

nized or a WAIT instruction is encountered. At which time it

enters the Processing-An-Exception state or the Waiting-

For-An-Interrupt state respectively.

While in the Processing-An-Exception state, the CPU saves

the PC, PSR and MOD register contents on the stack and

reads the new PC and module linkage information to begin

execution of the exception service procedure (see note).

Following the completion of all data references required to

process an exception, the CPU enters the Executing-In-

structions state.

In the Waiting-For-An-Interrupt state, the CPU is idle. A spe-

cial status identifying this state is presented on the system

interface (Section 3.5). When an interrupt or a debug condi-

TL/EE/10253–8

FIGURE 3-1. Operating States

tion is detected, the CPU enters the Processing-An-Excep-

tion state.

The CPU enters the Halted state when a bus error is detect-

ed while the CPU is processing an exception, thereby pre-

venting the transfer of control to an appropriate exception

service procedure. The CPU remains in the Halted state

until reset occurs. A special status identifying this state is

presented on the system interface.

Note: When the Direct-Exception mode is enabled, the CPU does not save

the MOD Register contents nor does it read the module linkage infor-

mation for the exception service procedure. Refer to Section 3.2 for

details.

3.1.2 Instruction Endings

The NS32GX32 checks for exceptions at various points

while executing instructions. Certain exceptions, like inter-

rupts, are in most cases recognized between instructions.

Other exceptions, like Divide-By-Zero Trap, are recognized

during execution of an instruction. When an exception is

recognized during execution of an instruction, the instruction

ends in one of four possible ways: completed, suspended,

terminated, or partially completed. Each type of exception

causes a particular ending, as specified in Section 3.2.

3.1.2.1 Completed Instructions

When an exception is recognized after an instruction is

completed, the CPU has performed all of the operations for

that instruction and for all other instructions executed since

the last exception occurred. Result operands have been

written, flags have been modified, and the PC saved on the

Interrupt Stack contains the address of the next instruction

to execute. The exception service procedure can, at its con-

clusion, execute the RETT instruction (or the RETI instruc-

tion for vectored interrupts), and the CPU will begin execut-

ing the instruction following the completed instruction.

19



3.0 Functional Description (Continued)

3.1.2.2 Suspended Instructions

An instruction is suspended when one of several trap condi-

tions or a restartable bus error is detected during execution

of the instruction. A suspended instruction has not been

completed, but all other instructions executed since the last

exception occurred have been completed. Result operands

and flags due to be affected by the instruction may have

been modified, but only modifications that allow the instruc-

tion to be executed again and completed can occur. For

certain exceptions (Trap (UND), Trap (ILL), and bus errors)

the CPU clears the P-flag in the PSR before saving the copy

that is pushed on the Interrupt Stack. The PC saved on the

Interrupt Stack contains the address of the suspended in-

struction.

To complete a suspended instruction, the exception service

procedure takes either of two actions:

1. The service procedure can simulate the suspended in-

struction’s execution. After calculating and writing the in-

struction’s results, the flags in the PSR copy saved on the

Interrupt Stack should be modified, and the PC saved on

the Interrupt Stack should be updated to point to the next

instruction to execute. The service procedure can then

execute the RETT instruction, and the CPU begins exe-

cuting the instruction following the suspended instruction.

This is the action taken when floating-point instructions

are simulated by software in systems without a hardware

floating-point unit.

2. The suspended instruction can be executed again after

the service procedure has eliminated the trap condition

that caused the instruction to be suspended. The service

procedure should execute the RETT instruction at its con-

clusion; then the CPU begins executing the suspended

instruction again. This is the action taken by a debugger

when it encounters a BPT instruction that was temporarily

placed in another instruction’s location in order to set a

breakpoint.

Note 1: It may be necessary for the exception service procedure to alter the

P-flag in the PSR copy saved on the Interrupt Stack: If the exception

service procedure simulates the suspended instruction and the P-

flag was cleared by the CPU before saving the PSR copy, then the

saved T-flag must be copied to the saved P-flag (like the floating-

point instruction simulation described above). Or if the exception

service procedure executes the suspended instruction again and

the P-flag was not cleared by the CPU before saving the PSR copy,

then the saved P-flag must be cleared (like the breakpoint trap de-

scribed above). Otherwise, no alteration to the saved P-flag is nec-

essary.

3.1.2.3 Terminated Instructions

An instruction being executed is terminated when reset or a

nonrestartable bus error occurs. Any result operands and

flags due to be affected by the instruction are undefined, as

is the contents of the PC. The result operands of other in-

structions executed since the last serializing operation may

not have been written to memory. A terminated instruction

cannot be completed.

3.1.2.4 Partially Completed Instructions

When a restartable bus error, interrupt, or debug condition is

recognized during execution of a string instruction, the in-

struction is said to be partially completed. A partially com-

pleted instruction has not completed, but all other instruc-

tions executed since the last exception occurred have been

completed. Result operands and flags due to be affected by

the instruction may have been modified, but the values

stored in the string pointers and other general-purpose reg-

isters used during the instruction’s execution allow the in-

struction to be executed again and completed.

The CPU clears the P-flag in the PSR before saving the

copy that is pushed on the Interrupt Stack. The PC saved on

the Interrupt Stack contains the address of the partially

completed instruction. The exception service procedure

can, at its conclusion, simply execute the RETT instruction

(or the RETI instruction for vectored interrupts), and the

CPU will resume executing the partially completed instruc-

tion.

3.1.3 Instruction Pipeline

The NS32GX32 executes instructions in a heavily pipelined

fashion. This allows a significant performance enhancement

since the operations of several instructions are performed

simultaneously rather than in a strictly sequential manner.

The CPU provides a four-stage internal instruction pipeline.

As shown in Figure 3-2 , a write buffer, that can hold up to

two operands, is also provided to allow write operations to

be performed off-line.
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FIGURE 3-2. NS32GX32 Internal Instruction Pipeline

Due to the pipelining, operations like fetching one instruc-

tion, reading the source operands of a second instruction,

calculating the results of a third instruction and storing the

results of a fourth instruction, can all occur in parallel.
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3.0 Functional Description (Continued)

The order of memory references performed by the CPU may

also differ from that related to a strictly sequential instruc-

tion execution. In fact, when an instruction is being execut-

ed, some of the source operands may be read from memory

before the instruction is completely fetched. For example,

the CPU may read the first source operand for an instruction

before it has fetched a displacement used in calculating the

address of the second source operand. The CPU, however,

always completes fetching an instruction and reading its

source operands before writing its results. When more than

one source operand must be read from memory to execute

an instruction, the operands may be read in any order. Simi-

larly, when more than one result operand is written to mem-

ory to execute an instruction, the operands may be written

in any order.

An instruction is fetched only after all previous instructions

have been completely fetched. However, the CPU may be-

gin fetching an instruction before all of the source operands

have been read and results written for previous instructions.

The source operands for an instruction are read only after

all previous instructions have been fetched and their source

operands read. A source operand for an instruction may be

read before all results of previous instructions have been

written, except when the source operand’s value depends

on a result not yet written. The CPU compares the address

and length of a source operand with those of any results not

yet written, and delays reading the source operand until af-

ter writing all results on which the source operand depends.

Also, the CPU ensures that the interlocked read and write

references to execute an SBITIi or CBITIi instruction occur

after writing all results of previous instructions and before

reading any source operands for subsequent instructions.

The result operands for an instruction are written after all

results of previous instructions have been written.

The description above is summarized in Figure 3-3 , which

shows the precedence of memory references for two con-

secutive instructions.
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FIGURE 3-3. Memory References for

Consecutive Instructions

(An arrow from one reference to another indicates that

the first reference always precedes the second.)

Another consequence of overlapping the operations for sev-

eral instructions, is that the CPU may fetch an instruction

and read its source operands, even though the instruction is

not executed (e.g., due to the occurrence of an exception).

Special care is needed in the handling of memory-mapped

I/O devices. The CPU provides special mechanisms to en-

sure that the references to these devices are always per-

formed in the order implied by the program. Refer to Section

3.1.3.2 for details.

It is also to be noted that the CPU does not check for de-

pendencies between the fetching of an instruction and the

writing of previous instructions’ results. Therefore, special

care is required when executing self-modifying code.

3.1.3.1 Branch Prediction

One problem inherent to all pipelined machines is what is

called ‘‘Pipeline Breakage’’.

This occurs every time the sequentiality of the instructions is

broken, due to the execution of certain instructions or the

occurrence of exceptions.

The result of a pipeline breakage is a performance degrada-

tion, due to the fact that a certain portion of the pipeline

must be flushed and new data must be brought in.

The NS32GX32 provides a special mechanism, called

branch prediction, that helps minimize this performance

penalty.

When a conditional branch instruction is decoded in the ear-

ly stages of the pipeline, a prediction on the execution of the

instruction is performed.

More precisely, the prediction mechanism predicts back-

ward branches as taken and forward branches as not taken,

except for the branch instructions BLE and BNE that are

always predicted as taken.

Thus, the resulting probability of correct prediction is fairly

high, especially for branch instructions placed at the end of

loops.

The sequence of operations performed by the loader and

execution units in the CPU is given below:

# Loader detects branches and calculates destination ad-

dresses

# Loader uses branch opcode and direction to select be-

tween sequential and non-sequential streams

# Loader saves address for alternate stream

# Execution unit resolves branch decision

Due to the branch predicition, some special care is required

when writing self-modifying code. Refer to the appropriate

section in Appendix B for more information on this subject.

3.1.3.2 Memory-Mapped I/O

The characteristics of certain peripheral devices and the

overlapping of instruction execution in the pipeline of the

NS32GX32 require that special handling be applied to mem-

ory-mapped I/O references. I/O references differ from

memory references in two significant ways, imposing the

following requirements:

1. Reading from a peripheral port can alter the value read

on the next reference to the same port or another port in

the same device. (A characteristic called here ‘‘destruc-

tive-reading’’.) Serial communication controllers and

FIFO buffers commonly operate in this manner. As ex-

plained in ‘‘Instruction Pipeline’’ above, the NS32GX32

can read the source operands for one instruction while

the previous instruction is executing. Because the previ-

ous instruction may cause a trap, an interrupt may be

recognized, or the flow of control may be otherwise al-

tered, it is a requirement that destructive-reading of

source operands before the execution of an instruction

be avoided.
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3.0 Functional Description (Continued)

2. Writing to a peripheral port can alter the value read from

another port of the same device. (A characteristic called

here ‘‘side-effects of writing’’). For example, before read-

ing the counter’s value from the NS32202 Interrupt Con-

trol Unit it is first necessary to freeze the value by writing

to another control register.

However, as mentioned above, the NS32GX32 can read the

source operands for one instruction before writing the re-

sults of previous instructions unless the addresses indicate

a dependency between the read and write references. Con-

sequently, it is a requirement that read and write references

to peripheral that exhibit side-effects of writing must occur in

the order dictated by the instructions.

The NS32GX32 supports 2 methods for handling memory-

mapped I/O. The first method is more general; it satisfies

both requirements listed above and places no restriction on

the location of memory-mapped peripheral devices. The

second method satisfies only the requirement for side ef-

fects of writing, and it restricts the location of memory-

mapped I/O devices, but it is more efficient for devices that

do not have destructive-read ports.

The first method for handling memory-mapped I/O uses two

signals: IOINH and IODEC. When the NS32GX32 generates

a read bus cycle, it asserts the output signal IOINH if either

of the I/O requirements listed above is not satisfied. That is,

IOINH is asserted during a read bus cycle when (1) the read

reference is for an instruction that may not be executed or

(2) the read reference occurs while a write reference is

pending for a previous instruction. When the read reference

is to a peripheral device that implements ports with destruc-

tive-reading or side-effects of writing, the input signal

IODEC must be asserted; in addition, the device must not

be selected if IOINH is active. When the CPU detects that

the IODEC input signal is active while the IOINH output sig-

nal is also active, it discards the data read during the bus

cycle and serializes instruction execution. See the next sec-

tion for details on serializing operations. The CPU then gen-

erates the read bus cycle again, this time satisfying the re-

quirements for I/O and driving IOINH inactive.

The second method for handling memory-mapped I/O uses

a dedicated region of memory. The NS32GX32 treats all

references to the memory range from address FF000000 to

address FFFFFFFF inclusive in a special manner.

While a write to a location in this range is pending, reads

from locations in the same range are delayed. However,

reads from locations with addresses lower than FF000000

may occur. Similarly, reads from locations in the above

range may occur while writes to locations outside of the

range are pending.

It is to be noted that the CPU may assert IOINH even when

the reference is within the dedicated region. Refer to Sec-

tion 3.5.8 for more information on the handling of I/O devic-

es.

3.1.3.3 Serializing Operations

After executing certain instructions or processing an excep-

tion, the CPU serializes instruction execution. Serializing in-

struction execution means that the CPU completes writing

all previous instructions’ results to memory, then begins

fetching and executing the next instruction.

For example, when a new value is loaded into the PSR by

executing an LPRW instruction, the pipeline is flushed and a

serializing operation takes place. This is necessary since

the privilege level might have changed and the instructions

following the LPRW instruction must be fetched again with

the new privilege level.

The CPU serializes instruction execution after executing one

of the following instructions: BICPSRW, BISPSRW, BPT,

CINV, DIA, FLAG (trap taken), LPR (CFG, INTBASE, PSR,

UPSR, DCR, BPC, DSR, and CAR only), RETT, RETI, and

SVC. Figure 3-4 shows the memory references after seriali-

zation.

Note 1: LPRB UPSR can be executed in User Mode to serialize instruction

execution.

Note 2: After an instruction that writes a result to memory is executed, the

updating of the result’s memory location may be delayed until the

next serializing operation.

Note 3: When reset or a nonrestartable bus error exception occurs, the CPU

discards any results that have not yet been written to memory.

TL/EE/10253–11

FIGURE 3-4. Memory References after Serialization

3.1.4 Slave Processor Instructions

The NS32GX32 recognizes two groups of instructions being

executable by external slave processors:

# Floating Point Instructions

# Custom Slave Instructions

Each Slave Instruction Set is enabled by a bit in the Configu-

ration Register (Section 2.1.4). Any Slave Instruction which

does not have its corresponding Configuration Register bit

set will trap as undefined, without any Slave Processor com-

munication attempted by the CPU. This allows software sim-

ulation of a non-existent Slave Processor.

3.1.4.1 Slave Instruction Protocol

Slave Processor instructions have a three-byte Basic In-

struction field, consisting of an ID Byte followed by an Oper-

ation Word. The ID Byte has three functions:

1) It identifies the instruction as being a Slave Processor

instruction.

2) It specifies which Slave Processor will execute it.

3) It determines the format of the following Operation Word

of the instruction.

Upon receiving a Slave Processor instruction, the CPU initi-

ates the sequence outlined in Figure 3-5 . While applying

Status code 11111 (Broadcast ID Section 3.5.4.1), the CPU

transfers the ID Byte on bits D24–D31, the operation
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3.0 Functional Description (Continued)

TL/EE/10253–12

FIGURE 3-5. Slave Instruction Protocol: CPU Actions
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3.0 Functional Description (Continued)

31 0

ID BYTE OPCODE (LOW) OPCODE (HIGH) XXXXXXXX

FIGURE 3-6. ID and Operation Word

31 15 7 0

ZERO TS ZERO N Z 0 0 0 L 0 Q

FIGURE 3-7. Slave Processor Status Word

word on bits D8–D23 in a swapped order of bytes and a

non-used byte XXXXXXXX (X e don’t care) on bits D0–D7

(Figure 3-6 ).

All slave processors observe the bus cycle and inspect the

identification code. The slave selected by the identification

code continues with the protocol; other slaves wait for the

next slave instruction to be broadcast.

After transferring the slave instruction, the CPU sends to the

slave any source operands that are located in memory or

the General-Purpose registers. The CPU then waits for the

slave to assert SDN or FSSR. While the CPU is waiting, it

can perform bus cycles to fetch instructions and read

source operands for instructions that follow the slave in-

struction being executed. If there are no bus cycles to per-

form, the CPU is idle with a special Status indicating that it is

waiting for a slave processor. After the slave asserts SDN or

FSSR, the CPU follows one of the two sequences described

below.

If the slave asserts SDN, then the CPU checks whether the

instruction stores any results to memory or the General-Pur-

pose registers. The CPU reads any such results from the

slave by means of 1 or 2 bus cycles and updates the desti-

nation.

If the slave asserts FSSR, then the NS32GX32 reads a 32-

bit status word from the slave. The CPU checks bit 0 in the

slave’s status word to determine whether to update the PSR

flags or to process an exception. Figure 3-7 shows the for-

mat of the slave’s status word.

If the Q bit in the status word is 0, the CPU updates the N, Z

and L flags in the PSR.

If the Q bit in the status word is set to 1, the CPU processes

either a Trap (UND) if TS is 1 or a Trap (SLAVE) if TS is 0.

Note 1: Only the floating-point and custom compare instructions are allowed

to return a value of 0 for the Q bit when the FSSR signal is activat-

ed. All other instructions must always set the Q bit to 1 (to signal a

Trap), when activating FSSR.

Note 2: While executing CINV instruction, the CPU displays the operation

code and source operand using slave processor write bus cycles, as

described in the protocol above. Nevertheless, the CPU does not

wait for SDN or FSSR to be asserted while executing these instruc-

tions. This information can be used to monitor the contents of the

on-chip Instruction Cache, and Data Cache.

Note 3: The slave processor must be ready to accept new slave instruction

at any time, even while the slave is executing another instruction or

waiting for the CPU to read results.
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3.0 Functional Description (Continued)

3.1.4.2 Floating Point Instructions

Table 3-1 gives the protocols followed for each Floating

Point instruction. The instructions are referenced by their

mnemonics. For the bit encodings of each instruction, see

Appendix A.

The Operand class columns give the Access Class for each

general operand, defining how the addressing modes are

interpreted (see Instruction Set Reference Manual).

The Operand Issued columns show the sizes of the oper-

ands issued to the Floating Point Unit by the CPU. ‘‘D’’ indi-

cates a 32-bit Double Word. ‘‘i’’ indicates that the instruction

specifies an integer size for the operand (B e Byte, W e

Word, D e Double Word). ‘‘f’’ indicates that the instruction

specifies a Floating Point size for the operand (F e 32-bit

Standard Floating, L e 64-bit Long Floating).

The Returned Value Type and Destination column gives the

size of any returned value and where the CPU places it. The

PSR-Bits-Affected column indicates which PSR bits, if any,

are updated from the Slave Processor Status Word (Figure
3-7) .

Any operand indicated as being of type ‘‘f’’ will not cause a

transfer if the Register addressing mode is specified. This is

because the Floating Point Registers are physically on the

Floating Point Unit and are therefore available without CPU

assistance.

3.1.4.3 Custom Slave Instructions

Provided in the NS32GX32 is the capability of communicat-

ing with a user-defined, ‘‘Custom’’ Slave Processor. The in-

struction set provided for a Custom Slave Processor defines

the instruction formats, the operand classes and the com-

munication protocol. Left to the user are the interpretations

of the Op Code fields, the programming model of the Cus-

tom Slave and the actual types of data transferred. The pro-

tocol specifies only the size of an operand, not its data type.

Table 3-2 lists the relevant information for the Custom Slave

instruction set. The designation ‘‘c’’ is used to represent an

operand which can be a 32-bit (‘‘D’’) or 64-bit (‘‘Q’’) quantity

in any format; the size is determined by the suffix on the

mnemonic. Similarly, an ‘‘i’’ indicates an integer size (Byte,

Word, Double Word) selected by the corresponding mne-

monic suffix.

Any operand indicated as being of type ‘‘c’’ will not cause a

transfer if the register addressing mode is specified. It is

assumed in this case that the slave processor is already

holding the operand internally.

For the instruction encodings, see Appendix A.

3.2 EXCEPTION PROCESSING

Exceptions are special events that alter the sequence of

instruction execution. The CPU recognizes three basic types

of exceptions: interrupts, traps and bus errors.

An interrupt occurs in response to an event signalled by

activating the NMI or INT input signals. Interrupts are typi-

cally requested by peripheral devices that require the CPU’s

attention.

Traps occur as a result either of exceptional conditions

(e.g., attempted division by zero) or of specific instructions

whose purpose is to cause a trap to occur (e.g., supervisor

call instruction).

A bus error exception occurs when the BER signal is acti-

vated during an instruction fetch or data transfer required by

the CPU to execute an instruction.

When an exception is recognized, the CPU saves the PC,

PSR and optionally the MOD register contents on the inter-

rupt stack and then it transfers control to an exception serv-

ice procedure.

Details on the operations performed in the various cases by

the CPU to enter and exit the exception service procedure

are given in the following sections.

It is to be noted that the reset operation is not treated here

as an exception. Even though, like any exception, it alters

the instruction execution sequence.

The reason being that the CPU handles reset in a signifi-

cantly different way than it does for exceptions.

Refer to Section 3.5.3 for details on the reset operation.
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3.0 Functional Description (Continued)

TABLE 3-1. Floating Point Instruction Protocols

Mnemonic
Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits

Class Class Issued Issued Type and Dest. Affected

ADDf read.f rmw.f f f f to Op.2 none

SUBf read.f rmw.f f f f to Op.2 none

MULf read.f rmw.f f f f to Op.2 none

DIVf read.f rmw.f f f f to Op.2 none

MOVf read.f write.f f N/A f to Op.2 none

ABSf read.f write.f f N/A f to Op.2 none

NEGf read.f write.f f N/A f to Op.2 none

CMPf read.f read.f f f N/A N, Z, L

FLOORfi read.f write.i f N/A i to Op.2 none

TRUNCfi read.f write.i f N/A i to Op.2 none

ROUNDfi read.f write.i f N/A i to Op.2 none

MOVFL read.F write.L F N/A L to Op.2 none

MOVLF read.L write.F L N/A F to Op.2 none

MOVif read.i write.f i N/A f to Op.2 none

LFSR read.D N/A D N/A N/A none

SFSR N/A write.D N/A N/A D to Op.2 none

POLYf read.f read.f f f f to F0 none

DOTf read.f read.f f f f to F0 none

SCALBf read.f rmw.f f f f to Op.2 none

LOGBf read.f write.f f N/A f to Op.2 none

TABLE 3-2. Custom Slave Instruction Protocols

Mnemonic
Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits

Class Class Issued Issued Type and Dest. Affected

CCAL0c read.c rmw.c c c c to Op.2 none

CCAL1c read.c rmw.c c c c to Op.2 none

CCAL2c read.c rmw.c c c c to Op.2 none

CCAL3c read.c rmw.c c c c to Op.2 none

CMOV0c read.c write.c c N/A c to Op.2 none

CMOV1c read.c write.c c N/A c to Op.2 none

CMOV2c read.c write.c c N/A c to Op.2 none

CMOV3c read.c write.c c N/A c to Op.2 none

CCMP0c read.c read.c c c N/A N,Z,L

CCMP1c read.c read.c c c N/A N,Z,L

CCV0ci read.c write.i c N/A i to Op.2 none

CCV1ci read.c write.i c N/A i to Op.2 none

CCV2ci read.c write.i c N/A i to Op.2 none

CCV3ic read.i write.c i N/A c to Op.2 none

CCV4DQ read.D write.Q D N/A Q to Op.2 none

CCV5QD read.Q write.D Q N/A D to Op.2 none

LCSR read.D N/A D N/A N/A none

SCSR N/A write.D N/A N/A D to Op.2 none

LCR* read.D N/A D N/A N/A none

SCR* write.D N/A N/A N/A D to Op.1 none

Note:

D e Double Word

i e Integer size (B,W,D) specified in mnemonic.

c e Custom size (D:32 bits or Q:64 bits) specified in mnemonic.

* e Privileged instruction: will trap if CPU is in User Mode.

N/A e Not Applicable to this instruction.
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3.0 Functional Description (Continued)

3.2.1 Exception Acknowledge Sequence

When an exception is recognized, the CPU goes through

three major steps:

1) Adjustment of Registers. Depending on the source of the

exception, the CPU may restore and/or adjust the con-

tents of the Program Counter (PC), the Processor Status

Register (PSR) and the currently-selected Stack Pointer

(SP). A copy of the PSR is made, and the PSR is then set

to reflect Supervisor Mode and selection of the Interrupt

Stack. Trap (TRC) and Trap (OVF) are always disabled.

Maskable interrupts are also disabled if the exception is

caused by an interrupt, Trap (DBG), Trap (ABT) or bus

error.

2) Vector Acquisition. A vector is either obtained from the

data bus or is supplied internally by default.

3) Service Call. The CPU performs one of two sequences

common to all exceptions to complete the acknowledge

process and enter the appropriate service procedure.

The selection between the two sequences depends on

whether the Direct-Exception mode is disabled or en-

abled.

Direct-Exception Mode Disabled

The Direct-Exception mode is disabled while the DE bit in

the CFG register is 0 (Section 2.1.4). In this case the CPU

first pushes the saved PSR copy along with the contents of

the MOD and PC registers on the interrupt stack. Then it

reads the double-word entry from the Interrupt Dispatch ta-

ble at address ‘INTBASE a vector c 4’. See Figures 3-8
and 3-9 . The CPU uses this entry to call the exception serv-

ice procedure, interpreting the entry as an external proce-

dure descriptor.

A new module number is loaded into the MOD register from

the least-significant word of the descriptor, and the static-

base pointer for the new module is read from memory and

loaded into the SB register. Then the program-base pointer

for the new module is read from memory and added to the

most-significant word of the module descriptor, which is in-

terpreted as an unsigned value. Finally, the result is loaded

into the PC register.

Direct-Exception Mode Enabled

The Direct-Exception mode is enabled when the DE bit in

the CFG register is set to 1. In this case the CPU first

pushes the saved PSR copy along with the contents of the

PC register on the Interrupt Stack. The word stored on the

Interrupt Stack between the saved PSR and PC register is

reserved for future use; its contents are undefined. The CPU

then reads the double-word entry from the Interrupt Dis-

patch Table at address ‘INTBASE a vector c 4’. The CPU

uses this entry to call the exception service procedure, inter-

preting the entry as an absolute address that is simply load-

ed into the PC register. Figure 3-10 provides a pictorial of

the acknowledge sequence. It is to be noted that while the

TL/EE/10253–13

FIGURE 3-8. Interrupt Dispatch Table
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3.0 Functional Description (Continued)
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FIGURE 3-9. Exception Acknowledge Sequence.

Direct-Exception Mode Disabled.
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FIGURE 3-10. Exception Acknowledge Sequence.

Direct-Exception Mode Enabled.

direct-exception mode is enabled, the CPU can respond

more quickly to interrupts and other exceptions because

fewer memory references are required to process an excep-

tion. The MOD and SB registers, however, are not initialized

before the CPU transfers control to the service procedure.

Consequently, the service procedure is restricted from exe-

cuting any instructions, such as CXP, that use the contents

of the MOD or SB registers in effective address calcula-

tions.

3.2.2 Returning from an Exception Service Procedure

To return control to an interrupted program, one of two in-

structions can be used: RETT (Return from Trap) and RETI

(Return from Interrupt).

RETT is used to return from any trap, non-maskable inter-

rupt or bus error service procedure. Since some traps are

often used deliberately as a call mechanism for supervisor

mode procedures, RETT can also adjust the Stack Pointer

(SP) to discard a specified number of bytes from the original

stack as surplus parameter space.

RETI is used to return from a maskable interrupt service

procedure. A difference of RETT, RETI also informs any

external interrupt control units that interrupt service has

completed. Since interrupts are generally asynchronous ex-

ternal events, RETI does not discard parameters from the

stack.

Both of the above instructions always restore the Program

Counter (PC) and the Processor Status Register from the

interrupt stack. If the Direct-Exception mode is disabled,

they also restore the MOD and SB register contents. Fig-
ures 3-11 and 3-12 show the RETT and RETI instruction

flows when the Direct-Exception mode is disabled.
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3.0 Functional Description (Continued)

TL/EE/10253–18

FIGURE 3-11. Return from Trap (RETT n) Instruction Flow.

Direct-Exception Mode Disabled.

3.2.3 Maskable Interrupts

The INT pin is a level-sensitive input. A continuous low level

is allowed for generating multiple interrupt requests. The in-

put is maskable, and is therefore enabled to generate inter-

rupt requests only while the Processor Status Register I bit

is set. The I bit is automatically cleared during service of an

INT, NMI, Trap (DBG), or Bus Error request, and is restored

to its original setting upon return from the interrupt service

routine via the RETT or RETI instruction.

The INT pin may be configured via the SETCFG instruction

as either Non-Vectored (CFG Register bit I e 0) or Vec-

tored (bit I e 1).

3.2.3.1 Non-Vectored Mode

In the Non-Vectored mode, an interrupt request on the INT

pin will cause an Interrupt Acknowledge bus cycle, but the

CPU will ignore any value read from the bus and use instead

a default vector of zero. This mode is useful for small sys-

tems in which hardware interrupt prioritization is unneces-

sary.

3.2.3.2 Vectored Mode: Non-Cascaded Case

In the Vectored mode, the CPU uses an Interrupt Control

Unit (ICU) to prioritize many interrupt requests. Upon receipt

of an interrupt request on the INT pin, the CPU performs an

‘‘Interrupt Acknowledge, Master’’ bus cycle (Section

3.5.4.6) reading a vector value from the low-order byte of

the Data Bus. This vector is then used as an index into the

Dispatch Table in order to find the External Procedure De-

scriptor for the proper interrupt service procedure. The serv-

ice procedure eventually returns via the Return from Inter-

rupt (RETI) instruction, which performs an End of Interrupt

bus cycle, informing the ICU that it may re-prioritize any in-

terrupt requests still pending. The ICU provides the vector

number again, which the CPU uses to determine whether it

needs also to inform a Cascaded ICU (see below).

In a system with only one ICU (16 levels of interrupt), the

vectors provided must be in the range of 0 through 127; that

is, they must be positive numbers in eight bits. By providing
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FIGURE 3-12. Return from Interrupt (RETI) Instruction Flow.

Direct-Exception Mode Disabled.
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3.0 Functional Description (Continued)

a negative vector number, an ICU flags the interrupt source

as being a Cascaded ICU (see below).

Note: During a return from interrupt the CPU looks at bit 7 of the vector

number from the master ICU. If bit 7 is 0, bits 0 through 6 are ignored.

3.2.3.3 Vectored Mode: Cascaded Case

In order to allow more levels of interrupt, provision is made

in the CPU to transparently support cascading. Note that

the Interrupt output from a Cascaded ICU goes to an Inter-

rupt Request input of the Master ICU, which is the only ICU

which drives the CPU INT pin. Refer to the ICU data sheet

for details.

In a system which uses cascading, two tasks must be per-

formed upon initialization:

1) For each Cascaded ICU in the system, the Master ICU

must be informed of the line number on which it receives

the cascaded requests.

2) A Cascade Table must be established in memory. The

Cascade Table is located in a NEGATIVE direction from

the location indicated by the CPU Interrupt Base (INT-

BASE) Register. Its entries are 32-bit addresses, pointing

to the Vector Registers of each of up to 16 Cascaded

ICUs.

Figure 3-9 illustrates the position of the Cascade Table. To

find the Cascade Table entry for a Cascaded ICU, take its

Master ICU line number (0 to 15) and subtract 16 from it,

giving an index in the range b16 to b1. Multiply this value

by 4, and add the resulting negative number to the contents

of the INTBASE Register. The 32-bit entry at this address

must be set to the address of the Hardware Vector Register

of the Cascaded ICU. This is referred to as the ‘‘Cascade

Address.’’

Upon receipt of an interrupt request from a Cascaded ICU,

the Master ICU interrupts the CPU and provides the nega-

tive Cascade Table index instead of a (positive) vector num-

ber. The CPU, seeing the negative value, uses it as an index

into the Cascade Table and reads the Cascade Address

from the referenced entry. Applying this address, the CPU

performs an ‘‘Interrupt Acknowledge, Cascaded’’ bus cycle,

reading the final vector value. This vector is interpreted by

the CPU as an unsigned byte, and can therefore be in the

range of 0 through 255.

In returning from a Cascaded interrupt, the service proce-

dure executes the Return from Interrupt (RETI) instruction,

as it would for any Maskable Interrupt. The CPU performs

an ‘‘End of Interrupt, Master’’ bus cycle, whereupon the

Master ICU again provides the negative Cascade Table in-

dex. The CPU, seeing a negative value, uses it to find the

corresponding Cascade Address from the Cascade Table.

Applying this address, it performs an ‘‘End of Interrupt, Cas-

caded’’ bus cycle, informing the Cascaded ICU of the com-

pletion of the service routine. The byte read from the Cas-

caded ICU is discarded.

Note: If an interrupt must be masked off, the CPU can do so by setting the

corresponding bit in the interrupt mask register of the interrupt con-

troller.

However, if an interrupt is set pending during the CPU instruction that

masks off that interrupt, the CPU may still perform an interrupt ac-

knowledge cycle following that instruction since it might have sam-

pled the INT line before the ICU deasserted it. This could cause the

ICU to provide an invalid vector. To avoid this problem the above

operation should be performed with the CPU interrupt disabled.

3.2.4 Non-Maskable Interrupt

The Non-Maskable Interrupt is triggered whenever a falling

edge is detected on the NMI pin. The CPU performs an

‘‘Interrupt Acknowledge, Master’’ bus cycle (Section

3.5.4.6) when processing of this interrupt actually begins.

The Interrupt Acknowledge cycle differs from that provided

for Maskable Interrupts in that the address presented is

FFFFFF0016. The vector value used for the Non-Maskable

Interrupt is taken as 1, regardless of the value read from the

bus.

The service procedure returns from the Non-Maskable In-

terrupt using the Return from Trap (RETT) instruction. No

special bus cycles occur on return.

3.2.5 Traps

Traps are processing exceptions that are generated as di-

rect results of the execution of an instruction.

The return address saved on the stack by any trap except

Trap (TRC) and Trap (DBG) is the address of the first bye of

the instruction during which the trap occurred.

When a trap is recognized, maskable interrupts are not dis-

abled except for the case of Trap (DBG).

There are 10 trap conditions recognized by the NS32GX32

as described below.

Trap (SLAVE): An exceptional condition was detected by

the Floating Point Unit or another Slave Processor during

the execution of a Slave Instruction. This trap is requested

via the Status Word returned as part of the Slave Processor

Protocol (Section 3.1.4.1).

Trap (ILL): Illegal operation. A privileged operation was at-

tempted while the CPU was in User Mode (PSR bit U e 1).

Trap (SVC): The Supervisor Call (SVC) instruction was exe-

cuted.

Trap (DVZ): An attempt was made to divide an integer by

zero. (The FPU trap is used for Floating Point division by

zero.)

Trap (FLG): The FLAG instruction detected a ‘‘1’’ in the

PSR F bit.

Trap (BPT): The Breakpoint (BPT) instruction was execut-

ed.

Trap (TRC): The instruction just completed is being traced.

Refer to Section 3.3.1 for details.

Trap (UND): An Undefined-Instruction trap occurs when an

attempt to execute an instruction is made and one or more

of the following conditions is detected:

1. The instruction is undefined. Refer to Appendix A for a

description of the codes that the CPU recognizes to be

undefined.

2. The instruction is a floating point instruction and the F-bit

in the CFG register is 0.

3. The instruction is a custom slave instruction and the C-bit

in the CFG register is 0.

4. The reserved general adressing mode encoding (10011)

is used.

5. Immediate addressing mode is used for an operand that

has access class different from read.
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6. Scaled Indexing is used and the basemode is also Scaled

Indexing.

7. The instruction is a floating-point or custom slave instruc-

tion that the FPU or custom slave detects to be unde-

fined. Refer to Section 3.1.4.1 for more information.

Trap (OVF): An Integer-Overflow trap occurs when the V-bit

in the PSR register is set to 1 and an Integer-Overflow con-

dition is detected during the execution of an instruction. An

Integer-Overflow condition is detected in the following cas-

es:

1. The F-flag is 1 following execution of an ADDi, ADDQi,

ADDCi, SUBi, SUBCi, NEGi, ABSi, or CHECKi instruction.

2. The product resulting from a MULi instruction cannot be

represented exactly in the destination operand’s location.

3. The quotient resulting from a DEIi, DIVi, or QUOi instruc-

tion cannot be represented exactly in the destination op-

erand’s location.

4. The result of an ASHi instruction cannot be represented

exactly in the destination operand’s location.

5. The sum of the ‘INC’ value and the ‘INDEX’ operand for

an ACBi instruction cannot be represented exactly in the

index operand’s location.

Trap (DBG): A debug trap occurs when one or more of the

conditions selected by the settings of the bits in the DCR

register is detected. This trap can also be requested by acti-

vating the input signal DBG. Refer to Section 3.3.2 for more

information.

Note 1: Following execution of the WAIT instruction, then a Trap (DBG) can

be pending for a PC-match condition. In such an event, the Trap

(DBG) is processed immediately.

Note 2: If an attempt is made to execute a privileged custom instruction

while in User-Mode and the C-bit in the CFG register is 0, then Trap

(UND) occurs.

Note 3: While operating in User-Mode, if an attempt is made to execute a

privileged instruction with an undefined use of a general addressing

mode (either the reserved encoding is used or else scaled-index or

immediate modes are incorrectly used), the Trap (UND) occurs.

Note 4: If an undefined instruction or illegal operation is detected, then no

data references are performed for the instruction.

Note 5: For certain instructions that are relatively long to execute, such as

DEID, the CPU checks for pending interrupts during execution of the

instruction. In order to reduce interrupt latency, the NS325X32 can

suspend executing the instruction and process the interrupt. Refer

to Section B.5 in Appendix B for more information about recognizing

interrupts in this manner.

3.2.6 Bus Errors

A bus error exception occurs when the BER signal is assert-

ed in response to an instruction fetch or data transfer that is

required to execute an instruction.

Two types of bus errors are recognized: Restartable and

Non-Restartable. Restartable bus errors are recognized dur-

ing read bus cycles. All other bus errors are non-restartable.

The CPU responds to restartable bus errors by suspending

the instruction that it was executing. When a non-restartable

bus error is detected, the CPU responds immediately and

the instruction being executed is terminated.

In this case, any results that have not yet been written to

memory are discarded, and any pending traps other than

Trap (DBG) for external condition, are eliminated. The PC

value saved on the stack is undefined.

The NS32GX32 does not respond to bus errors indicated

for instructions that are not executed. For example, no bus

error exception occurs in response to asserting the BER

signal during a bus cycle to prefetch an instruction that is

not executed because the previous instruction caused a

trap.

If a bus error is detected during a data transfer required for

the processing of another exception or during the ICU read

cycle of a RETI instruction, then the CPU considers it as a

fatal bus error and enters the ‘HALTED’ state.

Note 1: If the address and control signals associated with the last bus cycle

that caused a bus error are latched by external hardware, then the

information they provide can be used by the service procedure for

restartable bus errors to analyze and resolve the exception recog-

nized by the CPU. This can be accomplished because upon detect-

ing a restartable bus error, the NS32GX32 stops making memory

references for subsequent instructions until it determines whether

the instruction that caused the bus error is executed and the excep-

tion is processed.

Note 2: When a non-restartable bus error is recognized, the service proce-

dure must execute the CINV instruction to invalidate the on-chip

caches. This is necessary to maintain coherence between them

and external memory.

Note 3: If the instruction causing a non-restartable bus error is followed by

a slave instruction, the service procedure should reset the slave by

reading the slave status register.

3.2.7 Priority Among Exceptions

The CPU checks for specific exceptions at various points

while executing an instruction. It is possible that several ex-

ceptions occur simultaneously. In that event, the CPU re-

sponds to the exception with highest priority.

Figure 3-13 shows an exception processing flowchart. A

non-restartable bus error is assigned highest priority and is

serviced immediately regardless of the execution state of

the CPU.

Before executing an instruction, the CPU checks for pend-

ing Trap (DBG), interrupts, and Trap (TRC), in that order. If a

Trap (DBG) is pending, then the CPU processes that excep-

tion, otherwise the CPU checks for pending interrupts. At

this point, the CPU responds to any pending interrupt re-

quests; nonmaskable interrupts are recongized with higher

priority than maskable interrupts. If no interrupts are pend-

ing, then the CPU checks the P-flag in the PSR to determine

whether a Trap (TRC) is pending. If the P-flag is 1, a Trap

(TRC) is processed. If no Trap (DBG), interrupt or Trap

(TRC) is pending, the CPU begins executing the instruction.

While executing an instruction, the CPU may recognize up

to three exceptions:

1. restartable bus error

2. trap (DBG) or interrupt, if the instruction is interruptible

3. one of 7 mutually exclusive traps: SLAVE, ILL, SVC, DVZ,

FLG, BPT, UND

If no exception is detected while the instruction is executing,

then the instruction is completed and the PC is updated to

point to the next instruction. If a Trap (OVF) is detected,

then it is processed at this time.

33



3.0 Functional Description (Continued)

TL/EE/10253–20

FIGURE 3-13. Exception Processing Flowchart
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While executing the instruction, the CPU checks for enabled

debug conditions. If an enabled debug condition is met, a

Trap (DBG) is held pending until after the instruction is com-

pleted (see Note 3). If another exception is detected before

the instruction is completed, the pending Trap (DBG) is re-

moved and the DSR register is not updated.

Note 1: Trap (DBG) can be detected simultaneously with Trap (OVF). In this

event, the Trap (OVF) is processed before the Trap (DBG).

Note 2: An address-compare debug condition can be detected while pro-

cessing a bus error, interrupt, or trap. In this event, the Trap (DBG)

is held pending until after the CPU has processed the first excep-

tion.

Note 3: Between operations of a string instruction, the CPU responds to

pending operand address compare and external debug conditions

as well as interrupts. If a PC-match debug condition is detected

while executing a string instruction, then Trap (DBG) is held pending

until the instruction has completed.

3.2.8 Exception Acknowledge Sequences: Detailed Flow

For purposes of the following detailed discussion of excep-

tion acknowledge sequences, a single sequence called

‘‘service’’ is defined in Figure 3-14.

Upon detecting any interrupt request, trap or bus error con-

dition, the CPU first performs a sequence dependent upon

the type of exception. This sequence will include saving a

copy of the Processor Status Register and establishing a

vector and a return address. The CPU then performs the

service sequence.

3.2.8.1 Maskable/Non-Maskable Interrupt Sequence

This sequence is performed by the CPU when the NMI pin

receives a falling edge, or the INT pin becomes active with

the PSR I bit set. The interrupt sequence begins either at

the next instruction boundary or, in the case of an interrupt-

ible instruction (e.g., string instruction), at the next interrupt-

ible point during its execution.

1. If an interruptible instruction was interrupted and not yet

completed:

a. Clear the Processor Status Register P bit.

b. Set ‘‘Return Address’’ to the address of the first byte of

the interrupted instruction.

Otherwise, set ‘‘Return Address’’ to the address of the

next instruction.

2. Copy the Processor Status Register (PSR) into a tempo-

rary register, then clear PSR bits T, V, U, S, P and I.

3. If the interrupt is Non-Maskable:

a. Read a byte from address FFFFFF0016, applying

Status Code 00100 (Interrupt Acknowledge, Master).

Discard the byte read.

b. Set ‘‘Vector’’ to 1.

c. Go to Step 8.

4. If the interrupt is Non-Vectored:

a. Read a byte from address FFFFFE0016, applying

Status Code 00100 (Interrupt Acknowledge, Master).

Discard the byte read.

b. Set ‘‘Vector’’ to 0.

c. Go to Step 8.

5. Here the interrupt is Vectored. Read ‘‘Byte’’ from address

FFFFFE0016, applying Status Code 00100 (Interrupt Ac-

knowledge, Master).

6. If ‘‘Byte’’ t 0, then set ‘‘Vector’’ to ‘‘Byte’’ and go to Step

8.

7. If ‘‘Byte’’ is in the range b16 through b1, then the inter-

rupt source is Cascaded. (More negative values are re-

served for future use.) Perform the following:

a. Read the 32-bit Cascade Address from memory. The

address is calculated as INTBASE a 4* Byte.

b. Read ‘‘Vector,’’ applying the Cascade Address just

read and Status Code 00101 (Interrupt Acknowledge,

Cascaded).

8. Perform Service (Vector, Return Address), Figure 3-14.

3.2.8.2 Restartable Bus Error Sequence

1. Suspend instruction and restore the currently selected

Stack Pointer to its original contents at the beginning of

the instruction.

2. Clear the PSR P bit.

3. Copy the PSR into a temmporary register, then clear PSR

bits T, V, U, S and I.

4. Set ‘‘Vector’’ to 11.

5. Set ‘‘Return Address’’ to the address of the first byte of

the suspended instruction.

6. Perform Service (Vector, Return Address), Figure 3-14.

3.2.8.3 SLAVE/ILL/SVC/DVZ/FLG/BPT/UND Trap

Sequence

1. Restore the currently selected Stack Pointer and the

Processor Status Register to their original values at the

start of the trapped instruction.

2. Set ‘‘Vector’’ to the value corresponding to the trap type.

SLAVE: Vector e 3.

ILL: Vector e 4.

SVC: Vector e 5.

DVZ: Vector e 6.

FLG: Vector e 7.

BPT: Vector e 8.

UND: Vector e 10.

3. If Trap (ILL) or Trap (UND)

a. Clear the Processor Status Register P bit.

4. Copy the Processor Status Register (PSR) into a tempo-

rary register, then clear PSR bits T, V, U, S and P.

5. Set ‘‘Return Address’’ to the address of the first byte of

the trapped instruction.

6. Perform Service (Vector, Return Address), Figure 3-14.

3.2.8.4 Trace Trap Sequence

1. In the Processor Status Register (PSR), clear the P bit.

2. Copy the PSR into a temporary register, then clear PSR

bits T, V, U and S.

3. Set ‘‘Vector’’ to 9.

4. Set ‘‘Return Address’’ to the address of the next instruc-

tion.

5. Perform Service (Vector, Return Address), Figure 3-14.

3.2.8.5 Integer-Overflow Trap Sequence

1. Copy the PSR into a temporary register, then clear PSR

bits T, V, U, S and P.

2. Set ‘‘Vector’’ to 13.
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3. Set ‘‘Return Address’’ to the address of the next instruc-

tion.

4. Perform Service (Vector, Return Address), Figure 3-14.

3.2.8.6 Debug Trap Sequence

A debug condition can be recognized either at the next in-

struction boundary or, in the case of an interruptible instruc-

tion, at the next interruptible point during its execution.

1. If PC-match condition, then go to Step 3.

2. If a String instruction was interrupted and not yet com-

pleted:

a. Clear the Processor Status Register P bit.

b. Set ‘‘Return Address’’ to the address of the first byte of

the instruction.

c. Go to Step 4.

3. Set ‘‘Return Address’’ to the address of the next instruc-

tion.

4. Set ‘‘Vector’’ to 14.

5. Copy the Processor Status Register (PSR) into a tempo-

rary register, then clear PSR bits T, V, U, S, P and I.

6. Perform Service (Vector, Return Address), Figure 3-14.

3.2.8.7 Non-Restartable Bus Error Sequence

1. Set ‘‘Vector’’ to 12.

2. Set ‘‘Return Address’’ to ‘‘Undefined’’.

3. Copy the Processor Status Register (PSR) into a tempo-

rary register, then clear PSR bits T, V, U, S, P and I.

4. Perform a dummy read of the Slave Status Word to reset

the Slave Processor.

5. Perform Service (Vector, Return Address), Figure 3-14.

3.3 DEBUGGING SUPPORT

The NS32GX32 provides serveral features to assist in pro-

gram debugging.

Besides the Breakpoint (BPT) instruction that can be used

to generate soft breaks, the CPU also provides instruction

tracing as well as debug trap (or hardware breakpoints) ca-

pabilities. Details on these features are provided in the fol-

lowing sub-sections.

3.3.1 Instruction Tracing

Instruction tracing is a very useful feature that can be used

during debugging to single-step through selected portions of

a program. Tracing is enabled by setting the T-bit in the PSR

Register. When enabled, the CPU generates a Trace Trap

(TRC) after the execution of each instruction.

At the beginning of each instruction, the T bit is copied into

the PSR P (Trace ‘‘Pending’’) bit. If the P bit is set at the end

of an instruction, then the Trace Trap is activated. If any

other trap or interrupt request is made during a traced in-

struction, its entire service procedure is allowed to complete

before the Trace Trap occurs. Each interrupt and trap se-

quence handles the P bit for proper tracing, guaranteeing

only one Trace Trap per instruction, and guaranteeing that

the Return Address pushed during a Trace Trap is always

the address of the next instruction to be traced.

Due to the fact that some instructions can clear the T and P

bits in the PSR, in some cases a Trace Trap may not occur

at the end of the instruction. This happens when one of the

privileged instructions BICPSRW or LPRW PSR is executed.

TABLE 3-3. Summary of Exception Processing

Exception
Instruction Cleared Before Cleared After

Ending Saving PSR Saving PSR

Restartable Bus Error Suspended P TVUSI
Nonrestartable Bus Error Terminated Undefined TVUSPI

Interrupt Before Instruction None/P* TVUSPI

ILL, UND Suspended P TVUS
SLAVE, SVC, DVZ, FLG, BPT Suspended None TVUSP
OVF Completed None TVUSP
TRC Before Instruction P TVUS
DBG Before Instruction None/P* TVUSPI

*Note: The P bit of the saved PSR is cleared in case the exception is acknowledged before the instruction is completed (e.g., interrupted string instruction). This is

to avoid a mid-instruction trace trap upon return from the Exception Service Routine.

Service (Vector, Return Address):

1) Push the PSR copy onto the Interrupt Stack as a 16-bit value.

2) If Direct-Exception mode is selected, then go to step 4.

3) Push MOD Register into the Interrupt Stack as a 16-bit value.

4) Read 32-bit Interrupt Dispatch Table (IDT) entry at address ‘INTBASE a vector c 4’.

5) If Direct-Exception mode is selected, then go to Step 10.

6) Move the L.S. word of the IDT entry (Module Field) into the MOD register.

7) Read the Program Base pointer from memory address ‘MOD a 8’, and add to it the M.S. word of the IDT entry (Offset Field), placing the result in the

Program Counter.

8) Read the new Static Base pointer from the memory address contained in MOD, placing it into the SB Register.

9) Go to Step 11.

10) Place IDT entry in the Program Counter.

11) Push the Return Address onto the Interrupt Stack as a 32-bit quantity.

12) Serialize: Non-sequentially fetch first instruction of Exception Service Routine.

Note: Some of the Memory Accesses indicated in the service sequence may be performed in an order different from the one shown.

FIGURE 3-14. Service Sequence
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In other cases, it is still possible to guarantee that a Trace

Trap occurs at the end of the instruction, provided that spe-

cial care is taken before returning from the Trace Trap Serv-

ice Procedure. In case a BICPSRB instruction has been ex-

ecuted, the service procedure should make sure that the T

bit in the PSR copy saved on the Interrupt Stack is set be-

fore executing the RETT instruction to return to the program

begin traced. If the RETT or RETI instructions have to be

traced, the Trace Trap Service Procedure should set the P

and T bits in the PSR copy on the Interrupt Stack that is

going to be restored in the execution of such instructions.

Note: If instruction tracing is enabled while the WAIT instruction is executed,

the Trap (TRC) occurs after the next interrupt, when the interrupt

service procedure has returned.

3.3.2 Debug Trap Capability

The CPU recognizes three different conditions to generate a

Debug Trap:

1) Address Compare

2) PC Match

3) External

These conditions can be enabled and monitored through

the CPU Debug Registers.

An address-compare condition is detected when certain

memory locations are either read or written. The double-

word address used for the comparison is specified in the

CAR Register. The address-compare condition can be sep-

arately enabled for each of the bytes in the specified dou-

ble-word, under control of the CBE bits of the DCR Register.

The CRD and CWR bits in the DCR separately enable the

address compare condition for read and write references;

the CAE bit in the DCR can be used to disable the compare-

address condition independently from the other control bits.

The CPU examines the address compare condition for all

data reads and writes, reads of memory locations for effec-

tive address calculations, Interrupt-Acknowledge and End-

of-Interrupt bus cycles, and memory references for excep-

tion processing.

The PC-match condition is detected when the address of

the instruction equals the value specified in the BPC regis-

ter. The PC-match condition is enabled by the PCE bit in the

DCR.

Detection of address-compare and PC-match conditions is

enabled for User and Supervisor Modes by the UD and SD

bits in the DCR. The DEN-bit can be used to disable detec-

tion of these two conditions independently from the other

control bits.

An external condition is recognized whenever the DBG sig-

nal is activated.

When the CPU detects an address-compare or PC-match

condition while executing an instruction or processing an

exception, then Trap (DBG) occurs if the TR bit in the DCR

is 1. When an external debug condition is detected, Trap

(DBG) occurs regardless of the TR bit. The cause of the

Trap (DBG) is indicated in the DSR Register.

When an address-compare or PC-match condition is detect-

ed while executing an instruction, the CPU asserts the BP

signal at the beginning of the next instruction, synchronous-

ly with PFS. If the instruction is not completed because a

higher priority trap is detected, the BP signal may or may not

be asserted.

Note 1: The assertion of BP is not affected by the setting of the TR bit in the

DCR register.

Note 2: While executing the MOVUS and MOVSU instructions, the com-

pare-address condition is enabled for the User space memory refer-

ence under control of the UD-bit in the DCR.

Note 3: When the LPRi instruction is executed to load a new value into the

BPC, CAR or DCR, it is undefined whether the address-compare

and PC-match conditions, in effect while executing the instruction,

are detected under control of the old or new contents of the loaded

register. Therefore, any LPRi instruction that alters the control of the

address-compare or PC-match conditions should use register or im-

mediate addressing mode for the source operand.

Note 4: If an exception occurred during the previous instruction, trap (DBG)

may be taken prior to instruction execution.

3.4 ON-CHIP CACHES

The NS32GX32 provides two on-chip caches: the Instruc-

tion Cache (IC) and the Data Cache (DC).

These are used to hold the contents of frequently used

memory locations.

The IC and DC can be individually enabled by setting appro-

priate bits in the CFG Register (See Section 2.1.4).

The CPU also provides a locking feature that allows the

contents of the IC and DC to be locked to specific memory

locations. This is accomplished by setting the LIC and LDC

bits in the CFG register.

Cache locking can be successfully used in real-time applica-

tions to guarantee fast access to critical instruction and data

areas.

Details on the organization and function of each of the

caches are provided in the following sections.

Note: The size and organization of the on-chip caches may change in future

Series 32000 microprocessors. This however, will not affect software

compatibility.

3.4.1 Instruction Cache (IC)

The basic structure of the instruction cache (IC) is shown in

Figure 3-15.

The IC stores 512 bytes of code in a direct-mapped organi-

zation with 32 sets. Direct-mapped means that each set

contains only one block, thus each memory location can be

loaded into the IC in only one place.

Each block contains a 23-bit tag, which holds the most-sig-

nificant bits of the physical address for the locations stored

in the block, along with 4 double-words and 4 validity bits

(one for each double-word).

A 4-double-word instruction buffer is also provided, which is

loaded either from a selected cache block or from external

memory. Instructions are read from this buffer by the loader

unit and transferred to an 8-byte instruction queue.

The IC may or may not be enabled to cache an instruction

being fetched by the CPU. It is enabled when the IC bit in

the CFG Register is set to 1.

If the IC is disabled, the CPU bypasses it during the instruc-

tion fetch and its contents are not affected. The instruction

is read directly from external memory into the instruction

buffer.
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FIGURE 3-15. Instruction Cache Structure

When the IC is enabled, the instruction address bits 4 to 8

are used to select the IC set where the instruction may be

stored. The tag corresponding to the single block in the set

is compared with the 23 most-significant bits of the instruc-

tion’s physical address. The 4 double-words in this block are

loaded into the instruction buffer and the 4 validity bits are

also retrieved. Bits 2 and 3 of the instruction’s physical ad-

dress select one of these double-words and the associated

validity bit.

If the tag matches and the selected double-word is valid, a

cache ‘hit’ occurs and the double-word is directly trans-

ferred to the instruction queue for decoding; otherwise a

cache ‘miss’ will result.

In the latter case, if the cache is not locked, the CPU will

take the following actions.

First, if the tag of the selected block does not match, the tag

is loaded with the 23 most-significant bits of the instruction

address and all the validity bits are cleared. Then, the in-

struction is read from external memory into the instruction

buffer.

If the CIIN input signal is not active during the fetching of the

missing instruction, then the IC is updated and the instruc-

tion double-words fetched from memory are stored into it

with the validity bits set.

If the cache is locked, its contents are not affected, as the

CPU reads the missing instruction from external memory.

Whenever the CPU accesses external memory, whether or

not the IC is enabled, it always fetches instruction double-

words in a non-wrap-around fashion. Refer to Sections

3.5.4.3 and 3.5.6 for more information.

The contents of the instruction cache can be invalidated by

software through the CINV instruction. Refer to Section

3.4.3 for details. Clearing the IC bit in the CFG Register also

invalidates the instruction cache. Refer to Section C.2 for

information on loading the CFG register.

Note: If the IC is enabled for a certain instruction and a ‘miss’ occurs due to

a tag mismatch, the CPU will clear all the validity bits of the selected

tag before fetching the instruction from external memory. If the CIIN

input signal is activated during the fetching of that instruction, the

validity bits are not set and the IC is not updated.

3.4.2 Data Cache (DC)

The Data Cache (DC) stores 1,024 bytes of data in a two-

way set associative organization as shown in Figure 3-16.

Each of the 32 sets has 2 cache blocks. Each block con-

tains a 23-bit tag, which holds the most-significant bits of

the address for the locations stored in the block, along with

4 double-words and 4 validity bits (one for each double-

word).

The DC is enabled for a data read when all of the following

conditions are satisfied.

# The DC bit in the CFG Register is set to 1.

# The reference is not an interlocked read resulting from

executing a CBITI or SBITI instruction.

If the DC is disabled, the CPU bypasses it during the data

read and its contents are not affected. The data is read

directly from external memory. The DC is also bypassed for

Interrupt-Acknowledge and End-of-Interrupt bus cycles.

When the DC is enabled for a data read, the address bits 4

to 8 are used to select the DC set where the data may be

stored.

The tags corresponding to the two blocks in the set are

compared to the 23 most-significant bits of the address. Bits

2 and 3 of the address select one double-word in each

block and the associated validity bit.

If one of the tag matches and the selected double-word in

the corresponding block is valid, a cache ‘hit’ occurs and

the data is used to execute the instruction; otherwise a

cache ‘miss’ will result. In the latter case, if the cache is not

locked, the CPU will take the following actions.
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FIGURE 3-16. Data Cache Structure

First, if the tag of either block in the set matches the data

address, that block is selected for updating. Otherwise, if

neither tag matches, then the least recently used block is

selected; its tag is loaded with the 23 most-significant bits of

the data address, and all the validity bits are cleared.

Then, the data is read from external memory; up to 4 dou-

ble-word bits are read into the cache in a wrap-around fash-

ion. Refer to Sections 3.5.4.3 and 3.5.6 for more informa-

tion.

If the CIIN and IODEC input signals are both inactive during

the bus cycles performed to read the missing data, then the

DC is updated, as each double-word is read from memory,

and the corresponding validity bit is set. If the cache is

locked, its contents are not affected, as the CPU reads the

missing data from external memory.

The DC is enabled for a data write whenever the DC bit in

the CFG Register is set to 1, including interlocked writes

resulting from executing the CBITI and SBITI instructions.

The DC does not use write allocation. This means that, dur-

ing a write, if a cache ‘hit’ occurs, the DC is updated, other-

wise it is unaffected. The data is always written through to

external memory.

The contents of the data cache can be invalidated by soft-

ware through the CINV instruction. Clearing the DC bit in the

CFG Register also invalidates the data cache. Refer to Sec-

tion C.2 for information on loading the CFG register.

Note: If the DC is enabled for a certain data reference and a ‘‘miss’’ occurs

due to tag mismatch, the CPU will clear all the validity bits for the least

recently used tag before reading the data from external memory. If

either CIIN or IODEC are activated during the data read bus cycles,

the validity bits are not set and the DC is not updated.

3.4.3 Cache Coherence Support

The NS32GX32 provides means for maintaining coherence

between the on-chip caches and external memory. The

CINV instruction can be executed to invalidate the Instruc-

tion Cache and/or Data Cache; the CINV instruction can

also be executed to invalidate a single 16-byte block in ei-

ther or both caches.

In hardware, the use of the caches can be inhibited for indi-

vidual locations using the CIIN input signal.

Whenever a CINV instruction is executed, the operation

code and operand appear on the system interface using

slave processor bus cycles. Thus, invalidations of the on-

chip caches by software can be monitored externally.

Note, however, that the software is responsible for commu-

nicating to the external circuitry the values of the cache en-

able and lock bits in the CFG Register, since the CPU does

not generate any special cycle (e.g., Slave Cycle) when the

CFG Register is loaded.

3.5 SYSTEM INTERFACE

This section provides general information on the NS32GX32

interface to the external world. Descriptions of the CPU re-

quirements as well as the various bus characteristics are

provided here. Details on other device characteristics in-

cluding timing are given in Chapter 4.
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3.0 Functional Description (Continued)

3.5.1 Power and Grounding

The NS32GX32 requires a single 5-volt power supply, ap-

plied on 21 pins. The logic voltage pins (VCCL1 to VCCL6)

supply the power to the on-chip logic. The buffer voltage

pins (VCCB1 to VCCB14) supply the power to the output

drivers of the chip. The bus clock power pin (VCCCLK) is

the power supply for the on-chip clock drivers. All the volt-

age pins should be connected together by a power (VCC)

plane on the printed circuit board.

The NS32GX32 grounding connections are made on 20

pins. The logic ground pins (GNDL1 to GNDL6) are the

ground pins for the on-chip logic. The buffer ground pins

(GNDB1 to GNDB13) are the ground pins for the output

drivers of the chip. The bus clock ground pin (GNDCLK) is

the ground connection for the on-chip clock drivers. All the

ground pins should be connected together by a ground

plane on the printed circuit board.

Both power and ground connections are shown in Figure
3-17.

TL/EE/10253–24

FIGURE 3-17. Power and Ground Connections

3.5.2 Clocking

The NS32GX32 requires a single-phase input clock signal

(CLK) with frequency twice the CPU’s operating frequency.

This clock signal is internally divided by two to generate two

non-overlapping phases PHI1 and PHI2. One single-phase

clock signal BCLK in phase with PHI1 and its complement

BCLK, are also generated and output by the CPU for timing

reference.

Following power-on, the phase relationship between BCLK

and CLK is undefined. Nevertheless, in some systems it

may be necessary to synchronize the CPU bus timing to an

external reference. The SYNC input signal can be used to

initialize the phase relationship between CLK and BCLK.

SYNC can also be used to stretch BCLK (Low) while CLK is

toggling.

SYNC is sampled on each rising edge of CLK. As shown in

Figure 3-18, whenever SYNC is sampled low, BCLK stops

toggling and stays low. On the first rising edge that SYNC is

sampled high, BCLK is driven high and then toggles on each

subsequent rising edge of CLK.

Every rising edge of BCLK defines a transition in the timing

state (‘‘T-State’’) of the CPU.

One T-State represents the execution of one microinstruc-

tion within the CPU and/or one step of an external bus

transfer.

Note: The CPU requirement on the maximum period of BCLK must be satis-

fied when SYNC is asserted at times other than reset.

3.5.3 Resetting

The RST input pin is used to reset the NS32GX32. The CPU

samples RST synchronously on the rising edge of BCLK.

Whenever a low level is detected, the CPU responds imme-

diately. Any instruction being executed is terminated; any

results that have not yet been written to memory are dis-

carded; and any pending bus errors, interrupts, and traps

are eliminated. The internal latches for the edge-sensitive

NMI and DBG signals are cleared.

TL/EE/10253–25

FIGURE 3-18. Bus Clock Synchronization
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3.0 Functional Description (Continued)

The CPU stores the PC contents in the R0 Register and the

PSR contents in the least-significant word of R1, leaving the

most-significant word undefined. The PC is then cleared to 0

and so are all the implemented bits in the PSR, MSR, MCR

and CFG registers. The DEN-bit in the DCR Register is also

cleared to 0. After reset, the remaining implemented bits in

DCR and the contents of all other registers are undefined.

The CPU begins executing the instruction at Address 0.

On application of power, RST must be held low for at least

50 ms after VCC is stable. This is to ensure that all on-chip

voltages are completely stable before operation. Whenever

a Reset is applied, it must also remain active for not less

than 64 BCLK cycles. See Figures 3-19 and 3-20.

While in the Reset state, the CPU drives the signals ADS,

BE0–3, BMT, CONF and HLDA inactive. The data bus is

floated and the state of all other output signals is undefined.

Note 1: If HOLD is active at the time RST is deasserted, the CPU acknowl-

edges HOLD before performing any bus cycle.

Note 2: If SYNC is asserted while the CPU is being reset, then BCLK does

not toggle. Consequently, SYNC must be high for at least 128 CLK

cycles while RST is low.

TL/EE/10253–26

FIGURE 3-19. Power-On Reset Requirements

TL/EE/10253–27

FIGURE 3-20. General Reset Timing

3.5.4 Bus Cycles

The NS32GX32 CPU will perform bus cycles for one of the

following reasons:

1. To fetch instructions from memory.

2. To write or read data to or from memory or peripheral

devices. Peripheral input and output are memory mapped

in the Series 32000 family.

3. To acknowledge an interrupt and allow external circuitry

to provide a vector number, or to acknowledge comple-

tion of an interrupt service routine.

4. To transfer information to or from a Slave Processor.

In terms of bus timing, cases 1 through 4 above are identi-

cal. For timing specifications, see Section 4. The only exter-

nal difference between them is the 5-bit code placed on the

Bus Status pins (ST0–ST4). Slave Processor cycles differ in

that separate control signals are applied (Section 3.5.4.7).

3.5.4.1 Bus Status

The CPU presents five bits of Bus Status information on

pins ST0–ST4. The various combinations on these pins in-

dicate why the CPU is performing a bus cycle, or, if it is idle

on the bus, then why is it idle.

The Bus Status pins are interpreted as a five-bit value, with

ST0 the least significant bit. Their values decode as follows:

00000 The bus is idle because the CPU does not yet need

to access the bus.

00001 The bus is idle because the CPU is waiting for an

interrupt following execution of the WAIT instruc-

tion.

00010 The bus is idle because the CPU has halted after

detecting a bus error while processing an excep-

tion.

00011 The bus is idle because the CPU is waiting for a

Slave Processor to complete executing an instruc-

tion.

00100 Interrupt Acknowledge, Master.

The CPU is reading an interrupt vector to acknowl-

edge an interrupt request.

00101 Interrupt Acknowledge, Cascaded.

The CPU is reading an interrupt vector to acknowl-

edge a maskable interrupt request from a Cascad-

ed Interrupt Control Unit.

00110 End of Interrupt, Master.

The CPU is performing a read cycle to indicate that

it is executing a Return from Interrupt (RETI) in-

struction at the completion of an interrupt’s service

procedure.

00111 End of Interrupt, Cascaded.

The CPU is performing a read cycle from a Cascad-

ed Interrupt Control Unit to indicate that it is execut-

ing a Return from Interrupt (RETI) instruction at the

completion of an interrupt’s service procedure.

01000 Sequential Instruction Fetch.

The CPU is fetching the next double-word in se-

quence from the instruction stream.

01001 Non-Sequential Instruction Fetch.

The CPU is fetching the first double-word of a new

sequence of instruction. This will occur as a result

of any JUMP or BRANCH, any exception, or after

the execution of certain instructions.

01010 Data Transfer.

The CPU is reading or writing an operand for an

instruction, or it is referring to memory while pro-

cessing an exception.

01011 Read RMW Class Operand.

The CPU is reading an operand with access class

of read-modify-write.

01100 Read for Effective Address Calculation.

The CPU is reading a pointer from memory in order

to calculate an effective address for Memory Rela-

tive or External addressing modes.
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3.0 Functional Description (Continued)

11101 Transfer Slave Processor Operand.

The CPU is transferring an operand to or from a

Slave Processor.

11110 Read Slave Processor Status.

The CPU is reading a status word from a slave

processor after the slave processor has activated

the FSSR signal.

11111 Broadcast Slave Processor ID a OPCODE.

The CPU is initiating the execution of a Slave In-

struction by transferring the first 3 bytes of the in-

struction, which specify the Slave Processor identi-

fication and operation.

3.5.4.2 Basic Read and Write Cycles

The sequence of events occurring during a basic CPU ac-

cess to either memory or peripheral device is shown in Fig-
ure 3-21 for a read cycle, and Figure 3-22 for a write cycle.

The cases shown assume that the selected memory or pe-

ripheral device is capable of communicating with the CPU at

full speed. If not, then cycle extension may be requested

through the RDY line. See Section 3.5.4.4.

A full speed bus cycle is performed in two cycles of the

BCLK clock, labeled T1 and T2. For both read and write bus

cycles the CPU asserts ADS during the first half of T1 indi-

cating the beginning of the bus cycle. From the beginning of

T1 until the completion of the bus cycle the CPU drives the

Address Bus and other relevant control signals as indicated

in the timing diagrams. For cacheable data read cycles the

CPU also drives the CASEC signal to indicate the block in

the DC set where the data will be stored. If the bus cycle is

not cancelled (e.g., state T2 is entered in the next clock

cycle), the confirm signal (CONF) is asserted in the middle

of T1. Note that due to a bus cycle cancellation, the BMT

signal may be asserted at the beginning of T1, and then

deasserted before the time in which it is guaranteed valid

(see Section 4.4.2).

A confirmed bus cycle is completed at the end of T2, unless

a cycle extension is requested. Following state T2 is either

state T1 of the next bus cycle, or an idle T-state, if the CPU

has no bus cycle to perform.

In case of a read cycle the CPU samples the data bus at the

end of state T2.

If a bus exception is detected, the data is ignored.

For write bus cycles, valid data is output from the middle of

T1 until the end of the cycle. When a write bus cycle is

immediately followed by another write cycle, the CPU keeps

driving the bus with the data related to the previous cycle

until the middle of state T1 of the second bus cycle.

The CPU always inserts an idle state before a write cycle

when the write immediately follows a read cycle.

Note: The CPU can initiate a bus cycle with a T1-state and then cancel the

cycle, such as when a Cache hit occurs. In such a case, the CONF

signal remains High and the BMT signal is driven High; the T1-state is

followed by another T1-state or an idle T-state.

TL/EE/10253–28

FIGURE 3-21. Basic Read Cycle
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3.0 Functional Description (Continued)

TL/EE/10253–29

FIGURE 3-22. Write Cycle

3.5.4.3 Burst Cycles

The NS32GX32 is capable of performing burst cycles in or-

der to increase the bus transfer rate. Burst is only available

in instruction fetch cycles and data read cycle from 32-bit

wide memories. Burst is not supported in operand write cy-

cles or slave cycles.

The sequence of events for burst cycles is shown in Figure
3-23. The case shown assumes that the selected memory is

capable of communicating with the CPU at full speed. If not,

then cycle extension can be requested through the RDY

line. See Section 3.5.4.4.

A Burst cycle is composed of two parts. The first part is a

regular cycle (opening cycle), in which the CPU outputs the

new status and asserts all the other relevant control signals.

In addition, the Burst Out Signal (BOUT) is activated by the

CPU indicating that the CPU can perform Burst cycles. If the

selected memory allows Burst cycles, it will notify the CPU

by activating the burst in signal (BIN). BIN is sampled by the

CPU in the middle of T2 on the falling edge of BCLK. If the

memory does not allow burst (BIN high), the cycle will termi-

nate at the end of T2 and BOUT will go inactive immediate-

ly. If the memory allows burst (BIN low), and the CPU has

not deasserted BOUT, the second part of the Burst cycle

will be performed and BOUT will remain active until termina-

tion of the Burst.

The second part consists of up to 3 nibbles, labeled T2B. In

each of them a data item is read by the CPU. For each

nibble in the burst sequence the CPU forces the 2 least-sig-

nificant bits of the address to 0 and increments address bits

2 and 3 to select the next double-word; all the byte enable

signals (BE0–3) are activated.

As shown in Figures 3-23 and 4-8 (in Section 4), the CPU

samples RDY at the end of each nibble. It extends the ac-

cess time for the burst transfer if RDY is inactive.

The CPU initiates burst read cycles in the following cases.

1. An instruction must be fetched (Status e 01000 or

01001), and the instruction address does not fall within

the last double-word in an aligned 16-byte block (e.g.,

address bits 2 and 3 are not both equal to 1).

2. A data item must be read (Status e 01010, 01011 or

01100), and both of the following conditions are met.

# The data cache is enabled and not locked. (DC e 1

and LDC e 0 in the CFG register.)

# The bus cycle is not an interlocked data access per-

formed while executing a CBITI or SBITI instruction.

The Burst sequence will be terminated when one of the

following events occurs.

1. The last instruction double-word in an aligned 16-byte

block has been fetched.

2. The CPU detects that the instructions being prefetched

are no longer needed due to an alteration of the flow of

control. This happens, for example, when a Branch in-

struction is executed or an exception occurs.

3. 4 double-words of data have been read by the CPU. The

double-words are transferred within an aligned 16-byte

block in a wrap-around order. For example, if a source

operand is located at address 10416, then the burst read

cycle transfers the double-words at 104, 108, 10C, and

100, in that order.
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3.0 Functional Description (Continued)

TL/EE/10253–30

FIGURE 3-23. Burst Read Cycles
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4. The BIN signal is deasserted.

5. BRT is asserted to signal a bus retry.

6. IODEC is asserted or the BW0–1 signals indicate a bus

width other than 32-bits. The CPU samples these signals

during state T2 of the opening cycle. During T2B-states

BW0–1 are ignored and IODEC must be kept HIGH.

The CPU uses only the values of the above signals sampled

during the last state of the transfer when the cycle is ex-

tended. See Section 3.5.4.4.

Note: A burst sequence is not stopped by the assertion of either BER or

CIIN. See Note 3 in Section 3.5.5.

3.5.4.4 Cycle Extension

To allow sufficient access time for any speed of memory or

peripheral device, the NS32GX32 provides for extension of

a bus cycle. Any type of bus cycle except a slave processor

cycle can be extended.

A bus cycle can be extended by causing state T2 for a

normal cycle or state T2B for a Burst cycle to be repeated.

At the end of each T2 or T2B state, on the rising edge of

BCLK, the RDY line is sampled by the CPU. If RDY is active,

then the transfer cycle will be completed. If RDY is inactive,

then the bus cycle is extended by repeating the T-state for

another clock cycle. These additional T-states inserted by

the CPU in this manner are called ‘WAIT’ states.

During a transfer the CPU samples the input control signals

BIN, BER, BRT, BW0–1, CIIN and IODEC.

When wait states are inserted, only the values of these sig-

nals sampled during the last wait state are significant.

Figure 3-24 illustrates a normal read cycle with wait states

added through the RDY pin.

Note: If RST is asserted during a bus cycle, then the cycle is terminated

without regard of RDY.

3.5.4.5 Interlocked Bus Cycles

The NS32GX32 supports indivisible read-modify-write trans-

actions by asserting the ILO signal during consecutive read

and write operations. See Figure 4-7 in Section 4.

Interlocked transactions are always preceded and followed

by one or more idle T-states.

The ILO signal is asserted in the middle of the idle T-state

preceding state T1 of the read operation, and is deasserted

in the middle of one of the idle T-states following completion

of the write operation, including any retried bus cycles.

No other bus operations (e.g., instruction fetches) will occur

while an interlocked transaction is taking place.

Interlocked transactions are required in multiprocessor sys-

tems to handle shared resources. The CPU uses them to

reference data while executing a CBITIi or SBITIi instruction,

during which a single byte of data is read and written.

The ILO signal is always released for one or more clock

cycles in the middle of two consecutive interlocked transac-

tions.

Note 1: If a bus error is detected during an interlocked read cycle, the sub-

sequent interlocked write cycle will not be performed, and ILO is

deasserted before the next bus cycle begins.

3.5.4.6 Interrupt Control Cycles

The CPU generates Interrupt-Acknowledge bus cycles in re-

sponse to non-maskable interrupt and enabled maskable

interrupt requests.

The CPU also generates one or two End-of-Interrupt bus

cycles during execution of the Return-from-Interrupt (RETI)

instruction.

The timing for the interrupt control cycles is the same as for

the basic memory read cycle shown inFigure 3-21 ; only the

status presented on pins ST0–4 is different. These cycles

are single-byte read cycles, and they always bypass the

data cache.

Table 3-4 shows the interrupt control sequences associated

with each interrupt and with the return from its service pro-

cedure.

3.5.4.7 Slave Processor Bus Cycles

The NS32GX32 performs bus cycles to transfer information

to or from slave processors while executing floating-point or

custom-slave instructions.

The CPU uses slave write bus cycles to broadcast the iden-

tification and operation codes of a slave instruction as well

as to transfer operands from memory or general purpose

registers to a slave.

Figure 3-25 shows the timing for a slave write bus cycle.

The CPU asserts SPC during T1; the status is valid during

T1 and T2. The operation code or operand is output on the

data bus from the middle of T1 until the end of T2.

The CPU uses a slave read bus cycle to transfer a result

operand from a slave to either memory or a general purpose

register. A slave read cycle is also used to read a status

word when the FSSR signal is asserted. Figure 3-26 shows

the timing for a slave read bus cycle.

During T1 and T2 the CPU drives the status lines and as-

serts SPC. The data from the slave is sampled at the end of

T2.

The CPU will never perform slave write cycle immediately

following a slave read cycle. In addition, an idle state is

always inserted before a slave read cycle.

Slave processor data transfers are always 32 bits wide. If

the operand is a single byte, then it is transferred on D0

through D7. If it is a word, then it is transferred on D0

through D15.

When two operands are transferred, operand 1 is trans-

ferred before operand 2. For double-precision operands, the

least-significant double-word is transferred before the most-

significant double-word.

During a slave bus cycle the output signals BE0–3 are un-

defined while the input signals BW0–1 and RDY are ig-

nored.

BER and BRT must be kept high.
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TL/EE/10253–31

3-24. Cycle Extension of a Basic Read Cycle
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TABLE 3-4. Interrupt Sequences

Data BusV â W
Cycle Status Address DDIN BE3 BE2 BE1 BE0 Byte 3 Byte 2 Byte 1 Byte 0

A. Non-Maskable Interrupt Control Sequences

Interrupt Acknowledge

1 00100 FFFFFF0016 0 1 1 1 0 X X X X

Interrupt Return

None: Performed through Return from Trap (RETT) instruction.

B. Non-Vectored Interrupt Control Sequences

Interrupt Acknowledge

1 00100 FFFFFE0016 0 1 1 1 0 X X X X

Interrupt Return

1 00110 FFFFFE0016 0 1 1 1 0 X X X X

C. Vectored Interrupt Sequences: Non-Cascaded

Interrupt Acknowledge

1 00100 FFFFFE0016 0 1 1 1 0 X X X Vector:

Range: 0–127

Interrupt Return

1 00110 FFFFFE0016 0 1 1 1 0 X X X Vector: Same as

in Previous Int.

Ack. Cycle

D. Vectored Interrupt Sequences: Cascaded

Interrupt Acknowledge

1 00100 FFFFFE0016 0 1 1 1 0 X X X Cascade Index:

range b16 to b1

(The CPU here uses the Cascade Index to find the Cascade Address)

2 001101 Cascade 0 See Note Vector, range 16–255; on appropriate byte of

Address data bus.

Interrupt Return

1 00110 FFFFFE0016 0 1 1 1 0 X X X Cascade Index:

Same as in

previous Int.

Ack. Cycle

(The CPU here uses the Cascade Index to find the Cascade Address)

2 00111 Cascade 0 See Note X X X X

Address

X e Don’t Care

Note: BE0–BE3 signals will be activated according to the cascaded ICU address
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TL/EE/10253–32

FIGURE 3-25. Slave Processor Write Cycle

TL/EE/10253–33

FIGURE 3-26. Slave Processor Read Cycle

3.5.5 Bus Exceptions

The NS32GX32 has the capability of handling errors occur-

ring during the execution of a bus cycle. These errors can

be either correctable or incorrectable, and the CPU can be

notified of their occurrence through the input signals BRT

and/or BER.

Bus Retry

If a bus error can be corrected, the CPU may be requested

to repeat the erroneous bus cycle. The request is done by

asserting the BRT signal. BRT is sampled at the end of

state T2 or T2B.

When the CPU detects that BRT is active, it completes the

bus cycle normally, but ignores the data read in case of a

read cycle, and maintains a copy of the data to be written in

case of a write cycle. Then, after a delay of two clock cy-

cles, it will start executing the bus cycle again.

If the transfer cycle is multiple (e.g., for non-aligned data),

only the problematic part will be repeated.

For instance, if a non-aligned double-word is being trans-

ferred and the second half of the transfer fails, only the

second part will be repeated.

The same applies for a retry during a burst sequence. The

repeated cycle will begin where the read operation failed

(rather than the first address of the burst) and will finish the

original burst.

Figures 3-27 and 4-10 (in Section 4) show the BRT timing

for a basic access cycle and for burst cycles respectively.

The CPU always waits for BRT to be HIGH before repeating

the bus cycle. While BRT is LOW, the CPU places all the

output signals shown inFigure 4-11 in a TRI-STATEÉ condi-

tion.

Bus Error

If a bus error is incorrectable the CPU may be requested to

interrupt the current process and branch to an appropriate

procedure to handle the error. The request is performed by

activating the BER signal. BER is sampled by the CPU at

the end of state T2 or T2B on the rising edge of BCLK.

When BER is sampled active, the CPU completes the bus

cycle normally. If a bus error occurs during a bus cycle for a

reference required to execute an instruction, then a bus er-

ror exception is recognized. However, if an error occurs dur-

ing an acknowledge cycle of another exception or during

the ICU read cycle of a RETI instruction, the CPU interprets

the event as a fatal bus error and enters the ‘halted’ state.

In this state the CPU floats its address and data buses and

places a special status code on the ST0–4 lines. The CPU

can exit this condition only through a hardware reset. Refer

to Section 3.2.6 for more details on bus error.

Note 1: If the erroneous bus cycle is extended by means of wait states, then

the CPU uses the values of BRT and/or BER sampled during the

last wait state.

Note 2: If the CPU samples both BRT and BER active, BRT has higher

priority. The bus error indication is ignored, and the bus cycle is

repeated.

Note 3: If BER is asserted during a bus cycle of a multi-cycle data transfer,

the CPU completes the entire transfer normally, but the data will be

ignored. The CPU also ignores any subsequent assertion of BER

during the same data transfer.

Note 4: Neither BRT nor BER should be asserted during the T2 state of a

slave processor bus cycle.

3.5.6 Dynamic Bus Configuration

The NS32GX32 is tuned to operate with 32-bit wide memory

and peripheral devices. The bus also supports 8-bit and

16-bit data widths, but at reduced efficiency. The CPU can

switch from one bus width to another dynamically; the only

restriction is that the bus width cannot change for locations

within an aligned 16-byte block.

The CPU determines the bus width in effect for a bus cycle

by using the values of the BW0 and BW1 signals sampled

during the last T2 state. Values of BW0 and BW1 sampled

before the last T2 state or during T2B states are ignored.

Whenever a bus width other than 32-bit is detected by the

CPU, two idle states are inserted before the next bus cycle

is initiated. These idle states are only inserted once during

an operand access, even if more than two bus cycles are

needed to complete the access.
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TL/EE/10253–34

FIGURE 3-27. Bus Retry During a Basic Read Cycle

49
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The various combinations for BW0 and BW1 are shown be-

low.

BW1 BW0

0 0 Reserved

0 1 8-Bit Bus

1 0 16-Bit Bus

1 1 32-Bit Bus

The bus width is always 32 bits during slave cycles (See

Section 3.5.4.7). An important feature of the NS32GX32 is

that it does not impose any restrictions on the data align-

ment, regardless of the bus width.

Bus accesses are performed in double-word units. Access-

es of data operands that cross double-word boundaries are

decomposed into two or more aligned double-word access-

es.

The CPU provides four byte enable signals (BE0–3) which

facilitate individual byte accessing on either a 32-bit or a

16-bit bus.

Figures 3-28 and 3-29 show the basic interfaces for 32-bit

and 16-bit memories. An 8-bit memory interface (not shown)

is even simpler since it does not use any of the BE0–3

signals and its single bank is always enabled whenever the

memory is selected. Each byte location in this case is se-

lected by address bits A0–31.

The NS32GX32 does not keep track of the bus width used

in previous instruction fetches or data accesses. At the be-

ginning of every memory transaction, the CPU always as-

sumes that the bus is 32-bit wide and the BE0–3 signals are

activated accordingly.

The BOUT signal is also asserted during instruction fetches

or data reads if the conditions for bursting are satisfied. If

the bus is other than 32-bit wide, the BIN signal is ignored

and BOUT is deasserted at the beginning of the T state

following T2, since burst cycles are not allowed for 8-bit or

16-bit buses.

TL/EE/10253–35

FIGURE 3-28. Basic Interface for 32-Bit Memories

Note: The CACH signal must be asserted during cacheable read accesses.

The following subsections provide detailed descriptions of

the access sequences performed in the various cases.

Note: Although the NS32GX32 ignores the BIN signal for 8-bit and 16-bit

bus widths, it is recommended that BIN be asserted only if the system

supports burst transfers. This is to ensure compatibility with future

versions of the CPU that might support burst transfers for 8-bit and

16-bit buses.

TL/EE/10253–36

FIGURE 3-29. Basic Interface for 16-Bit Memories

3.5.6.1 Instruction Fetch Sequences

The CPU performs two types of instruction fetch cycles: se-

quential and non-sequential. These can be distinguished

from each other by the differing status combinations on pins

ST0–4. For non-sequential instruction fetches the CPU

presents on the address bus the exact byte address of the

first instruction in the instruction stream that is about to be-

gin; for sequential instruction fetches, the address of the

next aligned instruction double-word is presented on the ad-

dress bus. The CPU always activates all byte enable signals

(BE0–3) for both sequential and non-sequential fetches.

BOUT is also asserted during T2 if the addressed double-

word is not the last in an aligned 16-byte block. Tables 3-5

to 3-7 show the fetch sequence for the various bus widths.

32-Bit Bus Width

The CPU reads the entire double-word present on the data

bus into its internal instruction buffer.

If BOUT and BIN are both active, the CPU reads up to 3

consecutive double-words using burst cycles. Burst cycles

are used for instruction fetches regardless of whether the

accesses are cacheable.
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3.0 Functional Description (Continued)

Example: JUMP @5

# The CPU performs a fetch cycle at address 5 with BE0–3

all active.

# Two burst cycles are then performed and addresses 8 and

12 are output while BE0–3 are kept active.

16-Bit Bus Width

The word on the least-significant half of the data bus is read

by the CPU. This is either the even or the odd word within

the required instruction double-word, as determined by ad-

dress bit 1.

The CPU then complements address bit 1, clears address

bit 0 and initiates a bus cycle to read the other word, while

keeping all the BE0–3 signals active.

These two words are then assembled into a double-word

and transferred into the instruction buffer.

In case of a non-sequential fetch, if the access is not cache-

able and the instruction address selects the odd word within

the instruction double-word, the even word is not fetched.

Example JUMP @6

# A fetch cycle is performed at address 6 with BE0–3 all

active.

# The word at address 4 is then fetched if the access is

cacheable.

8-Bit Bus Width

The instruction byte on the bus lines D0–7 is fetched. The

CPU performs three consecutive cycles to read the remain-

ing bytes within the required double-word, while keeping

BE0–3 all active. The 4 bytes are then assembled into a

double-word and transferred into the instruction buffer. For

a non-sequential fetch, if the access is not cacheable, the

CPU will only read the upper bytes within the instruction

double-word starting with the byte at the instruction ad-

dress.

Example: JUMP @7

# The CPU performs a fetch cycle at address 7 with BE0–3

all active.

# Bytes at addresses 4, 5 and 6 are then fetched consecu-

tively if the access is cacheable.

TABLE 3-5. Cacheable/Non-Cacheable Instruction Fetches from a 32-Bit Bus

1. In a burst access four bytes are fetched with the L.S. bits of the address set to 00.

2. A ‘C’ on the data bus refers to cacheable fetches and indicates that the byte is placed in the instruction cache. An ‘I’ refers

to non-cacheable fetches and indicates that the byte is ignored.

Number Address
Bytes to be Fetched

Address
BE0–3 Data Bus

of Bytes LSB Bus

1 11 B0 Ð Ð Ð A L L L L B0 C/I C/I C/I

2 10 B1 B0 Ð Ð A L L L L B1 B0 C/I C/I

3 01 B2 B1 B0 Ð A L L L L B2 B1 B0 C/I

4 00 B3 B2 B1 B0 A L L L L B3 B2 B1 B0

TABLE 3-6. Cacheable/Non-Cacheable Instruction Fetches from a 16-Bit Bus

1. A bus access marked with ‘*’ in the ‘Address Bus’ column is performed only if the fetch is cacheable.

Number Address
Bytes to be Fetched

Address
BE0–3 Data Bus

of Bytes LSB Bus

1 11 B0 Ð Ð Ð A L L L L Ð Ð B0 C/I

*A b 3 L L L L Ð Ð C C

2 10 B1 B0 Ð Ð A L L L L Ð Ð B1 B0

*A b 2 L L L L Ð Ð C C

3 01 B2 B1 B0 Ð A L L L L Ð Ð B0 C/I

A a 1 L L L L Ð Ð B2 B1

4 00 B3 B2 B1 B0 A L L L L Ð Ð B1 B0

A a 2 L L L L Ð Ð B3 B2
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3.0 Functional Description (Continued)

TABLE 3-7. Cacheable/Non-Cacheable Instruction Fetches from an 8-Bit Bus

Number Address
Bytes to be Fetched

Address
BE0–3 Data Bus

of Bytes LSB Bus

1 11 B0 Ð Ð Ð A L L L L Ð Ð Ð B0

* A b 3 L L L L Ð Ð Ð C

* A b 2 L L L L Ð Ð Ð C

* A b 1 L L L L Ð Ð Ð C

2 10 B1 B0 Ð Ð A L L L L Ð Ð Ð B0

A a 1 L L L L Ð Ð Ð B1

* A b 2 L L L L Ð Ð Ð C

* A b 1 L L L L Ð Ð Ð C

3 01 B2 B1 B0 Ð A L L L L Ð Ð Ð B0

A a 1 L L L L Ð Ð Ð B1

A a 2 L L L L Ð Ð Ð B2

* A b 1 L L L L Ð Ð Ð C

4 00 B3 B2 B1 B0 A L L L L Ð Ð Ð B0

A a 1 L L L L Ð Ð Ð B1

A a 2 L L L L Ð Ð Ð B2

A a 3 L L L L Ð Ð Ð B3

3.5.6.2 Data Read Sequences

The CPU starts a data read access by placing the exact

address of the operand on the address bus. The byte en-

able lines are activated to select only the bytes required by

the instruction being executed. This prevents spurious ac-

cesses to peripheral devices that might be sensitive to read

accesses, such as those which exhibit the characteristic of

destructive reading. If the on-chip data cache is internally

enabled for the read access, the BOUT signal is asserted at

the beginning of state T2. BOUT will be deasserted if the

data cache is externally inhibited (through CIIN or IODEC),

or the bus width is other than 32 bits. During cacheable

accesses the CPU always reads all the bytes in the double-

word, whether or not they are needed to execute the in-

struction, and stores them into the data cache. The external

memory, in this case, must place the data on the bus re-

gardless of the state of the byte enable signals.

If the data cache is either internally or externally inhibited

during the access, the CPU ignores the bytes not selected

by the BE0–3 signals. Data read sequences for the various

bus widths are shown in tables 3-8 to 3-10.

32-Bit Bus Width

The entire double-word present on the bus is read by the

CPU. If the access is cacheable and the memory allows

burst accesses, the CPU reads up to 3 additional double-

words within the aligned 16-byte block containing the first

byte of the operand. These burst accesses are performed in

a wrap-around fashion within the 16-byte block.

Example: MOVW @5, R0

# The CPU reads a double-word at address 5 while keeping

BE1 and BE2 active.

# If the access is not-cacheable, BOUT is deasserted and

the data bytes 0 and 3 are ignored.

# If the access is cacheable, the CPU performs burst cycles

with BE0–3 all active, to read the double-words at ad-

dresses 8, 12, and 0.

16-Bit Bus Width

The word on the least-significant half of the data bus is read

by the CPU. The CPU can then perform another access

cycle with address bit 1 complemented and address bit 0

cleared to read the other word within the addressed double-

word.

If the access is cacheable, the entire double-word is read

and stored into the cache.

If the access is not cacheable, the CPU ignores the bytes in

the double-word not selected by BE0–3. In this case, the

second access cycle is not performed, unless selected

bytes are contained in the second word.

Example: MOVB @5, R0

# The CPU reads a word at address 5 while keeping BE1

active.

# If the access is not cacheable, the CPU ignores byte 0.

# If the access is cacheable, the CPU performs another ac-

cess cycle, with BE0–3 all active, to read the word at

address 6.

8-Bit Bus Width

The data byte on the bus lines D0–7 is read by the CPU.

The CPU can then perform up to 3 access cycles to read

the remaining bytes in the double-word.

If the access is cacheable, the entire double-word is read

and stored into the cache.

If the access is not cacheable, the CPU will only perform

those access cycles needed to read the selected bytes.

Example: MOVW @5, R0

# The CPU reads the byte at address 5 while keeping BE1

and BE2 active.

# If the access is not cacheable, the CPU activates BE2 and

reads the byte at address 6.

# If the access is cacheable, the CPU performs three bus

cycles with BE0–3 all active, to read the bytes at address-

es 6, 7 and 4.
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3.0 Functional Description (Continued)

TABLE 3-8. Cacheable/Non-Cacheable Data Reads from a 32-Bit Bus

1. In a burst access four bytes are read with the L.S. bits of the address set to 00.

2. A ‘C’ on the data bus refers to cacheable reads and indicates that the byte is placed in the data cache. An ‘I’ refers to non-

cacheable reads and indicates that the byte is ignored.

Number Address
Bytes to be Read

Address
BE0–3 Data Bus

of Bytes LSB Bus

1 00 Ð Ð Ð B0 A H H H L C/I C/I C/I B0

1 01 Ð Ð B0 Ð A H H L H C/I C/I B0 C/I

1 10 Ð B0 Ð Ð A H L H H C/I B0 C/I C/I

1 11 BO Ð Ð Ð A L H H H B0 C/I C/I C/I

2 00 Ð Ð B1 B0 A H H L L C/I C/I B1 B0

2 01 Ð B1 B0 Ð A H L L H C/I B1 B0 C/I

2 10 B1 B0 Ð Ð A L L H H B1 B0 C/I C/I

3 00 Ð B2 B1 B0 A H L L L C/I B2 B1 B0

3 01 B2 B1 B0 Ð A L L L H B2 B1 B0 C/I

4 00 B3 B2 B1 B0 A L L L L B3 B2 B1 B0

TABLE 3-9. Cacheable/Non-Cacheable Data Reads from a 16-Bit Bus

1. A bus access marked with ‘*’ in the ‘Address Bus’ column is performed only if the read is cacheable.

Number Address
Data to be Read

Address BE0–3
Data Bus

of Bytes LSB Bus
Cach. Non Cach.

1 00 Ð Ð Ð B0 A H H H L H H H L Ð Ð C/I B0

* A a 2 L L L L Ð Ð C C

1 01 Ð Ð B0 Ð A H H L H H H L H Ð Ð B0 C/I

* A a 1 L L L L Ð Ð C C

1 10 Ð B0 Ð Ð A H L H H H L H H Ð Ð C/I B0

* A b 2 L L L L Ð Ð C C

1 11 B0 Ð Ð Ð A L H H H L H H H Ð Ð B0 C/I

* A b 3 L L L L Ð Ð C C

2 00 Ð Ð B1 B0 A H H L L H H L L Ð Ð B1 B0

* A a 2 L L L L Ð Ð C C

2 01 Ð B1 B0 Ð A H L L H H L L H Ð Ð B0 C/I

A a 1 L L L L H L H H Ð Ð C/I B1

2 10 B1 B0 Ð Ð A L L H H L L H H Ð Ð B1 B0

* A b 2 L L L L Ð Ð C C

3 00 Ð B2 B1 B0 A H L L L H L L L Ð Ð B1 B0

A a 2 L L L L H L H H Ð Ð C/I B2

3 01 B2 B1 B0 Ð A L L L H L L L H Ð Ð B0 C/I

A a 1 L L L L L L H H Ð Ð B2 B1

4 00 B3 B2 B1 B0 A L L L L L L L L Ð Ð B1 B0

A a 2 L L L L L L H H Ð Ð B3 B2
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3.0 Functional Description (Continued)

TABLE 3-10. Cacheable/Non-Cacheable Data Reads from an 8-Bit Bus D8–12

Number Address
Data to be Read

Address BE0–3
Data Bus

of Bytes LSB Bus
Cach. Non Cach.

1 00 Ð Ð Ð B0 A H H H L H H H L Ð Ð Ð B0

*A a 1 L L L L Ð Ð Ð C

*A a 2 L L L L Ð Ð Ð C

*A a 3 L L L L Ð Ð Ð C

1 01 Ð Ð B0 Ð A H H L H H H L H Ð Ð Ð B0

*A a 1 L L L L Ð Ð Ð C

*A a 2 L L L L Ð Ð Ð C

*A b 1 L L L L Ð Ð Ð C

1 10 Ð B0 Ð Ð A H L H H H L H H Ð Ð Ð B0

*A a 1 L L L L Ð Ð Ð C

*A b 2 L L L L Ð Ð Ð C

*A b 1 L L L L Ð Ð Ð C

1 11 B0 Ð Ð Ð A L H H H L H H H Ð Ð Ð B0

*A b 3 L L L L Ð Ð Ð C

*A b 2 L L L L Ð Ð Ð C

*A b 1 L L L L Ð Ð Ð C

2 00 Ð Ð B1 B0 A H H L L H H L L Ð Ð Ð B0

A a 1 L L L L H H L H Ð Ð Ð B1

*A a 2 L L L L Ð Ð Ð C

*A a 3 L L L L Ð Ð Ð C

2 01 Ð B1 B0 Ð A H L L H H L L H Ð Ð Ð B0

A a 1 L L L L H L H H Ð Ð Ð B1

*A a 2 L L L L Ð Ð Ð C

*A b 1 L L L L Ð Ð Ð C

2 10 B1 B0 Ð Ð A L L H H L L H H Ð Ð Ð B0

A a 1 L L L L L H H H Ð Ð Ð B1

*A b 2 L L L L Ð Ð Ð C

*A b 1 L L L L Ð Ð Ð C

3 00 Ð B2 B1 B0 A H L L L H L L L Ð Ð Ð B0

A a 1 L L L L H L L H Ð Ð Ð B1

A a 2 L L L L H L H H Ð Ð Ð B2

*A a 3 L L L L Ð Ð Ð C

3 01 B2 B1 B0 Ð A L L L H L L L H Ð Ð Ð B0

A a 1 L L L L L L H H Ð Ð Ð B1

A a 2 L L L L L H H H Ð Ð Ð B2

*A b 1 L L L L Ð Ð Ð C

4 00 B3 B2 B1 B0 A L L L L L L L L Ð Ð Ð B0

A a 1 L L L L L L L H Ð Ð Ð B1

A a 2 L L L L L L H H Ð Ð Ð B2

A a 3 L L L L L H H H Ð Ð Ð B3

3.5.6.3 Data Write Sequences

In a write access the CPU outputs the operand address and

asserts only the byte enable lines needed to select the spe-

cific bytes to be written.

In addition, the CPU duplicates the data to be written on the

appropriate bytes of the data bus in order to handle 8-bit

and 16-bit buses.

The various access sequences as well as the duplication of

data are summarized in tables 3-11 to 3-13.

32-Bit Bus Width

The CPU performs only one access cycle to write the se-

lected bytes within the addressed double-word.

Example: MOVB R0, @6

# The CPU duplicates byte 2 of the data bus into byte 0 and

performs a write cycle at address 6 with BE2 active.

16-Bit Bus Width

Up to two access cycles are needed to complete the write

operation.
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3.0 Functional Description (Continued)

Example: MOVW R0, @5

# The CPU duplicates byte 1 of the data bus into byte 0 and

performs a write cycle at address 5 with BE1 and BE2

active.

# A write at address 6 is then performed with BE2 active

and the original byte 2 of the data bus placed on byte 0.

8-Bit Bus Width

Up to 4 access cycles are needed in this case to complete

the write operation.

Example: MOVB R0, @7

# The CPU duplicates byte 3 of the data bus into bytes 0

and 1, and then performs a write cycle at address 7 with

BE3 active.

3.5.7 Bus Access Control

The NS32GX32 has the capability of relinquishing its control

of the bus upon request from a DMA device or another CPU.

This capability is implemented with the HOLD and HLDA

signals. By asserting HOLD, an external device requests ac-

cess to the bus. On receipt of HLDA from the CPU, the

device may perform bus cycles, as the CPU at this point has

placed all the output signals shown in Figure 3-30 into the

TRI-STATE condition.

To return control of the bus to the CPU, the external device

sets HOLD inactive, and the CPU acknowledges return of

the bus by setting HLDA inactive.

The CPU samples HOLD in the middle of each T-state on

the falling edge of BCLK. If HOLD is asserted when the bus

is idle between access sequences, then the bus is granted

immediately (see Figure 3-29). If HOLD is asserted during

an access sequence, then the bus is granted immediately

after the access sequence, including any retried bus cycles,

has completed (see Figure 4-13). Note that an access se-

quence can be composed of several bus cycles if the bus

width is 8 or 16 bits.

TABLE 3-11. Data Writes to a 32-Bit Bus

1. Bytes on the data bus marked with ‘#’ are undefined.

Number Address
Data to be Written

Address
BE0–3 Data Bus

of Bytes LSB Bus

1 00 Ð Ð Ð B0 A H H H L # # # B0

1 01 Ð Ð B0 Ð A H H L H # # B0 B0

1 10 Ð B0 Ð Ð A H L H H # B0 # B0

1 11 B0 Ð Ð Ð A L H H H B0 # B0 B0

2 00 Ð Ð B1 B0 A H H L L # # B1 B0

2 01 Ð B1 B0 Ð A H L L H # B1 B0 B0

2 10 B1 B0 Ð Ð A L L H H B1 B0 B1 B0

3 00 Ð B2 B1 B0 A H L L L # B2 B1 B0

3 01 B2 B1 B0 Ð A L L L H B2 B1 B0 B0

4 00 B3 B2 B1 B0 A L L L L B3 B2 B1 B0

TABLE 3-12. Data Writes to a 16-Bit Bus

Number Address
Data to be Written

Address
BE0–3 Data Bus

of Bytes LSB Bus

1 00 Ð Ð Ð B0 A H H H L # # # B0

1 01 Ð Ð B0 Ð A H H L H # # B0 B0

1 10 Ð B0 Ð Ð A H L H H # B0 # B0

1 11 B0 Ð Ð Ð A L H H H B0 # B0 B0

2 00 Ð Ð B1 B0 A H H L L # # B1 B0

2 01 Ð B1 B0 Ð A H L L H # B1 B0 B0

A a 1 H L H H # # # B1

2 10 B1 B0 Ð Ð A L L H H B1 B0 B1 B0

3 00 Ð B2 B1 B0 A H L L L # B2 B1 B0

A a 2 H L H H # # # B2

3 01 B2 B1 B0 Ð A L L L H B2 B1 B0 B0

A a 1 L L H H # # B2 B1

4 00 B3 B2 B1 B0 A L L L L B3 B2 B1 B0

A a 2 L L H H # # B3 B2
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3.0 Functional Description (Continued)

TABLE 3-13. Data Writes to an 8-Bit Bus

Number Address
Data to be Written

Address
BE0–3 Data Bus

of Bytes LSB Bus

1 00 Ð Ð Ð B0 A H H H L # # # B0

1 01 Ð Ð B0 Ð A H H L H # # B0 B0

1 10 Ð B0 Ð Ð A H L H H # B0 # B0

1 11 B0 Ð Ð Ð A L H H H B0 # B0 B0

2 00 Ð Ð B1 B0 A H H L L # # B1 B0

A a 1 H H L H # # # B1

2 01 Ð B1 B0 Ð A H L L H # B1 B0 B0

A a 1 H L H H # # # B1

2 10 B1 B0 Ð Ð A L L H H B1 B0 B1 B0

A a 1 L H H H # # # B1

3 00 Ð B2 B1 B0 A H L L L # B2 B1 B0

A a 1 H L L H # # # B1

A a 2 H L H H # # # B2

3 01 B2 B1 B0 Ð A L L L H B2 B1 B0 B0

A a 1 L L H H # # # B1

A a 2 L H H H # # # B2

4 00 B3 B2 B1 B0 A L L L L B3 B2 B1 B0

A a 1 L L L H # # # B1

A a 2 L L H H # # # B2

A a 3 L H H H # # # B3
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3.0 Functional Description (Continued)

TL/EE/10253–37

FIGURE 3-30. Hold Acknowledge. (Bus Initially Idle.)

Note: The status indicates ‘IDLE’ while the bus is granted. If the cause of the IDLE changes (e.g., CPU starts waiting for an interrupt), the status also changes.

The CPU will never grant the bus between interlocked read

and write bus cycles.

Note: If an external device requires a very short latency to get control of the

bus, the bus retry signal (BRT) can be used instead of hold. See

Section 3.5.5.

3.5.8 Interfacing Memory-Mapped I/O Devices

In Section 3.1.3.2 it was mentioned that some special pre-

cautions are needed when interfacing I/O devices to the

NS32GX32 due to its internal pipelined implementation.

Two special signals are provided for this purpose: IOINH

and IODEC. The CPU asserts IOINH during a read bus cycle

to indicate that the bus cycle should be ignored if an I/O

device is selected. The system responds by asserting

IODEC to indicate to the CPU that an I/O device has been

selected. IODEC is sampled by the CPU in the middle of

state T2. If the cycle is extended, then the CPU uses the

IODEC value sampled during the last wait state. If a bus

error or a bus retry occurs, the sampled IODEC value is

ignored. IODEC must be kept high during burst transfer cy-

cles.

When IODEC is active during a bus cycle for which IOINH is

asserted, the CPU discards the data and applies the special

handling required for I/O devices. Figure 3-31 shows a pos-

sible implementation of an I/O device interface where the

address mapping of the I/O devices is fixed.

In an open system configuration, IODEC could be generated

by the decoding logic of each I/O device subsystem.

Note 1: When IODEC is active in response to a read bus cycle, the CPU

treats the reference as noncacheable.

Note 2: IOINH is kept inactive during write cycles.
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3.0 Functional Description (Continued)

TL/EE/10253–38

FIGURE 3-31. Typical I/O Device Interface

3.5.9 Interrupt and Debug Trap Requests

Three signals are provided by the CPU to externally request

interrupts and/or a debug trap. INT and NMI are for maska-

ble and non-maskable interrupts respectively. DBG is used

for requesting an external debug trap.

The CPU samples INT and NMI on every other rising edge

of BCLK, starting with the second rising edge of BCLK after

RST goes high.

NMI is edge-sensitive; a high-to-low transition on it is detect-

ed by the CPU and stored in an internal latch, so that there

is no need to keep it asserted until it is acknowledged.

INT is level-sensitive and, as such, once asserted, it must

be kept asserted until it is acknowledged.

The DBG signal, like NMI, is edge-sensitive; it differs from

NMI in that the CPU samples it on each rising edge of

BCLK. DBG can be asserted asynchronously to the CPU

clock, but it should be at least 1.5 clock cycles wide in order

to be recognized.

If DBG meets the specified setup and hold times, it will be

recognized on the rising edge of BCLK deterministically.

Refer to Figures 4-19 and 4-20 for more details on the tim-

ing of the above signals.

Note: If the NMI signal is pulsed to request a non-maskable interrupt, it may

be necessary to keep it asserted for a minimum of two clock cycles to

guarantee its detection, unless extra logic ensures that the pulse oc-

curs around the BCLK sampling edge.

3.5.10 Internal Status

The NS32GX32 provides information on the system inter-

face concerning its internal activity.

The U/S signal will indicate the state of the U bit in the PSR

except in the following cases:

While executing a MOVUS instruction it will be ‘1’ during the

source read.

While executing a MOVSU instruction it will be ‘1’ during the

destination write.

The PFS signal is asserted for one BCLK cycle when the

CPU begins executing a new instruction. The ISF signal is

driven High along with PFS if the new instruction does not

follow the previous instruction in sequence. More specifical-

ly, ISF is High along with PFS after processing an exception

or after executing one of the following instructions: ACB

(branch taken), Bcond (branch taken), BR, BSR, CASE,

CXP, CXPD, DIA, JSR, JUMP, RET, RETT, RETI, and RXP.

The BP signal is asserted for one BCLK cycle when an ad-

dress-compare or PC-match condition is detected. If the BP

signal is asserted one BCLK cycle after PFS, it indicates

that an address-compare debug condition has been detect-

ed. If BP is asserted at any other time, it indicates that a PC-

Match debug condition has been detected.

While executing a CINV instruction, the CPU displays the

operation code and source operand using slave processor

write bus cycles.

During idle bus cycles, the signals ST0–ST4 indicate wheth-

er the CPU is waiting for an interrupt, waiting for a Slave

Processor to complete executing an instruction or halted.
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4.0 Device Specifications

TL/EE/10253–39

FIGURE 4-1. NS32GX32 Interface Signals

4.1 NS32GX32 PIN DESCRIPTIONS

Descriptions of the NS32GX32 pins are given in the follow-

ing sections.

Included are also references to portions of the functional

description, Section 3.

Figure 4-1 shows the NS32GX32 interface signals grouped

according to related functions.

Note: An asterisk next to the signal name indicates a TRI-STATE condition

for that signal when HOLD is acknowledged or during an extended

retry.

4.1.1 Supplies

VCCL1–6 Logic Power.

a5V positive supplies for on-chip logic.

VCCB1–14 Buffers Power.

a5V positive supplies for on-chip output

buffers.

VCCCLK Bus Clock Power.

a5V positive supply for on-chip clock driv-

ers.

GNDL1–6 Logic Ground.

Ground references for on-chip logic.

GNDB1–13 Buffers Ground.

Ground references for on-chip output buffers.

GNDCLK Bus Clock Ground.

Ground reference for on-chip clock drivers.

4.1.2 Input Signals

CLK Clock.

Input Clock used to derive all CPU Timing.

SYNC Synchronize.

When SYNC is active, BCLK will stop tog-

gling. This signal can be used to synchronize

two or more CPUs (Section 3.5.2).

HOLD Hold Request.

When active, causes the CPU to release the

bus for DMA or multiprocessing purposes

(Section 3.5.7).

Note:

If the HOLD signal is generated asynchronously, its set

up and hold times may be violated. In this case it is rec-

ommended to synchronize it with the falling edge of

BCLK to minimize the possibility of metastable states.

The CPU provides only one synchronization stage to min-

imize the HLDA latency. This is to avoid speed degrada-

tions in cases of heavy HOLD activity (i.e. DMA controller

cycles interleaved with CPU cycles).

RST Reset.

When RST is active, the CPU is initialized to

a known state (Section 3.5.3).

INT Interrupt.

A low level on this signal requests a maska-

ble interrupt (Section 3.5.9).

NMI Nonmaskable Interrupt.

A High-to-Low transition of this signal re-

quests a nonmaskable interrupt (Section

3.5.9).
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4.0 Device Specifications (Continued)

DBG Debug Trap Request.

A High-to-Low transition of this signal re-

quests a debug trap (Section 3.5.9).

CIIN Cache Inhibit In.

When active, indicates that the location refer-

enced in the current bus cycle is not cache-

able. CIIN must not change within an aligned

16-byte block.

IODEC I/O Decode.

Indicates to the CPU that a peripheral device

is addressed by the current bus cycle. The

value of IODEC must not change within an

aligned 16-byte block (Section 3.5.8).

FSSR Force Slave Status Read.

When asserted, indicates that the slave

status word should be read by the CPU (Sec-

tion 3.1.4.1). An external 10 kX resistor

should be connected between FSSR and

VCC.

SDN Slave Done.

Used by a slave processor to signal the com-

pletion of a slave instruction (Section

3.1.4.1). An external 10 kX resistor should be

connected between SDN and VCC.

BIN Burst In.

When active, indicates to the CPU that the

memory supports burst cycles (Section

3.5.4.3).

RDY Ready.

While this signal is not active, the CPU ex-

tends the current bus cycle to support a slow

memory or peripheral device.

BW0–1 Bus Width.

These lines define the bus width (8, 16 or 32

bits) for each data transfer; BW0 is the least

significant bit. The bus width must not

change within an aligned 16-byte blockÐen-

codings are:

00ÐReserved

01Ð8 Bits

10Ð16 Bits

11Ð32 Bits

BRT Bus Retry.

When active, the CPU will reexecute the last

bus cycle (Section 3.5.5).

BER Bus Error.

When active, indicates that an error occurred

during a bus cycle. It is treated by the CPU as

the highest priority exception after reset.

4.1.3 Output Signals

BCLK Bus Clock.

Output clock for bus timing (Section 3.5.2).

BCLK Bus Clock Inverse.

Inverted output clock.

HLDA Hold Acknowledge.

Activated by the CPU in response to the

HOLD input to indicate that the CPU has re-

leased the bus.

PFS Program Flow Status.

A pulse on this signal indicates the beginning

of execution for each instruction (Section

3.5.10).

ISF Internal Sequential Fetch.

Indicates along with PFS that the instruction

beginning execution is sequential (ISF Low)

or non-sequential (ISF High).

U/S User/Supervisor.

User or supervisor mode status (Section

3.5.10).

BP Break Point.

This signal is activated when the CPU de-

tects a PC or operand-address match debug

condition (Section 3.3.2).

CASEC *Cache Section.

For cacheable data read bus cycles indicates

the Section of the on-chip Data Cache where

the data will be placed; undefined for other

bus cycles.

IOINH I/O Inhibit.

Indicates that the current bus cycle should

be ignored if a peripheral device is ad-

dressed.

SPC Slave Processor Control.

Data strobe for slave processor transfers.

BOUT *Burst Out.

When active, indicates that the CPU is re-

questing to perform burst cycles.

ILO Interlocked Operation.

When active, indicates that interlocked cy-

cles are being performed (Section 3.5.4.5).

DDIN *Data Direction.

Indicates the direction of a data transfer. It is

low for reads and high for writes.

CONF *Confirm Bus Cycle.

When active, indicates that a bus cycle initia-

ted by ADS is valid; that is, the bus cycle has

not been cancelled (Section 3.5.4.2).
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4.0 Device Specifications (Continued)

BMT *Begin Memory Transaction.

When Stable Low indicates that the current

bus cycle is valid; that is, the bus cycle has

not been cancelled (Section 3.5.4.2).

ADS *Address Strobe.

When active, indicates that a bus cycle has

begun and a valid address is on the address

bus.

BE0–3 *Byte Enables.

Used to selectively enable data transfers on

bytes 0–3 of the data bus.

ST0–4 Status.

Bus cycle status code; ST0 is the least signif-

icant. Encodings are:

00000ÐIdle: CPU Inactive on Bus.

00001ÐIdle: WAIT Instruction.

00010ÐIdle: Halted.

00011ÐIdle: The bus is idle while the slave

processor is executing an instruction.

00100ÐInterrupt Acknowledge, Master.

00101ÐInterrupt Acknowledge, Cascaded.

00110ÐEnd of Interrupt, Master.

00111ÐEnd of Interrupt, Cascaded.

01000ÐSequential Instruction Fetch.

01001ÐNon-Sequential Instruction Fetch.

01010ÐData Transfer.

01011ÐRead Read-Modify-Write Operand.

01100ÐRead for Effective Address.

01101

#
# Reserved.

#
11100 *
11101ÐTransfer Slave Operand.

11110ÐRead Slave Status Word.

11111ÐBroadcast Slave ID.

A0–31 *Address Bus.

Used by the CPU to output a 32-bit address

at the beginning of a bus cycle. A0 is the

least significant.

4.1.4 Input/Output Signals

D0–31 *Data Bus.

Used by the CPU to input or output data dur-

ing a read or write cycle respectively.

4.2 ABSOLUTE MAXIMUM RATINGS

If Military/Aerospace specified devices are required,

please contact the National Semiconductor Sales

Office/Distributors for availability and specifications.

Case Temperature Under Bias 0§C to a95§C
Storage Temperature b65§C to a150§C

All Input or Output Voltages with

Respect to GND b0.5V to a7V

Power Dissipation 4 W

Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation
at these limits is not intended; operation should be limited to
those conditions specified under Electrical Characteristics.

4.3 ELECTRICAL CHARACTERISTICS NS32GX32-20, 25: TCASE e 0§ to a95§C, VCC e 5V g10%, GND e 0V

NS32GX32-30: TCASE e 0§ to a95§C, VCC e 5V g5%, GND e 0V.

Symbol Parameter Conditions Min Typ Max Units

VIH High Level Input Voltage 2.0 VCC a 0.5 V

VIL Low Level Input Voltage b0.5 0.8 V

VOH High Level Output Voltage IOH e b400 mA 2.4 V

VOL Low Level Output Voltage

A0–11, D0–31, DDIN IOL e 4 mA 0.45 V

CONF, BMT IOL e 6 mA 0.45 V

BCLK, BCLK IOL e 16 mA 0.45 V

All Other Outputs IOL e 2 mA 0.45 V

Ii Input Load Current 0 s VIN s VCC b20 20 mA

IL Leakage Current (Output and 0.4 s VIN s VCC b20 20 mA

I/O pins in TRI-STATE/Input Mode)

CIN CLK Input Capacitance 15 pF

ICC Active Supply Current IOUT e 0, TA e 25§C 700 @ 30 MHz 800 @ 30 MHz

VCC e 5V 600 @ 25 MHz 700 @ 25 MHz mA

470 @ 20 MHz 575 @ 20 MHz
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4.0 Device Specifications (Continued)

Connection Diagram

TL/EE/10253–40

Bottom View

FIGURE 4-2. 175-Pin PGA Package

NS32GX32 Pinout Descriptions

Desc Pin Desc Pin Desc Pin

Reserved A1 D26 B16 GNDB13 D14

Reserved A2 Reserved C1 VCCB14 D15

Reserved A3 Reserved C2 D23 D16

BP A4 VCCL2 C3 IOINH E1

ISF A5 Reserved C4 ILO E2

RST A6 PFS C5 GNDB3 E3

NMI A7 SDN C6 D24 E14

GNDB1 A8 Reserved C7 D22 E15

Reserved A9 BCLK C8 D20 E16

VCCB2 A10 VCCCLK C9 A30 F1

Reserved (2) A11 SYNC C10 CASEC F2

Reserved (1) A12 Reserved (2) C11 Reserved F3

Reserved (2) A13 Reserved (2) C12 D21 F14

Reserved (2) A14 VCCL6 C13 D19 F15

VCCB1 A15 D29 C14 D18 F16

Reserved B1 D27 C15 A29 G1

VCCB4 B2 D25 C16 A31 G2

Reserved B3 U/S D1 VCCB5 G3

Reserved B4 Reserved D2 GNDB12 G14

VCCB3 B5 Reserved D3 D17 G15

FSSR B6 GNDL3 D4 D16 G16

INT B7 GNDB2 D5 A27 H1

VCCL1 B8 DBG D6 A28 H2

GNDL2 B9 Reserved D7 GNDB4 H3

Reserved (2) B10 BCLK D8 VCCB13 H14

Reserved (2) B11 GNDCLK D9 D15 H15

Reserved (2) B12 CLK D10 D14 H16

Reserved (2) B13 Reserved (2) D11 A26 J1

D30 B14 D31 D12 A25 J2

D28 B15 GNDL1 D13 A24 J3

Desc Pin Desc Pin Desc Pin

GNDL6 J14 GNDL5 N9 A0 R6

VCCL5 J15 CONF N10 VCCB9 R7

D13 J16 RDY N11 Reserved R8

VCCB6 K1 HOLD N12 SPC R9

A23 K2 VCCB11 N13 BE3 R10

GNDL4 K3 GNDB10 N14 VCCB10 R11

GNDB11 K14 D4 N15 ADS R12

D11 K15 D6 N16 BW1 R13

D12 K16 A16 P1 BER R14

A22 L1 VCCB7 P2 CIIN R15

A21 L2 GNDB6 P3 D2 R16

VCCL3 L3 A10 P4 A13 S1

D8 L14 A6 P5 A8 S2

D9 L15 A2 P6 A5 S3

D10 L16 ST3 P7 A3 S4

A20 M1 GNDB8 P8 A1 S5

GNDB5 M2 VCCL4 P9 ST2 S6

A17 M3 BE1 P10 ST1 S7

D5 M14 GNDB9 P11 ST0 S8

D7 M15 BW0 P12 BOUT S9

VCCB12 M16 BIN P13 DDIN S10

A19 N1 Reserved P14 BE2 S11

A18 N2 D0 P15 BE0 S12

A14 N3 D3 P16 BMT S13

A11 N4 A15 R1 BRT S14

VCCB8 N5 A12 R2 IODEC S15

GNDB7 N6 A9 R3 D1 S16

ST4 N7 A7 R4

HLDA N8 A4 R5

Note 1: This pin should be grounded.

Note 2: This pin should be connected to logical high.

All other reserved pins should be left open.
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4.0 Device Specifications (Continued)

4.4 SWITCHING CHARACTERISTICS

4.4.1 Definitions

All the timing specifications given in this section refer to

0.8V or 2.0V on all the signals as illustrated in Figures 4-3
and 4-4 , unless specifically stated otherwise.

TL/EE/10253–41

FIGURE 4-3. Output Signals Specification Standard

ABBREVIATIONS:

L.E.Ðleading edge R.E.Ðrising edge

T.E.Ðtraining edge F.E.Ðfalling edge

TL/EE/10253–42

FIGURE 4-4. Input Signals Specification Standard
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4.0 Device Specifications (Continued)

4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation Delays, NS32GX32-20, NS32GX32-25, NS32GX32-30

# Maximum times assume capacitive loading of 100 pF on the clock signals and 50 pF on all the other signals. A minimum

capacitance load of 50 pF on BCLK and BCLK is also assumed.

# The output to input timings (e.g., Address to RDY, Address to BER, etc.) are at least 2 ns better than the worst case values

calculated from the output valid and input setup times relative to BCLK or BCLK.

Name Figure Description Reference/Conditions
NS32GX32-20 NS32GX32-25 NS32GX32-30

Units
Min Max Min Max Min Max

tBCp
4–24 Bus Clock Period R.E., BCLK to Next

50 100 40 100 33.3 100 ns
R.E., BCLK

tBCh
4–24 BCLK High Time At 2.0V on BCLK 0.5 tBCP 0.5 tBCP 0.5 tBCP ns

(Both Edges) b 5 b 4 b 3.65

tBCl
4–24 BCLK Low Time At 0.8V on BCLK 0.5 tBCP 0.5 tBCP 0.5 tBCP ns

(Both Edges) b 5 b 4 b 3.65

tBCr
4–24 BCLK Rise Time 0.8V to 2.0V on

5 4 3 ns
(Note 1) R.E., BCLK

tBCf
4–24 BCLK Fall Time 2.0V to 0.8V on

5 4 3 ns
(Note 1) F.E., BCLK

tNBCh
4–24 BCLK High Time At 2.0V on BCLK 0.5 tBCP 0.5 tBCP 0.5 tBCP ns

(Both Edges) b 5 b 4 b 3.65

tNBCl
4–24 BCLK Low Time At 0.8V on BCLK 0.5 tBCP 0.5 tBCP 0.5 tBCP ns

(Both Edges) b 5 b 4 b 3.65

tNBCr
4–24 BCLK Rise Time 0.8V to 2.0V on

5 4 3 ns
(Note 1) R.E., BCLK

tNBCf
4–24 BCLK Fall Time 2.0V to 0.8V on

5 4 3 ns
(Note 1) F.E., BCLK

tCBCdr
4–24 CLK to BCLK 2.0V on R.E., CLK to

20 17 15 ns
R.E. Delay 2.0V on R.E., BCLK

tCBCdf
4–24 CLK to BCLK 2.0V on R.E., CLK to

20 17 15 ns
F.E. Delay 0.8V on F.E., BCLK

tCNBCdr
4–24 CLK to BCLK 2.0V on R.E., CLK to

20 17 15 ns
R.E. Delay 0.8V on R.E., BCLK

tCNBCdf
4–24 CLK to BCLK 2.0V on R.E., CLK to

20 17 15 ns
F.E. Delay 0.8V on F.E., BCLK

tBCNBCrf
4–24 Bus Clocks Skew 2.0V on R.E., BCLK to

b2 a2 b2 a2 b2 a2 ns
(Note 1) 0.8V on F.E., BCLK

tBCNBCfr
4–24 Bus Clocks Skew 0.8V on F.E., BCLK to

b2 a2 b2 a2 b2 a2 ns
(Note 1) 2.0V on R.E., BCLK

tAv
4–5, 4–6 Address Bits 0–31 After R.E., BCLK T1

11 9 8 ns
Valid

tAh
4–5, 4–6 Address Bits 0–31 After R.E., BCLK T1 or Ti

0 0 0 ns
Hold

tAf
4–11, 4–12 Address Bits 0–31 After F.E., BCLK Ti

21 17 13 ns
Floating

tAnf
4–11, 4–12 Address Bits 0–31 After F.E., BCLK Ti

0 0 0 ns
Not Floating

Note 1: Guaranteed by characterization. Due to tester conditions, this parameter is not 100% tested.
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4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32GX32-20, NS32GX32-25, NS32GX32-30 (Continued)

Name Figure Description Reference/Conditions
NS32GX32-20 NS32GX32-25 NS32GX32-30

Units

Min Max Min Max Min Max

tABv
4–8 Address Bits A2, A3 After R.E., BCLK T2B

11 9 8 ns
Valid (Burst Cycle)

tABh
4–8 Address Bits A2, A3 After R.E., BCLK T2B

0 0 0 ns
Hold (Burst Cycle)

tDOv
4–6, 4–15 Data Out Valid After R.E., BCLK T1

0.5 tBCp
0.5 tBCp 0.5 tBCp

0.5 tBCp 0.5 tBCp
0.5 tBCp ns

a13 a12 a11

tDOh
4–6, 4–15 Data Out Hold After R.E., BCLK T1 or Ti 0 0 0 ns

tDOspc
4–15 Data Out Setup Before SPC T.E.

8 6 5 ns
(Slave Write)

tDOf
4–7 Data Bus Floating After R.E., BCLK

21 17 13 ns
T1 or Ti

tDOnf
4–7 Data Bus After F.E., BCLK T1

0 0 0 ns
Not Floating

tBMTv
4–5, 4–7 BMT Signal Valid After R.E., BCLK T1 32 25 23 ns

tBMTh
4–5, 4–7 BMT Signal Hold After R.E., BCLK T2 0 0 0 ns

tBMTf
4–11, 4–12 BMT Signal Floating After F.E., BCLK Ti 21 17 13 ns

tBMThf
4–11, 4–12 BMT Signal After F.E., BCLK Ti

0 0 0 ns
Not Floating

tCONFa
4–5, 4–8 CONF Signal Active After R.E., BCLK T1

0.5 tBCp

0.5 tBCp 0.5 tBCp

0.5 tBCp 0.5 tBCp

0.5 tBCp ns
a11 a9 a8

tCONFia
4–5, 4–8 CONF Signal Inactive After R.E., BCLK T1 or Ti 11 9 8 ns

tCONFf
4–11, 4–12 CONF Signal Floating After F.E., BCLK Ti 21 17 13 ns

tCONFnf
4–11, 4–12 CONF Signal After F.E., BCLK Ti

0 0 0 ns
Not Floating

tADSa
4–5, 4–8 ADS Signal Active After R.E., BCLK T1 11 9 8 ns

tADSia
4–5, 4–8 ADS Signal Inactive After F.E., BCLK T1 11 9 8 ns

tADSw
4–6 ADS Pulse Width At 0.8V (Both Edges) 15 12 9 ns

tADSf
4–11, 4–12 ADS Signal Floating After F.E., BCLK Ti 21 17 13 ns

tADSnf
4–11, 4–12 ADS Signal After F.E., BCLK Ti

0 0 0 ns
Not Floating

tBEv
4–6, 4–8 BEn Signals Valid After R.E., BCLK T1 11 9 8 ns

tBEh
4–6, 4–8 BEn Signals Hold After R.E., BCLK T1,

0 0 0 ns
Ti or T2B

tBEf
4–11, 4-12 BEn Signals Floating After F.E., BCLK Ti 21 17 13 ns

tBEnf
4–11, 4–12 BEn Signals After F.E., BCLK Ti

0 0 0 ns
Not Floating

tDDINv
4–5, 4–6 DDIN Signal Valid After R.E., BCLK T1 11 9 8 ns

tDDINh
4–5, 4–6 DDIN Signal Hold After R.E., BCLK T1 or Ti 0 0 0 ns

tDDINf
4–11, 4–12 DDIN Signal Floating After F.E., BCLK Ti 21 17 13 ns

tDDINnf
4–11, 4–12 DDIN Signal After F.E., BCLK Ti

0 0 0 ns
Not Floating

tSPCa
4–14, 4–15 SPC Signal Active After R.E., BCLK T1 19 15 12 ns
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4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32GX32-20, NS32GX32-25, NS32GX32-30 (Continued)

Name Figure Description Reference/Conditions
NS32GX32-20 NS32GX32-25 NS32GX32-30

Units

Min Max Min Max Min Max

tSPCia
4–14, 4–15 SPC Signal Inactive After R.E., BCLK Ti, T1 or T2 19 15 12 ns

tDDSPC 4–14 DDIN Valid to Before SPC L.E.
0 0 0 ns

(Note 1) SPC Active

tHLDAa
4–12, 4–13 HLDA Signal Active After F.E., BCLK Ti 15 11 10 ns

tHLDAia
4–12 HLDA Signal Inactive After F.E., BCLK Ti 15 11 10 ns

tSTv
4–5, 4–14 Status (ST0–4) Valid After R.E., BCLK T1 11 9 8 ns

tSTh
4–5, 4–14 Status (ST0–4) Hold After R.E., BCLK T1 or Ti 0 0 0 ns

tBOUTa
4–8, 4–9 BOUT Signal Active After R.E., BCLK T2 15 12 11 ns

tBOUTia
4–8, 4–9 BOUT Signal Inactive After R.E., BCLK

15 12 11 ns
Last T2B, T1 or Ti

tBOUTf
4–11, 4–12 BOUT Signal Floating After F.E., BCLK Ti 21 17 13 ns

tBOUTnf
4–11, 4–12 BOUT Signal After F.E., BCLK Ti

0 0 0 ns
Not Floating

tILOa
4–7 Interlock Signal Active After F.E., BCLK Ti 11 9 8 ns

tILOia
4–7 Interlock Signal Inactive After F.E., BCLK Ti 11 9 8 ns

tPFSa
4–21 PFS Signal Active After F.E., BCLK 15 11 10 ns

tPFSia
4–21 PFS Signal Inactive After F.E., Next BCLK 15 11 10 ns

tISFa
4–22 ISF Signal Active After F.E., BCLK 15 11 10 ns

tISFia
4–22 ISF Signal Inactive After F.E., Next BCLK 15 11 10 ns

tBPa
4–23 BP Signal Active After F.E., BCLK 15 11 10 ns

tBPia
4–23 BP Signal Inactive After F.E., Next BCLK 15 11 10 ns

tUSv
4–5 U/S Signal Valid After R.E., BCLK T1 11 9 8 ns

tUSh
4–5 U/S Signal Hold After R.E., BCLK T1 or Ti 0 0 0 ns

tCASv
4–5 CASEC Signal Valid After F.E., BCLK T1 15 11 10 ns

tCASh
4–5 CASEC Signal Hold After R.E., BCLK T1 or Ti 0 0 0 ns

tCASf
4–11, 4–12 CASEC Signal Floating After F.E., BCLK Ti 21 17 13 ns

tCASnf
4–11, 4–12 CASEC Signal After F.E., BCLK Ti

0 0 0 ns
Not Floating

tIOIv
4–5 IOINH Signal Valid After R.E., BCLK T1 15 11 10 ns

tIOIh
4–5 IOINH Signal Hold After R.E., BCLK T1 or Ti 0 0 0 ns

Note 1: Guaranteed by characterization. Due to tester conditions, this parameter is not 100% tested.
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4.0 Device Specifications (Continued)

4.4.2.2 Input Signal Requirements: NS32GX32-20, NS32GX32-25, NS32GX32-30

Name Figure Description Reference/Conditions
NS32GX32-20 NS32GX32-25 NS32GX32-30

Units

Min Max Min Max Min Max

tCp
4–24 Input Clock Period R.E., CLK to Next

25 50 20 50 16.6 50 ns
R.E., CLK

tCh
4–24 CLK High Time At 2.0V on CLK 0.5 tCp

0.5 tCp
0.5 tCp ns

(Both Edges) b5 b5 b4

tCl
4–24 CLK Low Time At 0.8V on CLK 0.5 tCp

0.5 tCp
0.5 tCp ns

(Both Edges) b5 b5 b4

tCr
4–24 CLK Rise Time 0.8V to 2.0V on R.E., CLK

5 4 3 ns
(Note 1)

tCf
4–24 CLK Fall Time 2.0V to 0.8V on F.E., CLK

5 4 3 ns
(Note 1)

tDIs
4–5, 4–14 Data In Setup Before R.E., BCLK T1 or Ti 13 11 9 ns

tDIh
4–5, 4–14 Data In Hold After R.E., BCLK T1 or Ti 1 1 1 ns

tRDYs
4–5 RDY Setup Time Before R.E., BCLK T2(W),

22 18 15 ns
T1 or Ti

tRDYh
4–5 RDY Hold Time Ater R.E., BCLK T2(W),

1 1 1 ns
T1 or Ti

tBWs
4–5 BW0–1 Setup Time Before F.E., BCLK T2 or T2(W) 21 17 14 ns

tBWh
4–5 BW0–1 Hold Time After F.E., BCLK T2 or T2(W) 1 1 1 ns

tHOLDs
4–12, 4–13 HOLD Setup Time Before F.E., BCLK 21 17 14 ns

tHOLDh
4–12 HOLD Hold Time After F.E., BCLK 1 1 1 ns

tBINs
4–8 BIN Setup Time Before F.E., BCLK T2 or T2(W) 21 17 14 ns

tBINh
4–8 BIN Hold Time After F.E., BCLK T2 or T2(W) 1 1 1 ns

tBERs
4–6, 4–8 BER Setup Time Before R.E., BCLK T1 or Ti 21 17 14 ns

tBERh
4–6, 4–8 BER Hold Time After R.E., BCLK T1 or Ti 1 1 1 ns

tBRTs
4–6, 4–8 BRT Setup Time Before R.E., BCLK T1 or Ti 21 17 14 ns

tBRTh
4–6, 4–8 BRT Hold Time After R.E., BCLK T1 or Ti 1 1 1 ns

tIODs
4–5 IODEC Setup Time Before F.E., BCLK T2 or T2(W) 21 17 14 ns

tIODh
4–5 IODEC Hold Time After F.E., BCLK T2 or T2(W) 1 1 1 ns

tPWR 4–26 Power Stable to After VCC Reaches 4.5V
50 40 30 ms

(Note 1) R.E. of RST

tRSTs
4–27 RST Setup Time Before R.E., BCLK 14 12 11 ns

tRSTw
4–27 RST Pulse Width At 0.8V (Both Edges) 64 64 64 tBCp

Note 1: Due to tester conditions, this parameter is not 100% tested.
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4.0 Device Specifications (Continued)

4.4.2.2 Input Signal Requirements: NS32GX32-20, NS32GX32-25, NS32GX32-30 (Continued)

Name Figure Description Reference/Conditions
NS32GX32-20 NS32GX32-25 NS32GX32-30

Units

Min Max Min Max Min Max

tCIIs
4–5 CIIN Setup Time Before F.E., BCLK T2 21 17 14 ns

tCIIh
4–5 CIIN Hold Time After F.E., BCLK T2 1 1 1 ns

tINTs
4–19 INT Setup Time Before R.E., BCLK 14 12 11 ns

tINTh
4–19 INT Hold Time After R.E., BCLK 1 1 1 ns

tNMIs
4–19 NMI Setup Time Before R.E., BCLK 20 17 16 ns

tNMIh
4–19 NMI Hold Time After R.E., BCLK 1 1 1 ns

tSDs
4–16 SDN Setup Time Before R.E., BCLK 14 12 11 ns

tSDh
4–16 SDN Hold Time After R.E., BCLK 1 1 1 ns

tFSSRs
4–17 FSSR Setup Time Before R.E., BCLK 14 12 11 ns

tFSSRh
4–17 FSSR Hold Time After R.E., BCLK 1 1 1 ns

tSYNCs
4–25 SYNC Setup Time Before R.E., CLK 10 8 7 ns

tSYNCh
4–25 SYNC Hold Time After R.E., CLK 1 1 1 ns

tDBGs
4–20 DBG Setup Time Before R.E., BCLK 14 12 11 ns

tDBGh
4–20 DBG Hold Time After R.E., BCLK 1 1 1 ns
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4.0 Device Specifications (Continued)

4.4.3 Timing Diagrams

TL/EE/10253–43

FIGURE 4-5. Basic Read Cycle Timing
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4.0 Device Specifications (Continued)

TL/EE/10253–44

Note: An Idle State is always inserted before a Write Cycle when the

Write immediately follows a Read Cycle. A0–31, DDIN, BE0–3,

ST0–4 remain unchanged during this idle state.

FIGURE 4-6. Write Cycle Timing
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4.0 Device Specifications (Continued)

TL/EE/10253–45

FIGURE 4-7. Interlocked Read and Write Cycles
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4.0 Device Specifications (Continued)

TL/EE/10253–46

FIGURE 4-8. Burst Read Cycles
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4.0 Device Specifications (Continued)

TL/EE/10253–47

FIGURE 4-9. External Termination of Burst Cycles

TL/EE/10253–48

FIGURE 4-10. Bus Error or Retry During Burst Cycles

Note: Two idle state are always inserted by the CPU following the assertion of BRT.
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4.0 Device Specifications (Continued)

TL/EE/10253–49

FIGURE 4-11. Extended Retry Timing
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4.0 Device Specifications (Continued)

TL/EE/10253–50

FIGURE 4-12. Hold Timing (Bus Initially Idle)
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4.0 Device Specifications (Continued)

TL/EE/10253–51

FIGURE 4-13. HOLD Acknowledge Timing

(Bus Initially Not Idle)

TL/EE/10253–52

Note: An idle state is always inserted before a slave read cycle.

FIGURE 4-14. Slave Processor Read Timing

TL/EE/10253–53

FIGURE 4-15. Slave Processor Write Timing

TL/EE/10253–54

FIGURE 4-16. Slave Processor Done

TL/EE/10253–55

FIGURE 4-17. FSSR Signal Timing
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4.0 Device Specifications (Continued)

TL/EE/10253–57

FIGURE 4-18. INT and NMI Signals Sampling

Note 1: INT and NMI are sampled on every other rising edge of BCLK, starting with the second rising edge of BCLK after RST goes high.

Note 2: INT is level sensitive, and once asserted, it should not be deasserted until it is acknowledged.

TL/EE/10253–58

FIGURE 4-19. Debug Trap Request

TL/EE/10253–59

FIGURE 4-20. PFS Signal Timing

TL/EE/10253–60

FIGURE 4-21. ISF Signal Timing

TL/EE/10253–61

FIGURE 4-22. Break Point Signal Timing
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4.0 Device Specifications (Continued)

TL/EE/10253–62

FIGURE 4-23. Clock Waveforms

TL/EE/10253–63

FIGURE 4-24. Bus Clock Synchronization

TL/EE/10253–64

FIGURE 4-25. Power-On Reset

TL/EE/10253–65

FIGURE 4-26. Non-Power-On Reset
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Appendix A: Instruction Formats
NOTATIONS:

i e Integer Type Field

B e 00 (Byte)

W e 01 (Word)

D e 11 (Double Word)

f e Floating Point Type Field

F e 1 (Std. Floating: 32 bits)

L e 0 (Long Floating: 64 bits)

c e Custom Type Field

D e 1 (Double Word)

Q e 0 (Quad Word)

op e Operation Code

Valid encodings shown with each format.

gen, gen 1, gen 2eGeneral Addressing Mode Field

See Section 2.2 for encodings.

reg e General Purpose Register Number

cond e Condition Code Field

0000 e EQual: Z e 1

0001 e Not Equal: Z e 0

0010 e Carry Set: C e 1

0011 e Carry Clear: C e 0

0100 e HIgher: L e 1

0101 e Lower or Same: L e 0

0110 e Greater Than: N e 1

0111 e Less or Equal: N e 0

1000 e Flag Set: F e 1

1001 e Flag Clear: F e 0

1010 e LOwer: L e 0 and Z e 0

1011 e Higher or Same: L e 1 or Z e 1

1100 e Less Than: N e 0 and Z e 0

1101 e Greater or Equal: N e 1 or Z e 1

1110 e (Unconditionally True)

1111 e (Unconditionally False)

short e Short Immediate value. May contain:

quick: Signed 4-bit value, in MOVQ, ADDQ,

CMPQ, ACB.

cond: Condition Code (above), in Scond.

areg: CPU Dedicated Register, in LPR, SPR.

0000 e US

0001 e DCR

0010 e BPC

0011 e DSR

0100 e CAR

0101–0111 e (Reserved)

1000 e FP

1001 e SP

1010 e SB

1011 e USP

1100 e CFG

1101 e PSR

1110 e INTBASE

1111 e MOD

Options: in String Instructions

U/W B T

T e Translated

B e Backward

U/W e 00: None

01: While Match

11: Until Match

Configuration bits, in SETCFG Instruction:

C Res F I

Note: Reserved bit must be set to 0 when executing SETCFG.

7 0

cond 1 0 1 0

Format 0

Bcond (BR)

7 0

op 0 0 1 0

Format 1

BSR -0000 ENTER -1000

RET -0001 EXIT -1001

CXP -0010 NOP -1010

RXP -0011 WAIT -1011

RETT -0100 DIA -1100

RETI -0101 FLAG -1101

SAVE -0110 SVC -1110

RESTORE -0111 BPT -1111

15 8 7 0

gen short op 1 1 i

Format 2

ADDQ -000 ACB -100

CMPQ -001 MOVQ -101

SPR -010 LPR -110

Scond -011
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Appendix A: Instruction Formats (Continued)

15 8 7 0

gen op 1 1 1 1 1 i

Format 3

CXPD -0000 ADJSP -1010

BICPSR -0010 JSR -1100

JUMP -0100 CASE -1110

BISPSR -0110

Trap (UND) on XXX1, 1000

15 8 7 0

gen 1 gen 2 op i

Format 4

ADD -0000 SUB -1000

CMP -0001 ADDR -1001

BIC -0010 AND -1010

ADDC -0100 SUBC -1100

MOV -0101 TBIT -1101

OR -0110 XOR -1110

23 16 15 8 7 0

0 0 0 0 0 short 0 op i 0 0 0 0 1 1 1 0

Format 5

MOVS -0000 SETCFG -0010

CMPS -0001 SKPS -0011

Trap (UND) on 1XXX, 01XX

23 16 15 8 7 0

gen 1 gen 2 op i 0 1 0 0 1 1 1 0

Format 6

ROT -0000 NEG -1000

ASH -0001 NOT -1001

CBIT -0010 Trap (UND) -1010

CBITI -0011 SUBP -1011

Trap (UND) -0100 ABS -1100

LSH -0101 COM -1101

SBIT -0110 IBIT -1110

SBITI -0111 ADDP -1111

23 16 15 8 7 0

gen 1 gen 2 op i 1 1 0 0 1 1 1 0

Format 7

MOVM -0000 MUL -1000

CMPM -0001 MEI -1001

INSS -0010 Trap (UND) -1010

EXTS -0011 DEI -1011

MOVXBW -0100 QUO -1100

MOVZBW -0101 REM -1101

MOVZiD -0110 MOD -1110

MOVXiD -0111 DIV -1111

TL/EE/10253–66

Format 8

EXT -0 00 INDEX -1 00

CVTP -0 01 FFS -1 01

INS -0 10

CHECK -0 11

MOVSU -110, reg e 001

MOVUS -110, reg e 011

23 16 15 8 7 0

gen 1 gen 2 op f i 0 0 1 1 1 1 1 0

Format 9

MOVif -000 ROUND -100

LFSR -001 TRUNC -101

MOVLF -010 SFSR -110

MOVFL -011 FLOOR -111

TL/EE/10253–67

Format 10

Trap (UND) Always

23 16 15 8 7 0

gen 1 gen 2 op 0 f 1 0 1 1 1 1 1 0

Format 11

ADDf -0000 DIVf -1000

MOVf -0001 Note 1 -1001

CMPf -0010 Note 3 -1010

Note 3 -0011 Note 1 -1011

SUBf -0100 MULf -1100

NEGf -0101 ABSf -1101

Note 2 -0110 Note 2 -1110

Note 1 -0111 Note 1 -1111
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Appendix A: Instruction Formats (Continued)

23 16 15 8 7 0

gen 1 gen 2 op 0 f 1 1 1 1 1 1 1 0

Format 12

Note 2 -0000 Note 2 -1000

Note 1 -0001 Note 1 -1001

POLYf -0010 Note 3 -1010

DOTf -0011 Note 1 -1011

SCALBf -0100 Note 2 -1100

LOGBf -0101 Note 1 -1101

Note 2 -0110 Note 2 -1110

Note 1 -0111 Note 1 -1111

TL/EE/10253–68

Format 13

Trap (UND) Always

23 16 15 8 7 0

gen 1 short 0 op i 0 0 0 1 1 1 1 0

Format 14

CINV b1001

Trap (UND) on 00XX, 01XX, 1000, 101X, 11XX

23 16 15 8 7 0

n n n 1 0 1 1 0

Operation Word ID Byte

Format 15

(Custom Slave)

nnn Operation Word Format

23 16 15 8

000 gen 1 short x op i

Format 15.0

LCR -0010

SCR -0011

Trap (UND) on all others

23 16 15 8

001 gen 1 gen 2 op c i

Format 15.1

CCV3 -000 CCV2 -100

LCSR -001 CCV1 -101

CCV5 -010 SCSR -110

CCV4 -011 CCV0 -111

23 16 15 8

101 gen 1 gen 2 op x c

Format 15.5

CCAL0 -0000 CCAL3 -1000

CMOV0 -0001 CMOV3 -1001

CCMP0 -0010 Note 3 -1010

CCMP1 -0011 Note 1 -1011

CCAL1 -0100 CCAL2 -1100

CMOV2 -0101 CMOV1 -1101

Note 2 -0110 Note 2 -1110

Note 1 -0111 Note 1 -1111

23 16 15 8

111 gen 1 gen 2 op x c

Format 15.7

Note 2 -0000 Note 2 -1000

Note 1 -0001 Note 1 -1001

Note 3 -0010 Note 3 -1010

Note 3 -0011 Note 1 -1011

Note 2 -0100 Note 2 -1100

Note 1 -0101 Note 1 -1101

Note 2 -0110 Note 2 -1110

Note 1 -0111 Note 1 -1111

If nnn e 010, 011, 100, 110 then Trap (UND) Always.

TL/EE/10253–69

Format 16

Trap (UND) Always

TL/EE/10253–70

Format 17

Trap (UND) Always

TL/EE/10253–71
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Appendix A: Instruction
Formats (Continued)

Format 18

Trap (UND) Always

TL/EE/10253–72

Format 19

Trap (UND) Always

Implied Immediate Encodings:

7 0

r7 r6 r5 r4 r3 r2 r1 r0

Register Mark, Appended to SAVE, ENTER

7 0

r0 r1 r2 r3 r4 r5 r6 r7

Register Mark, Appended to RESTORE, EXIT

7 0

offset length - 1

Offset/Length Modifier Appended to INSS, EXTS

Note 1: Opcode not defined; CPU treats like MOVf or CMOVc. First operand

has access class of read; second operand has access class of write; f or c

field selects 32- or 64-bit data.

Note 2: Opcode not defined; CPU treats like ADDf or CCALc. First operand

has access class of read;, second operand has access class of read-modify-

write; f or c field selects 32- or 64-bit data.

Note 3: Opcode not defined; CPU treats like CMPf or CCMPc. First operand

has access class of read;, second operand has access class of read; f or c

field selects 32- or 64-bit data.

Appendix B. Compatibility Issues
The NS32GX32 is compatible with the Series 32000 archi-

tecture implemented by the NS32532, NS32032, NS32332,

and previous microprocessors in the family. Compatibility

means that within certain limited constraints, programs that

execute on one of the earlier Series 32000 microprocessors

will produce identical results when executed on the

NS32GX32. Compatibility applies to privileged operating

systems programs, as well as to non-privileged applications

programs. This appendix explains both the restrictions on

compatibility with previous Series 32000 microprocessors

and the extensions to the architecture that are implemented

by the NS32GX32.

B.1 RESTRICTIONS ON COMPATIBILITY

If the following restrictions are observed, then a program

that executes on an earlier Series 32000 microprocessor

will produce identical results when executed on the

NS32GX32 in an appropriately configured system:

1. The program is not time-dependent. For example, the

program should not use instruction loops to control real-

time delays.

2. The program does not use any encodings of instruc-

tions, operands, addresses, or control fields identified to

be reserved or undefined. For example, if the count op-

erand’s value for an LSHi instruction is not within the

range specified by theSeries 32000 Instruction Set Ref-
erence Manual, then the results produced by the

NS32GX32 may differ from those of the NS32032.

3. The program does not depend on the use of a Memory

Management Unit (MMU).

4. The program does not depend on the detection of bus

errors according to the implementation of the NS32332.

For example, the NS32GX32 distinguishes between re-

startable and nonrestartable bus errors by transferring

control to the appropriate bus-error exception service

procedure through one of two distinct entries in the In-

terrupt Dispatch Table. In contrast, the NS32332 uses a

single entry in the Interrupt Dispatch Table for all bus

errors.

5. The program does not modify itself. Refer to Section B.4

for more information.

6. The program does not depend on the execution of cer-

tain complex instructions to be non-interruptible. Refer

to Section B.5 on. ‘‘Memory-Mapped I/O’’ for more in-

formation.

7. The program does not use the custom slave instructions

CATSTO and CATST1, as they are not supported by the

NS32GX32 and will result in a Trap (UND) when their

execution is attempted.

B.2 ARCHITECTURE EXTENSIONS

The NS32GX32 implements the following extensions of the

Series 32000 architecture using previously reserved control

bits, instruction encodings, and memory locations. Exten-

sions implemented earlier in the NS32332, such as 32-bit

addressing, are not listed.

1. The DC, LDC, IC, and LIC bits in the CFG register have

been defined to control the on-chip Instruction and Data

Caches. The DE-bit in the CFG register has been de-

fined to enable Direct-Exception Mode.

2. The V-flag in the PSR register has been defined to en-

able the Integer-Overflow Trap.

3. The DCR, BPC, DSR, and CAR registers have been de-

fined to control debugging features. Access to these

registers has been added to the definition of the LPR

and SPR instructions.

4. Access to the CFG and SP1 registers has been added

to the definition of the LPR and SPR instructions.

5. The CINV instruction has been defined to invalidate

control of the on-chip Instruction and Data Caches.

6. Direct-Exception Mode has been added to support fast-

er interrupt service time and systems without module

tables.

7. A new entry has been added to the Interrupt Dispatch

Table for supporting vectors to distinguish between re-

startable and nonrestartable bus errors. Two additional

entries support Trap (OVF) and Trap (DBG).

B.3 INTEGER OVERFLOW TRAP

A new trap condition is recognized for integer arithmetic

overflow. Trap (OVF) is enabled by the V-flag in the PSR.

This new trap is important because detection of integer

overflow conditions is required for certain programming lan-

guages, such as ADA, and the PSR flags do not indicate the

occurrence of overflow for ASHi, DIVi and MULi instructions.
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Appendix B. Compatibility Issues (Continued)

More details on integer overflow are given in Section 3.2.5,

where a description of all the cases in which an overflow

condition is detected is also provided.

INTEGER ARITHMETIC

The V-flag in the PSR enables Trap (OVF) to occur following

execution of an integer arithmetic instruction whose result

cannot be represented exactly in the destination operand’s

location.

If the number of bits required to represent the resulting quo-

tient of a DEI instruction exceeds half the number of bits of

the destination, then the contents of both the quotient and

remainder stored in the destination are undefined.

The ADDR instruction can be used in place of integer arith-

metic instructions to perform certain calculations. In this

case however, integer overflow is not detected by the CPU.

LOGICAL INSTRUCTIONS

The V-flag in the PSR enables Trap (OVF) to occur following

execution of an ASHi instruction whose result cannot be

represented exactly in the destination operand’s location.

ARRAY INSTRUCTIONS

The V-flag in the PSR enables Trap (OVF) to occur following

execution of a CHECKi instruction whose source operand is

out of bounds.

PROCESSOR CONTROL INSTRUCTIONS

The V-flag in the PSR enables Trap (OVF) to occur following

execution of an ACBi instruction if the sum of the ‘‘inc’’ val-

ue and the ‘‘index’’ operand cannot be represented exactly

in the ‘‘index’’ operand’s location.

B.4 SELF-MODIFYING CODE

The Series 32000 architecture does not have special provi-

sions to optimally support self-modifying programs.

Nevertheless, on the NS32332 and previous Series 32000

microprocessors it is possible to execute self-modifying

code according to the following sequence:

1. Modify the appropriate instruction.

2. Execute a JUMP instruction or other instruction that

causes the microprocessor’s instruction queue to be

flushed.

3. Execute the modified instruction.

For example, an interactive debugger may follow the se-

quence above after reaching a breakpoint in a program be-

ing monitored.

The same program may not produce identical results when

executed on the NS32GX32 due to effects of the Instruction

Cache and branch prediction. In order to execute self-modi-

fying code on the NS32GX32 it is necessary to do the fol-

lowing:

1. Modify the appropriate instruction.

2. If the modified instruction is on a cacheable page, exe-

cute CINV to invalidate the contents of the Instruction

Cache.

3. Execute an instruction that causes a serializing opera-

tion. See Section 3.1.3.3.

4. Execute the modified instruction.

B.5 MEMORY-MAPPED I/O

As was mentioned in Section 3.1.3.2, certain peripheral de-

vices exhibit characteristics identified as ‘‘destructive-read-

ing’’ and ‘‘side-effects of writing’’ that impose requirements

for special handling of memory-mapped I/O references.

The NS32GX32 supports two methods to use on references

to memory-mapped peripheral devices that exhibit either or

both of these characteristics.

For peripheral devices that exhibit only side-effects of writ-

ing, correct operation can be ensured either by locating the

device between addresses FF000000 (hex) and FF7FFFFF

(hex) in the address space or by observing the first 2 restric-

tions listed below. For peripheral devices that exhibit de-

structive-reading, all the following restrictions must be ob-

served to ensure correct operation:

1. References to the device must be inhibited while the

CPU asserts the output signal IOINH.

2. The input signal IODEC must be asserted by the system

on references to the device.

3. The device cannot be used for instruction fetches, reads

of effective addresses.

4. If an instruction that reads a source operand from the

device crosses a page boundary, then no Trap (ABT) or

restartable bus error can occur during fetches from the

page with higher addresses.

5. The device can be used as a source operand only for

instructions in the list below.

ABSi CBITi MOVMi SBITIi

ADDi CBITIi MOVXi SUBi

ADDCi CMPi MOVZi SUBCi

ADDPi CMPQi NEGi SUBPi

ADDQi COMi NOTi TBITi

ANDi IBITi ORi XORi

ASHi LSHi ROTi

BICi MOVi SBITi

This restriction arises because the CPU can respond to

interrupt requests during the execution of complex in-

struction in order to reduce interrupt latency. Thus, the

CPU may read the source operands for a DEID instruc-

tion (extended-precision divide), begin calculating the in-

struction’s results, and then respond to an interrupt re-

quest before completing the instruction. In such an

event, the instruction can be executed again and com-

pleted correctly after the interrupt service procedure re-

turns unless one of the source operands was altered by

destructive-reading.

Appendix C. Instruction Set
Extensions
The following sections describe the differences and ex-

tensions to the Series 32000 instruction set (as present-

ed in the ‘‘Series 32000 Instruction Set Reference Man-

ual’’) implemented by the NS32GX32.

No changes or additions have been made to the user-

mode instruction set, and only a few privileged instruc-

tions have been added.
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Appendix C. Instruction Set Extensions (Continued)

C.1 PROCESSOR SERVICE INSTRUCTIONS

The CFG register, User Stack Pointer (SP1), and Debug

Registers can be loaded and stored using privileged forms

of the LPRi and SPRi instructions.

When the SETCFG instruction is executed, the CFG register

bits 0 through 3 are loaded from the instruction’s short field,

bits 4 through 7 are forced to 1, and bits 8 through 12 are

forced to 0.

The contents of the on-chip Instruction Cache and Data

Cache can be invalidated by executing the privileged in-

struction CINV. While executing the CINV instruction, the

CPU generates 2 slave bus cycles on the system interface

to display the first 3 bytes of the instruction and the source

operand.

C.2 INSTRUCTION DEFINITIONS

This section provides a description of the operations and

encodings of the new NS32GX32 privileged instructions.

Load and Store Processor Registers

Syntax: LPRi procreg, src

short gen

read.i

SPRi procreg dest

short gen

write.i

The LPRi and SPRi instructions can be used to load and

store the User Stack Pointer (USP or SP1), the Configura-

tion Register (CFG) and the Debug Registers in addition to

the Processor Registers supported by the previous Series

32000 CPUs. Access to these registers is privileged.

Figure C-1 and Table C-1 show the instruction formats and

the new ‘short’ field encodings for LPRi and SPRi.

Flags Affected: No flags affected by loading or storing the

USP, CFG, or Debug Registers.

Traps: Illegal Instruction Trap (ILL) occurs if an

attempt is made to load or store the USP,

CFG or Debug Registers while the U-flag

is 1.

15 8 7 0

gen short 1 1 0 1 1 i

src procreg LPRi

15 8 7 0

gen short 0 1 0 1 1 i

dest procreg SPRi
FIGURE C-1. LPRi/SPRi Instruction Formats

TABLE C-1. LPRi/SPRi New ‘Short’ Field Encodings

Register procreg short field

Debug Condition Register DCR 0001

Breakpoint Program Counter BPC 0010

Debug Status Register DSR 0011

Compare Address Register CAR 0100

User Stack Pointer USP 1011

Configuration Register CFG 1100

Cache Invalidate

Syntax: CINV [options], src

gen

read. D

The CINV instruction invalidates the contents of locations in

the on-chip Instruction Cache and Data Cache. The instruc-

tion can be used to invalidate either the entire contents of

the on-chip caches or only a 16-byte block. In the latter

case, the 28 most-significant bits of the source operand

specify the physical address of the aligned 16-byte block;

the 4 least-significant bits of the source operand are ig-

nored. If the specified block is not located in the on-chip

caches, then the instruction has no effect. If the entire

cache contents is to be invalidated, then the source oper-

and is read, but its value is ignored.

Options are specified by listing the letters A (invalidate All), I

(Instruction Cache), and D (Data Cache). If neither the I nor

D option is specified, the instruction has no effect.

In the instruction encoding, the options are represented in

the A, I, and D fields as follows:

A: 0Ðinvalidate only a 16-byte block

1Ðinvalidate the entire cache

I: 0Ðdo not affect the Instruction Cache

1Ðinvalidate the Instruction Cache

D: 0Ðdo not affect the Data Cache

1Ðinvalidate the Data Cache

Flags Affected: None

Traps: Illegal Operation Trap (ILL) occurs if an at-

tempt is made to execute this instruction

while the U-flag is 1.

Examples:

1. CINV [A, D, I], R3 1E A7 1B

2. CINV [I], R3 1E 27 19

Example 1 invalidates the entire Instruction Cache and Data

Cache.

Example 2 invalidates the 16-byte block whose physical ad-

dress in the Instruction Cache is contained in R3.
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Appendix C. Instruction Set
Extensions (Continued)

23 15 8 7 0

gen 0 A I D 0 1 0 0 1 1 1 0 0 0 1 1 1 1 0

src options CINV
FIGURE C-2. CINV Instruction Format

Appendix D. Instruction
Execution Times
The NS32GX32 achieves its performance by using an ad-

vanced implementation incorporating a 4-stage Instruction

Pipeline, an Instruction Cache and a Data Cache into a sin-

gle integrated circuit.

As a consequence of this advanced implementation, the

performance evaluation for the NS32GX32 is more complex

than for the previous microprocessors in the Series 32000

family. In fact, it is no longer possible to determine the exe-

cution time for an instruction using only a set of tables for

operations and addressing modes. Rather, it is necessary to

consider dependencies between the various instructions ex-

ecuting in the pipeline, as well as the occurrence of misses

for the on-chip caches.

The following sections explain the method to evaluate the

performance of the NS32GX32 by calculating various timing

parameters for an instruction sequence. Due to the high

degree of parallelism in the NS32GX32, the evaluation tech-

niques presented here include some simplifications and ap-

proximations.

D.1 INTERNAL ORGANIZATION

AND INSTRUCTION EXECUTION

The NS32GX32 is organized internally as 8 functional units

as shown inFigure 1. The functional units operate in parallel

to execute instructions in the 4-stage pipeline. The structure

of this pipeline is shown in Figure 3-2 . The Instruction Fetch

and Instruction Decode pipeline stages are implemented in

the loader along with the 8-byte instruction queue and the

buffer for a decoded instruction. The Address Calculation

pipeline stage is implemented in the address unit. The Exe-

cute pipeline stage is implemented in the Execution Unit

along with the write data buffer that holds up to two results

directed to memory.

The Address Unit and Execution Unit can process instruc-

tions at a peak rate of 2 clock cycles per instruction, en-

abling a sustained pipeline throughput at 30 MHz of

15 MIPS (million instructions per second) for sequences of

register-to-register, immediate-to-register, memory-to-regis-

ter instructions and register-to-memory. Nevertheless, the

execution of instructions in the pipeline is reduced from the

peak throughput of 2 cycles by the following causes of de-

lay:

1. Complex operations, like division, require more than 2 cy-

cles in the Execution Unit, and complex addressing

modes, like memory relative, require more than 2 cycles

in the Address Unit.

2. Dependencies between instructions can limit the flow

through the pipeline. A data dependency can arise when

the result of one instruction is the source of a following

instruction. Control dependencies arise when branching

instructions are executed. Section D.3 describes the

types of instruction dependencies that impact perform-

ance and explains how to calculate the pipeline delays.

3. Cache misses can cause the flow of instructions through

the pipeline to be delayed, as can non-aligned refer-

ences. Section D.4 explains the performance impact for

these forms of storage delays.

The effective time Teff needed to execute an instruction is

given by the following formula:

Teff e Te a Td a Ts

Te is the execution time in the pipeline in the absence of

data dependencies between instructions and storage de-

lays, Td is the delay due to data dependencies, and Ts is the

effect of storage delays.

D.2 BASIC EXECUTION TIMES

Instruction flow in sequence through the pipeline stages im-

plemented by the Loader, Address Unit, and Execution Unit.

In almost all cases, the Loader is at least as fast at decod-

ing an instruction as the Address Unit is at processing the

instruction. Consequently, the effects of the Loader can be

ignored when analyzing the smooth flow of instructions in

the pipeline, and it is only necessary to consider the times

for the Address Unit and Execution Unit. The time required

by the Loader to fetch and decode instructions is significant

only when there are control dependencies between instruc-

tions or Instruction Cache misses, both of which are ex-

plained later.

The time for the pipeline to advance from one instruction to

the next is typically determined by the maximum time of the

Address Unit and Execution Unit to complete processing of

the instruction on which they are operating. For example, if

the Execution Unit is completing instruction n in 2 cycles

and the Address Unit is completing instruction n a1 in 4

cycles, then the pipeline will advance in 4 cycles. For certain

instructions, such as RESTORE, the Address Unit waits until

the Execution Unit has completed the instruction before

proceeding to the next instruction. When such an instruction

is in the Execution Unit, the time for the pipeline to advance

is equal to the sum of the time for the Execution Unit to

complete instruction n and the time for the Address Unit to

complete instruction n a1. The processing times for the

Loader, Address Unit, and Execution Unit are explained be-

low.

D.2.1 Loader Timing

The Loader can process an instruction field on each clock

cycle, where a field is one of the following:

# An opcode of 1 to 3 bytes including addressing mode

specifiers.

# Up to 2 index bytes, if scaled index addressing mode is

used.

# A displacement.

# An immediate value of 8, 16 or 32 bits.

The Loader requires additional time in the following cases:

# 1 additional cycle when 2 consecutive double-word fields

begin at an odd address.

# 2 cycles in total to process a double-precision floating-

point immediate value.
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Appendix D. Instruction Execution Times (Continued)

D.2.2 Address Unit Timing

The processing time of the Address Unit depends on the

instruction’s operation and the number and type of its gen-

eral addressing modes. The basic time for most instructions

is 2 cycles. A relatively small number of instructions require

an additional address unit time, as shown in the timing ta-

bles in Section D.5.5. Floating-point instructions as well as

Custom-Slave instructions require an additional 3 cycles

plus 2 cycles for each quad-word operand in memory.

For instructions with 2 general addressing modes, 2 addi-

tional cycles are required when both addressing modes re-

fer to memory. Certain general addressing modes require an

additional processing time, as shown in Table D-1. For ex-

ample, the instruction MOVD 4(8(FP)), TOS requires 7 cy-

cles in the Address Unit; 2 cycles for the basic time, an

additional 2 cycles because both modes refer to memory,

and an additional 3 cycles for Memory Relative addressing

mode.

TABLE D-1. Additional Address Unit Processing

Time for Complex Addressing Modes

Mode
Additional

Cycles

Memory Relative 3

External 8

Scaled Indexing 2

D.2.3 Execution Unit Timing

The Execution Unit processing times for the various

NS32GX32 instructions are provided in Section D.5.5. Cer-

tain operations cause a break in the instruction flow through

the pipeline.

Some of these operation simply stop the Address Unit,

while others flush the instruction queue as well. The infor-

mation on how to evaluate the penalty resulting from in-

struction flow breaks is provided in the following sections.

D.3 INSTRUCTION DEPENDENCIES

Interactions between instructions in the pipeline can cause

delays. Two types of interactions can arise, as described

below.

D.3.1 Data Dependencies

In certain circumstances the flow of instructions in the pipe-

line will be delayed when the result of an instruction is used

as the source of a succeeding instruction. Such interlocks

are automatically detected by the microprocessor and han-

dled with complete transparency to software.

D.3.1.1 Register Interlocks

When an instruction uses a base register that is the destina-

tion of either of the previous 2 instructions, a delay occurs.

Modifications of the Stack Pointer resulting from the use of

TOS addressing mode do not cause any delay. Also, there

is no delay for a data dependency when the instruction that

modifies the register is one for which the Address Unit

stops. The delay is 3 cycles when, as in the following exam-

ple, the base register is modified by the immediately preced-

ing instruction.

n: ADDD R1,R0 ; modify R0

n01: MOVD 4(R0),R2 ; R0 is base register,

delay 3 cycles

The delay is 1 cycle when the register is modified 2 instruc-

tions before its use as a base register, as shown in this

example.

n: ADDD R1,R0 ; modify R0

n01: MOVD 4(SP),R3 ; R0 not used

n02: MOVD 4(R0),R2 ; R0 is base register,

delay 1 cycle

When an instruction uses an index register that is the desti-

nation of the previous instruction, a delay of 1 cycle occurs,

as shown in the example below. If the register is modified 2

or more instructions prior to its use as an index register,

then no delay occurs.

n: ADDD R1,R0 ; modify R0

n01: MOVD 4(SP)[R0:B],R2

; R0 is index register

delay 1 cycle

Bypass circuitry in the Execution Unit generally avoids delay

when a register modified by one instruction is used as the

source operand of the following instruction, as in the follow-

ing example.

n: ADDD R1,R0 ; modify R0

n01: MOVD R0,R2 ; R0 is source register,

no delay

For the uncommon case where the operand in the source

register is larger than the destination of the previous instruc-

tion, a delay of 2 cycles occurs. Here is an example.

n: ADDB R1,R0 ; modify byte in R0

n01: MOVD R0,R2 ; R0 dw source operand,

2 cycle delay

Note: The Address Unit does not make any differentiation between CPU

and FPU registers. Therefore, register interlocks can occur between

integer and floating-point instructions.

D.3.1.2 Memory Interlocks

When an instruction reads a source operand (or address for

effective address calculation) from memory that depends on

the destination of either of the previous 2 instructions, a

delay occurs. The CPU detects a dependency between a

read and a write reference in the following cases, which

include some false dependencies in addition to all actual

dependencies:

# Either reference crosses a double-word boundary

# Address bits 0 through 11 are equal

# Address bits 2 through 11 are equal and either reference

is for a word

# Address bits 2 through 11 are equal and either reference

is for a double-word

The delay for a memeory interlock is 4 cycles when, as in

the following example, the memory location is modified by

the immediately preceding instruction.

n: ADDQD 1,4(SP) ; modify 4(SP)

n01: CMPD 10,4(SP) ; read, 4(SP),

4 cycle delay
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The delay is 2 cycles when the memory location is modified

2 instructions before its use as a source operand or effec-

tive address, as shown in this example.

n: ADDQD 1,4(SP) ; modify 4(SP)

n01: MOVD R0,R1 ; no reference to 4(SP)

n02: CMPD 10, 4(SP); read 4(SP),

2 cycles delay

Certain sequences of read and write references can cause

a delay of 1 cycle although there is no data dependency

between the references. This arises because the Data

Cache is occupied for 2 cycles on write references. In the

absence of data dependencies, read references are given

priority over write references. Therefore, this delay only oc-

curs when an instruction with destination in memory is fol-

lowed 2 instructions later by an instruction that refers to

memory (read or write) and 3 instructions later by an instruc-

tion that reads from memory. Here is an example:

n: MOVD R0,4(SP) ; memory write

n01: MOVD R6,R7 ; any instruction

n02: MOVD 8(SP),R0 ; memory read or write

n03: MOVD 12(SP),R1; memory read

delayed 1 cycle

D.3.2 Control Dependencies

The flow of instructions through the pipeline is delayed

when the address from which to fetch an instruction de-

pends on a previous instruction, such as when a conditional

branch is excuted. The Loader includes special circuitry to

handle branch instructions (ACB, BR, Bcond, and BSR) that

serves to reduce such delays. When a branch instruction is

decoded, the Loader calculates the destination address and

selects between the sequential and non-sequential instruc-

tion streams. The non-sequential stream is selected for un-

conditional branches. For conditional branches the selec-

tion is based on the branch’s direction (forward or back-

ward) as well as the tested condition. The branch is predict-

ed taken in any of the following cases.

# The branch is backward.

# The tested condition is either NE or LE.

Measurements have shown that the correct stream is se-

lected for 64% of conditional branches and 71% of total

branches.

If the Loader selects the non-sequential stream, then the

destination address is transferred to the Instruction Cache.

For conditional branches, the Loader saves the address of

the alternate stream (the one not selected). When a condi-

tional branch instruction reaches the Execution Unit, the

condition is resolved, and the Execution Unit signals the

Loader whether or not the branch was taken. If the branch

had been incorrectly predicted, the Instruction Cache be-

gins fetching instructions from the correct stream.

The delay for handling a branch instruction depends on

whether the branch is taken and whether it is predicted cor-

rectly. Unconditional branches have the same delay as cor-

rectly predicted, taken conditional branches.

Another form of delay occurs when 2 consecutive condition-

al branch instructions are executed. This delay of 2 cycles

arises from contention for the register that holds the alter-

nate stream address in the Loader.

Control dependencies also arise when JUMP, RET, and oth-

er non-branch instructions alter the sequential execution of

instructions.

D.4 STORAGE DELAYS

The flow of instructions in the pipeline can be delayed by

off-chip memory references that result from misses in the

on-chip storage buffers and by misalignment of instructions

and operands. These considerations are explained in the

following sections. The delays reported assume no wait

states on the external bus and no interference between in-

struction and data references.

D.4.1 Instruction Cache Misses

An Instruction Cache miss causes a 5 cycle gap in the fetch-

ing of instructions. When the miss occurs for a non-sequen-

tial instruction fetch, the pipeline is idle for the entire gap, so

the delay is 5 cycles. When the miss occurs for a sequential

fetch, the pipeline is not idle for the entire gap because

instructions that have been prefetched ahead and buffered

can be executed. The delay for misses on non-sequential

instruction fetches can be estimated to be approximately

half the gap, or 2.5 cycles.

D.4.2 Data Cache Misses

A Data Cache miss causes a delay of 2 cycles. When a

burst read cycle is used to fill the cache block, then 3 addi-

tional cycles are required to update the Data Cache. In case

a burst cycle is used and either of the 2 instructions follow-

ing the instruction that caused the miss also reads from

memory, then an additional delay occurs: 3 cycle delay

when the instruction that reads from memory immediately

follows the miss, and 2 cycle delay when the memory read

occurs 2 instructions after the miss.

D.4.3 Instruction and Operand Alignment

When a data reference (either read or write) crosses a dou-

ble-word boundary, there is a delay of 2 cycles.

When the opcode for a non-sequential instruction crosses a

double-word boundary, there is a delay of 1 cycle. No delay

occurs in the same situation for a sequential instruction.

There is also a delay of 2 cycles when an instruction fetch is

located on a different page from the previous fetch and

there is a hit in the Instruction Cache. This delay, which is

due to the time required to translate the new page’s ad-

dress, also occurs following any serializing operation.

D.5 EXECUTION TIME CALCULATIONS

This section provides the necessary information to calculate

the Te portion of the effective time required by the CPU to

execute an instruction.

The effects of data dependencies and storage delays are

not taken into account in the evaluation of Te, rather, they

should be separately evaluated through a careful examina-

tion of the instruction sequence.

The following assumptions are made:

Ð The entire instruction, with displacements and immedi-

ate operands, is present in the instruction queue when

needed.

Ð All memory operands are available to the Execution Unit

and Address Unit when needed.

Ð Memory writes are performed at full speed through the

write buffer.

Ð Where possible, the values of operands are taken into

consideration when they affect instruction timing, and a

range of times is given. When this is not done, the worst

case is assumed.
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D.5.1 Definitions

Teu Time required by the Execution Unit to execute an

instruction.

Tau Total processing time in the Address Unit.

Tad Extra time needed by the Address Unit, in addition

to the basic time, to process more complex cases.

Tad can be evaluated as follows:

Tad e Tx a Ty1 a Ty2

Tx e 2 if the instruction has two general operands

and both of them are in memory.

0 otherwise.

Ty1 and Ty2 are related to operands 1 and 2 re-

spectively. Their values are given below.

Ty(1, 2) e 3 if Memory Relative

8 if External

2 if Scaled Indexing

0 if any other addressing mode

The following parameters are only used for floating-point

execution time calculations.

Tanp Additional Address Unit time needed to process

floating-point instructions (Section D.2.2). Tanp can

be calculated as follows:

Tanp e 3 a 2 * (Number of 64-bit operands in

memory)

Ttcs Time required to transfer ID and Opcode, if no op-

erand needs to be transferred to the slave. Other-

wise, it is the time needed to transfer the last 32

bits of operand data to the slave. In the latter case

the transfer of ID and Opcode as well as any oper-

and data except the last 32 bits is included in the

Execution Unit timing.

Ttsc Time required by the CPU to complete the floating-

point instruction upon receiving the DONE signal

from the slave. This includes the time to process

the DONE signal itself in addition to the time need-

ed to read the result (if any) from the slave.

l This parameter is related to the floating-point oper-

and size as follows:

Standard floating (32 bits): l e 0

Long floating (64 bits): l e 1

D.5.2 Notes on Table Use

1. In the Teu column the notation n1 x n2 means n1 mini-

mum, n2 maximum.

2. In the notes column, notations held within angle brackets
kl indicate alternatives in the operand addressing

modes which affect the execution time. A table entry

which is affected by the operand addressing may have

multiple values, corresponding to the alternatives. This

addressing notations are:

kIl Immediate

kRl CPU register

kMl Memory

kFl FPU register, either 32 or 64 bits

kml Memory, except Top of Stack

kTl Top of Stack

kxl Any addressing mode

kabl a and b represent the addressing modes of oper-

ands 1 and 2 respectively. Both of them can be

any addressing mode. (e.g., kMRl means

memory to CPU register).

3. The notation ‘Break K’ provides pipeline status informa-

tion after executing the instruction to which ‘Break K’ ap-

plies. The value of K is interpreted as follows:

K e 0 The Address Unit was stopped by the instruction

but the pipeline was not flushed. The Address

Unit can start processing the next instruction im-

mediately.

K l 0 The pipeline was flushed by the instruction. The

Address Unit must wait for K cycles before it can

start processing the next instruction.

K k 0 The Address Unit was stopped at the beginning

of the instruction but it was restarted lKl cycles

before the end of it. The Address Unit can start

processing the next instruction lKl cycles before

the end of the instruction to which ‘Break K’ ap-

plies.

4. Some instructions must wait for pending writes to com-

plete before being able to execute. The number of cycles

that these instructions must wait for, is between 6 and 7

for the first operand in the write buffer and 2 for the sec-

ond operand, if any.

5. The CBITIi and SBITIi instructions will execute a RMW

access after waiting for pending writes. The extra time

required for the RMW access is only 3 cycles since the

read portion is overlapped with the time in the Execution

Unit.

6. The keyword defined for the Bcond instruction have the

following meaning:

BTPC Branch Taken, Predicted Correctly

BTPI Branch Taken, Predicted Incorrectly

BNTPC Branch Not Taken, Predicted Correctly

BNTPI Branch Not Taken, Predicted Incorrectly

D.5.3 Teff Evaluation

The Te portion of the effective execution time for a certain

instruction in an instruction sequence is obtained by per-

forming the following steps:

1. Label the current and previous instruction in the se-

quence with n and nb1 respectively.

2. Obtain from the tables the values of Teu and Tau for in-

struction n and Teu for instruction nb1.

3. For floating-point instructions, obtain the values of Ttcs
and Ttsc.

4. Use the following formula to determine the execution time

Te.

Te e func (Tau(n), Teu(nb1), Tflt(nb1),

Break (nb1)) a Teu(n) a Tflt(n)
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func provides the amount of processing time in the Address

Unit that cannot be hidden. Its definition is given below.

0 if Tau(n) s (Teu(nb1) a Tflt (nb1))

AND NOT Break (nb1)

Tau(n) b Teu(nb1) if Tau(n) l (Teu(nb1) a Tflt(nb1))

AND NOT Break (nb1)

Tau(n) a K if (Tau(n) a K) l 0

AND Break (nb1)

0 if (Tau(n) a K) s 0

AND Break (nb1)

K is the value associated with Break (nb1).

Tflt only applies to floating-point instructions and is al-

ways 0 for other instructions. It is evaluated as follows:

Tflt e ttcs a Ttsc a Tfpu

Tfpu is the execution time in the Floating-Point Unit.

5. Calculate the total execution time Teff by using the follow-

ing formula:

Teff e Te a Td a Ts

Where Td and Ts are dependent on the instruction se-

quence, and can be obtained using the information pro-

vided in Section D.4.

D.5.4 Instruction Timing Example

This section presents a simple instruction timing example

for a procedure that recursively evaluates the Fibonacci

function. In this example there are no data dependencies or

storage buffer misses; only the basic instruction execution

times in the pipeline, control dependencies, and instruction

alignment are considered.

The following is the source of the procedure in C.

unsigned fib(x)

int x;

À

if (x l 2)

return (fib(x11) 0 fib(x12));

else

return(1);

Ó

The assembly code for the procedure with comments indi-

cating the execution time is shown below. The procedure

requires 26 cycles to execute when the actual parameter is

less than or equal to 2 (branch taken) and 99 cycles when

the actual parameter is equal to 3 (recursive calls).

fib: movd r3,tos ; 2 cycles

movd r4,tos ; 2 cycles

movd r1,r3 ; 2 cycles

cmpqd $(2),r3 ; 2 cycles

bge .L1 ; 2 cycles, Break 2 If Branch Taken

movd r3,r1 ; 2 cycles

addqd $(12),rl ; 2 cycles

bsr fib ; 3 cycles

movd r0,r4 ; 2 cycles 0 4 Cycles due to RET

movd r3,r1 ; 2 cycles

addqd $(11),r1 ; 2 cycles

bsr fib ; 3 cycles

addd r4,r0 ; 2 cycles 0 1 cycle alignment a 4 cycles due to RET

movd tos,r4 ; 2 cycles

movd tos,r3 ; 2 cycles

ret $(0) ; 4 cycles, break 4

.align 4

L1: movqd $(1),r0 ; 4 cycles a 4 cycles due to BGE

movd tos,r4 ; 2 cycles

movd tos,r3 ; 2 cycles

ret $(0) ; 4 cycles, Break 4
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D.5.5 Execution Timing Tables

The following tables provide the execution timing information for all the NS32GX32 instructions. The table for the floating-point

instructions provides only the CPU portion of the total execution time. The FPU execution times can be found in the NS32381

datasheet.

D.5.5.1 Basic Instructions

Mnemonic Teu Tau Notes

ABSi 5 2 a Tad

ACBi 5 2 a Tad If incorrect prediction

then Break 1

ADDi 2 2 a Tad

ADDCi 2 2 a Tad

ADDPi 9 2 a Tad

ADDQi 2 2 a Tad

ADDR 2 4 a Tad

ADJSPi 5 2 a Tad i e B, W Break 0

3 2 a Tad i e D Break 0

ANDi 2 2 a Tad

ASHi 9 2 a Tad

BCOND 2x3 2 BTPC

2 2 BTPI Break 2

2 2 BNTPC

2 2 BNTPI Break 2

(see Note 5 in

Section D.5.2)

BICi 2 2 a Tad

BICPSRi 6 2 a Tad Wait for pending writes.

Break 5

BISPSRi 6 2 a Tad Wait for pending writes.

Break 5

BPT 30 2 Modular

21 2 Direct

Break 5

BR 2x3 2

BSR 2x3 3 a Tad

CASEi 7 2 a Tad Break 5

CBITi 10 2 kRl

14 2 a Tad kMl Break 0

CBITIi 18 2 a Tad kMl

Wait for pending writes.

Execute interlocked

RMW access. Break 5

CHECKi 10 2 a Tad Break b3.

If SRC is out of bounds

and the V bit in the PSR

is set, then add trap

time.

Mnemonic Teu Tau Notes

CINV 10 2 a Tad Wait for

pending

writes.

Break 5

CMPi 2 2 a Tad

n e number

of elements.

CMPMi 6 a 8 * n Break 0

CMPQi 2 2 a Tad

CMPSi 7 a 13 * n 2 a Tad n e number

of elements.

Break 0

CMPST 6 a 20 * n 2 a Tad n e number

of elements.

Break 0

COMi 2 2 a Tad

CVTP 5 4 a Tad

CXP 17 13 Break 5

CXPD 21 11 a Tad Break 5

DEIi 28 a 4 * i 5 a Tad i e 0/4/12

for B/W/D.

Break 0

DIA 3 2 Break 5

DIVi (30x40) a 4 * i 2 a Tad i e 0/4/12

for B/W/D

ENTER 15 a 2 * n 3 n e number

of registers

saved.

Break 0

EXIT 8 a 2 * n 2 n e number

of registers

restored

EXTi 12 8 kRl

13 8 a Tad kMl

Break b3

EXSi 11 6 kRl

14 6 a Tad kMl

Break b3

FFSi 11 a 3 * i 2 a Tad i e number

of bytes
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D.5.5.1 Basic Instructions (Continued)

Mnemonic Teu Tau Notes

FLAG 4 2 No trap
32 2 Trap, Modular
21 2 Trap, Direct

If trap then:
Àwait for
pending writes;
Break 5Ó

IBITi 10 2 kRl

14 2 a Tad kMl

If kMl

then Break 0

INDEXi 43 5 a Tad

INSi 15 8 kRl

18 8 a Tad kMl

INSSi 14 6 kRl

19 6 a Tad kMl

Break 0

JSR 3 9 a Tad Break 5

JUMP 3 4 a Tad Break 5

LPRi 6 2 a Tad CPU Reg e FP,
SP, USP, SP, MOD.
Break 0

5 2 a Tad CPU Reg e CFG,
INTBASE, DSR,
BPC, UPSR.
Wait for pending

writes.
Break 5

7 2 a Tad CPU Reg e DCR,
PSR CAR. Wait for
pending writes.
Break 5

LSHi 3 2 a Tad

MEIi 13 a 2 * i 5 a Tad i e 0/4/12
for B/W/D.
Break 0

MODi (34x49) 2 a Tad i e 0/4/12
a 4 * i for B/W/D

MOVi 2 2 a Tad

MOVMi 5 a 4 * n 2 a Tad n e number
of elements.
Break 0

MOVQi 2 2 a Tad

MOVSi n e number
of elements.

12 a 4 * n 2 a Tad No options.
14 a 8 * n 2 a Tad B, W and/or U

Options in effect.
Break 0

MOVST 16 a 9 * n 2 a Tad n e number
of elements.
Break 0

Mnemonic Teu Tau Notes

MOVSVi 9 2 a Tad Wait for
pending writes.
Break 5

MOVUSi 11 2 a Tad Wait for
pending writes.
Break 5

MOVXii 2 2 a Tad

MOVZii 2 2 a Tad

MULi 13 a 2 * i 2 a Tad i e 0/4/12
for B/W/D.
General case.

24 2 a Tad If MULD and
0 s SRC s 255

NEGi 2 2 a Tad

NOP 2 2

NOTi 3 2 a Tad

ORi 2 2 a Tad

QUOi (30x40) 2 a Tad i e 0/4/12
a 4 * i for B/W/D

REMi (32x42) 2 a Tad i e 0/4/12
a 4 * i for B/W/D

RESTORE 7 a 2 * n 2 n e number
of registers
restored.
Break 0

RET 4 3 Break 4

RETI 19 5 Noncascaded, Modular
13 5 Noncascaded, Direct
29 5 Cascaded, Modular
22 5 Cascaded, Direct

Wait for
pending writes.
Break 5

RETT 14 5 Modular
8 5 Direct

Wait for
pending writes.
Break 5

ROTi 7 2 a Tad

RXP 8 5 Break 5

SCONDi 3 2 a Tad

SAVE 8 a 2 * n 2 n e number
of registers.
Break 0

SBITi 10 2 kRl

14 2 a Tad kMl

Break 0
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D.5.5.1 Basic Instructions (Continued)

Mnemonic Teu Tau Notes

SBITIi 10 2 kRl

18 2 a Tad kMl

Wait for pending
writes. Execute
interlocked RMW
access.
Break 5

SETCFG 6 2 Break 5

SKPSi 8 a 6 * n 2 a Tad n e number of
elements.
Break 0

SKPST 6 a 20 * n 2 a Tad n e number of
elements.
Break 0

SPRi 5 2 a Tad CPU Reg e

PSR, CAR
3 2 a Tad CPU Reg e

all others

Mnemonic Teu Tau Notes

SUBi 2 2 a Tad

SUBCi 2 2 a Tad

SUBPi 6 2 a Tad

SVC 32 2 Modular
21 2 Direct

Wait for
pending writes.
Break 5

TBITi 8 2 kRl

11 2 a Tad kMl

If kMl then break 0

WAIT 3 2 Wait for pending
writes. Wait
for interrupt

XORi 2 2 a Tad
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D.5.5.2 Floating-Point Instructions, CPU Portion

Mnemonic Teu Tau Ttcs Ttsc Notes

MOVf, NEGf, 2 2 a Tanp 2 1 kFFl

ABSf, LOGBf 4 a 3 * l 2 a Tanp a Tad 2 1 kMFl

6 a 3 * l 2 a Tanp 2 1 kIFl

6 a 3 * l 2 a Tanp 2 1 kTFl

11 a 4 * l 2 a Tanp a Tad 2 3 a 2 * l kFMl Break b (1 a l)

13 a 7 * l 2 a Tanp a Tad 2 3 a 2 * l kMMl, kIMl Break b (1 a l)

ADDf, SUBf, 2 2 a Tanp 2 1 kFFl

MULf, DIVf, 4 a 3 * l 2 a Tanp 2 1 kMFl

SCALBf 6 a 3 * l 2 a Tanp 2 1 kIFl

6 a 3 * l 2 a Tanp 2 1 kTFl

17 a 7 * l 2 a Tanp a Tad 2 3 a 2 * l kFMl Break b (1 a l)

19 a 10 * l 2 a Tanp a Tad 2 3 a 2 * l kMMl, kIMl Break b (1 a l)

ROUNDfi, TRUNCfi, 11 2 a Tanp 2 3 a 2 * l kFRl Break b 1

FLOORfi 11 a 4 * l 2 a Tanp a Tad 2 3 a 2 * l kFMl Break b (1 a l)

13 2 a Tanp a Tad 2 3 a 2 * l kMRl, kIRl Break b 1

13 a 7 * l 2 a Tanp a Tad 2 3 a 2 * l kMMl, kIMl Break b (1 a l)

CMPf 18 2 a Tanp 2 kFFl

20 a 3 * l 2 a Tanp a Tad 2 kMFl

23 a 3 * l 2 a Tanp a Tad 2 kFMl

25 a 6 * l 2 a Tanp a Tad 2 kMMl, kIMl, kMIl, kIIl

Break 3

POLYf, DOTf 2 2 a Tanp 2 1 kFFl

4 a 3 * l 2 a Tanp a Tad 2 1 kMFl

6 a 3 * l 2 a Tanp 2 1 kIFl, kTFl

11 a 4 * l 2 a Tanp a Tad 2 1 kFMl Break b (1 a l)

13 a 7 * l 2 a Tanp a Tad 2 1 kMMl, kMIl, kIMl, kIIl

Break b (1 a l)

MOVif 6 2 a Tanp 2 1 kRFl

13 2 a Tanp a Tad 2 kRMl Break b 1

6 a 3 * l 2 a Tanp a Tad 2 1 kMFl, kIFl, kTFl

13 a 7 * l 2 a Tanp a Tad 2 kMMl, kIMl

Break b (1 a l)

LFSR 6 2 a Tanp 2 1 kRl

6 a 3 * l 2 a Tanp a Tad 2 1 kMl

6 a 3 * l 2 a Tanp 2 1 kIl

6 a 3 * l 2 a Tanp 2 1 kTl

SFSR 11 2 a Tanp a Tad 2 3 Break b 1

MOVFL 4 2 a Tanp 2 1 kFFl

6 2 a Tanp a Tad 2 1 kMFl, kIFl, kTFl

15 2 a Tanp a Tad 2 kFMl Break 0

17 2 a Tanp a Tad 2 kMMl, kIMl Break 0

MOVLF 4 2 a Tanp 2 1 kFFl

9 2 a Tanp a Tad 2 1 kMFl, kIFl, kTFl

15 2 a Tanp a Tad 2 kFMl Break 0

20 2 a Tanp a Tad 2 kMMl, kIMl Break 0
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Physical Dimensions inches (millimeters)

Pin Grid Array (U)

Order Number NS32GX32U-20, NS32GX32U-25 or NS32GX32U-30

NS Package Number U175A
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Physical Dimensions inches (millimeters) (Continued) Lit. Ý

Plastic Pin Grid Array (NU)

Order Number NS32GX32NU-20, NS32GX32NU-25 or NS32GX32NU-30

NS Package Number UP175A

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: (a49) 0-180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2309
Arlington, TX 76017 Email: cnjwge@ tevm2.nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: (a49) 0-180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: (a49) 0-180-532 78 32 Hong Kong

Fran3ais Tel: (a49) 0-180-532 93 58 Tel: (852) 2737-1600
Italiano Tel: (a49) 0-180-534 16 80 Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.


