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NS32AM162-20/NS32AM163-20
Voice Processor with Serial CODEC Interface

General Description
The NS32AM162 and the NS32AM163 are integrated 32 bit

members of the Series 32000É/EP family of National’s Em-

bedded System ProcessorsTM, tuned for the Digital (tape-

less) Answering Machine (DAM) market. These processors

integrate the functions of a traditional Digital Signal Pro-

cessing (DSP) chip and of a system controller. The devices

contain system support functions such as DRAM Controller,

Interrupt Control Unit, Pulse Width Modulator, CODEC Inter-

face, WATCHDOGTM timer, and a Clock Generator. The

NS32AM162 and the NS32AM163 can execute instructions

from either an on-chip ROM or from an external ROM.

The NS32AM162 and NS32AM163 have all the features of

National’s NS32AM160 and NS32AM161 respectively. The

main difference between the formers and the latters is in the

CODEC interface. The NS32AM160 and NS32AM161 sup-

port a parallel CODEC. The NS32AM162 and NS32AM163

support one or two serial CODECs.

Throughout this data sheet, unless otherwise mentioned,

every reference to the NS32AM162 is applicable to the

NS32AM163 as well.

Features
Y NS32AM162 is software and pin compatible with

NS32AM160 (NS32AM163Ðwith NS32AM161)
Y Software compatible with the Series 32000/EP

processors
Y Designed around the CPU core of the NS32CG16
Y 32-bit architecture and implementation
Y 20.48 MHz operation
Y 2.1 Kbyte on-chip RAM

Y On-chip DSP Module (DSPM) for high speed DSP

operations
Y Three modes of operation configured via strap pins:

Ð Internal ROM mode

X 25 Kbyte Internal ROM (32 Kbyte in the

NS32AM163)

X 8-bit external data bus

X 16-bit programmable I/O lines

X 8 output lines

Ð External ROM mode

X 16-bit external data bus

X 8-bit programmable I/O lines

X 16-bit address bus with support for external

128 Kbyte ROM

X Support for external I/O devices

Ð Development mode

X 16-bit external data bus

X 18-bit address bus with support for external

512 Kbyte ROM

X Support for external I/O devices

X Support for device test via status pins
Y On-chip Interrupt Control Unit (ICU) provides 4 levels of

interrupts
Y On-chip DRAM Controller for 4 Mbit and 16 Mbit

devices
Y On-chip CODEC clock generation and interface
Y On-chip 2 ms Real Time Counter
Y On-chip 8-bit Pulse Width Modulator (PWM) module
Y On-chip WATCHDOG Timer
Y Power down mode

Block Diagram
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1.0 Product Introduction
The NS32AM162 processor performs the main tasks of a

Digital Answering Machine: system control, voice compres-

sion/decompression, and other voice services.

System control includes user interface via keyboard and dis-

play handling. This task also controls the phone line, and

monitors the activity on the line. The system control also

keeps track of the time and detects power failures.

The voice compression/decompression consists of per-

forming transformations between voice samples and com-

pressed digital data. The on-chip DSPM allows the imple-

mentation of different voice handling algorithms, such as

GSM, Sub-Band Coding (SBC), and Linear Predictive Code

(LPC).

Other voice services include DTMF detection and genera-

tion, tone generation, voice synthesis, voice recognition,

VOX detection, etc.

Three different system configurations are supported:

Internal ROM Mode. This mode provides the lowest chip

count for a full DAM solution. In this mode the NS32AM162

provides 25 Kbytes of on-chip program ROM (32 Kbytes in

the NS32AM163), and three on-chip general purpose I/O

ports. Figure 1-1 shows a DAM based on the NS32AM162

in its Internal ROM mode.

External ROM Mode. This mode allows program flexibility

in the DAM application. In this mode, an external ROM can

be attached to the NS32AM162 to provide an easy way of

changing the DAM’s program. One on-chip general purpose

I/O port is provided, and two other I/O ports can be added

with minimal logic. Figure 1-2 shows a DAM based on the

NS32AM162 in its External ROM mode.

Development Mode. Development mode is useful for eval-

uation and testing. In this mode, external ROM, RAM, and

I/O devices can be connected to the NS32AM162. Some

pins are used to reflect the internal status of the

NS32AM162. No on-chip I/O ports are provided in this

mode. Figure 1-3 shows an Evaluation Board based on the

NS32AM162 in its Development mode.

TL/EE/11732–2

FIGURE 1-1. NS32AM162ÐInternal ROM Mode
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1.0 Product Introduction (Continued)

TL/EE/11732–3

FIGURE 1-2. NS32AM162ÐExternal ROM Mode

TL/EE/11732–4

FIGURE 1-3. NS32AM162ÐDevelopment Mode
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1.0 Product Introduction (Continued)

The NS32AM162 is software-compatible with all other CPUs

in the family.

The device incorporates all of the Series 32000 advanced

architectural features, with the exception of the virtual mem-

ory capability.

Brief descriptions of the NS32AM162 features that are

shared with other members of the family are provided be-

low:

Powerful Addressing Modes. Eight addressing modes

available to all instructions are included to access data

structures efficiently.

Data Types. The architecture provides for numerous data

types, such as byte, word, doubleword, and BCD, which may

be arranged into a wide variety of data structures.

Symmetric Instruction Set. While avoiding special case

instructions that compilers can’t use, the Series 32000 fami-

ly incorporates powerful instructions for control operations,

such as array indexing and external procedure calls, which

save considerable space and time for compiled code.

Memory-to-Memory Operations. The Series 32000 CPUs

represent two-address machines. This means that each op-

erand can be referenced by any one of the addressing

modes provided.

This powerful memory-to-memory architecture permits

memory locations to be treated as registers for all useful

operations. This is important for temporary operands as well

as for context switching.

Large, Uniform Addressing. The NS32AM162 has 32-bit

address pointers that can address up to 4 gigabytes without

any segmentation; this addressing scheme provides flexible

memory management without add-on expense.

Modular Software Support. Any software package for the

Series 32000 architecture can be developed independent of

all other packages, without regard to individual addressing.

In addition, ROM code is totally relocatable and easy to

access, which allows a significant reduction in hardware and

software cost.

To summarize, the architectural features cited above pro-

vide two primary performance advantages and characteris-

tics:

# High-Level Language Support

# Application Flexibility

1.1 NS32AM162 SPECIAL FEATURES

In addition to the above Series 32000 features, the

NS32AM162 provides features that make the device ex-

tremely attractive for a wide range of applications where

graphics support, low chip count, and low power consump-

tion are required.

The most relevant of these features are the enhanced Digi-

tal Signal Processing performance which makes the chip

very attractive for voice applications.

Graphics support is provided by seventeen instructions that

allow operations such as BITBLT, data compression/expan-

sion, fills, and line drawing, to be performed very efficiently.

The NS32AM162 allows systems to be built with either no or

a relatively small amount of random logic. The bus is highly

optimized to allow simple interfacing to a large variety of

DRAMs and peripheral devices. All the relevant bus access

signals and clock signals are generated on-chip. The cycle

extension logic is also incorporated on-chip.

The device is fabricated in a low-power, high speed CMOS

technology. It also includes a power down mode to minimize

the power consumption.

The power save feature, the DSP Module and the Bus Char-

acteristics are described in the ‘‘Functional Description’’

section. A general overview of BITBLT operations and a

description of the graphics support instructions is provided

in Section 2.5. Details on all the NS32AM162 graphics in-

structions can be found in the NS32CG16 Printer/Display

Processor Programmer’s Reference Supplement.
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2.0 Architectural Description
2.1 REGISTER SET

The NS32AM162 has 45 internal registers and a 2.1 Kbyte

RAM array. 16 of these registers belong to the CPU portion

of the device and are addressed either implicitly by specific

instructions or through the register addressing mode. The

other 29 belong to the DSP Module and to the on-chip pe-

ripherals. Figure 2-1 shows the NS32AM162 internal regis-

ters.

CPU Registers

General Purpose

w x32 Bits

R0–R7

Address

PC

SP0, SP1

FP

SB

INTBASE

Processor Status

PSR

Configuration

CFG

DSP Module

A

X

Y

Z

EABR

PARAM

REPEAT

CLPTR

OVF

CLSTAT

ABORT

DSPINT

DSPMASK

EXT

NMISTAT

Peripherals Registers

Interrupt Control Unit

IVCT

IMASK

IPEND

IECLR

Clock Generator

CLKCTL

WATCHDOG

WDCTL

PWM

PWMCTL

CODEC Interface

MCFG

CDATA0

CDATA1

CCTL1

CCTL2

I/O Ports

DIRA

DIRB

FIGURE 2-1. NS32AM162 Internal Registers
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2.0 Architectural Description (Continued)

2.1.1 General Purpose Registers

There are eight registers (R0–R7) used for satisfying the

high speed general storage requirements, such as holding

temporary variables and addresses. The general purpose

registers are free for any use by the programmer. They are

32 bits in length. If a general purpose register is specified for

an operand that is 8 or 16 bits long, only the low part of the

register is used; the high part is not referenced or modified.

2.1.2 Address Registers

The seven address registers are used by the processor to

implement specific address functions. Except for the MOD

register that is 16 bits wide, all the others are 32 bits. A

description of the address registers follows.

PCÐProgram Counter. The PC register is a pointer to the

first byte of the instruction currently being executed. The PC

is used to reference memory in the program section.

SP0, SP1ÐStack Pointers. The SP0 register points to the

lowest address of the last item stored on the INTERRUPT

STACK. This stack is normally used only by the operating

system. It is used primarily for storing temporary data, and

holding return information for operating system subroutines

and interrupt and trap service routines. The SP1 register

points to the lowest address of the last item stored on the

USER STACK. This stack is used by normal user programs

to hold temporary data and subroutine return information.

When a reference is made to the selected Stack Pointer

(see PSR S-bit), the terms ‘‘SP Register’’ or ‘‘SP’’ are used.

SP refers to either SP0 or SP1, depending on the setting of

the S bit in the PSR register. If the S bit in the PSR is 0, SP

refers to SP0. If the S bit in the PSR is 1 then SP refers to

SP1.

Stacks in the Series 32000 architecture grow downward in

memory. A Push operation pre-decrements the Stack Point-

er by the operand length. A Pop operation post-increments

the Stack Pointer by the operand length.

FPÐFrame Pointer. The FP register is used by a procedure

to access parameters and local variables on the stack. The

FP register is set up on procedure entry with the ENTER

instruction and restored on procedure termination with the

EXIT instruction.

The frame pointer holds the address in memory occupied by

the old contents of the frame pointer.

SBÐStatic Base. The SB register points to the global vari-

ables of a software module. This register is used to support

relocatable global variables for software modules. The SB

register holds the lowest address in memory occupied by

the global variables of a module.

INTBASEÐInterrupt Base. The INTBASE register holds

the address of the dispatch table for interrupts and traps

(Section 3.2.1).

2.1.3 Processor Status Register

The Processor Status Register (PSR) holds status informa-

tion for the microprocessor.

The PSR is sixteen bits long, divided into two eight-bit

halves. The low order eight bits are accessible to all pro-

grams, but the high order eight bits are accessible only to

programs executing in Supervisor Mode.

15 8 7 0

I P S U N Z F J K L T C

FIGURE 2-2. Processor Status Register (PSR)

C The C bit indicates that a carry or borrow occurred after

an addition or subtraction instruction. It can be used with

the ADDC and SUBC instructions to perform multiple-

precision integer arithmetic calculations. It may have a

setting of 0 (no carry or borrow) or 1 (carry or borrow).

T The T bit causes program tracing. If this bit is set to 1, a

TRC trap is executed after every instruction (Section

3.3.1).

L The L bit is altered by comparison instructions. In a com-

parison instruction the L bit is set to ‘‘1’’ if the second

operand is less than the first operand, when both oper-

ands are interpreted as unsigned integers. Otherwise, it

is set to ‘‘0’’. In Floating-Point comparisons, this bit is

always cleared.

K Reserved for use by the CPU.

J Reserved for use by the CPU.

F The F bit is a general condition flag, which is altered by

many instructions (e.g., integer arithmetic instructions

use it to indicate overflow).

Z The Z bit is altered by comparison instructions. In a com-

parison instruction the Z bit is set to ‘‘1’’ if the second

operand is equal to the first operand; otherwise it is set

to ‘‘0’’.

N The N bit is altered by comparison instructions. In a

comparison instruction the N bit is set to ‘‘1’’ if the sec-

ond operand is less than the first operand, when both

operands are interpreted as signed integers. Otherwise,

it is set to ‘‘0’’.

U If the U bit is ‘‘1’’ no privileged instructions may be exe-

cuted. If the U bit is ‘‘0’’ then all instructions may be

executed. When Ue0 the processor is said to be in Su-

pervisor Mode; when Ue1 the processor is said to be in

User Mode. A User Mode program is restricted from exe-

cuting certain instructions and accessing certain regis-

ters which could interfere with the operating system. For

example, a User Mode program is prevented from

changing the setting of the flag used to indicate its own

privilege mode. A Supervisor Mode program is assumed

to be a trusted part of the operating system, hence it has

no such restrictions.

S The S bit specifies whether the SP0 register or SP1 reg-

ister is used as the Stack Pointer. The bit is automatical-

ly cleared on interrupts and traps. It may have a setting

of 0 (use the SP0 register) or 1 (use the SP1 register).

P The P bit prevents a TRC trap from occurring more than

once for an instruction (Section 3.3.1). It may have a

setting of 0 (no trace pending) or 1 (trace pending).

I If Ie1, then all interrupts will be accepted. If Ie0, only

the NMI interrupt is accepted. Trap enables are not af-

fected by this bit.
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2.0 Architectural Description (Continued)

2.1.4 Configuration Register

The Configuration Register (CFG) is 32 bits wide, of which 5

bits are implemented.

CFG is programmed by the SETCFG instruction. Whenever

the program writes into CFG, a 0 must be written into bits 1,

2, 3.

The user must set bit 8 to 1 using the SETCFG[DE] instruc-

tion during the initialization of the chip. The format of CFG is

shown in Figure 2-3. The various control bits are described

below.

31 8 7 0

Reserved 1 Res 0 0 0 I

FIGURE 2-3. Configuration Register (CFG)

I Interrupt vectoring. This bit controls whether maskable

interrupts are handled in nonvectored (Ie0) or vec-

tored (Ie1) mode. Refer to Section 3.2.3 for more in-

formation.

2.1.5 DSP Module Registers

The DSP Module (DSPM) contains 15 memory-mapped reg-

isters. All the registers, except OVF, CLSTAT, ABORT,

DSPINT and NMISTAT, are readable and writable. OVF,

CLSTAT, DSPINT and NMISTAT are read-only. ABORT is

write-only.

The DSPM registers are divided into two groups, according

to their function PARAM, OVF, X, Y, Z, A, REPEAT, CLPTR

and EABR are called DSPM dedicated registers. CLSTAT,

ABORT, DSPINT, DSPMASK, EXT and NMISTAT are called

CPU core interface registers.

Accesses to these registers must be aligned; word and dou-

ble-word accesses must occur on word and double-word

address boundaries respectively. Failing to do will cause un-

predictable results. Figure 2-4 shows the address map of

the DSP Module registers.

Register Register

Name Address

PARAM FFFF8000

OVF FFFF8004

X FFFF8008

Y FFFF800C

Z FFFF8010

A FFFF8014

REPEAT FFFF8018

CLPTR FFFF8020

EABR FFFF8024

CLSTAT FFFF9000

ABORT FFFF9004

DSPINT FFFF9008

DSPMASK FFFF900C

EXT FFFF9010

NMISTAT FFFF9014

FIGURE 2-4. DSP Module Registers Address Map

AÐAccumulator

The format of the accumulator is shown in Figure 2-5 .

33 0 33 0

Imaginary Real

FIGURE 2-5. Accumulator Format

The A register is a complex accumulator. It has two 34-bit

fields: a real part, and an imaginary part. Bits 15 through 30

of the real and the imaginary parts of the accumulator can

be read or written by the core in one double-word access.

Bits 15 through 30 of the real part are mapped to the oper-

and’s bits 0 through 15, and bits 15 through 30 of the imagi-

nary part are mapped to the operand’s bits 16 through 31.

The accumulator can also be read and written by the com-

mand-list execution unit using the SA, SEA, LA and LEA

instructions (See Section 3.5 for more information).

Note that when a value is stored in the accumulator by the

core, the value of PARAM.RND bit is copied into bit position

14 of both real and imaginary parts of the accumulator. This

technique allows rounding of the accumulator’s value in the

following DSPM instructions (See Section 3.5.5.3 for more

information on rounding).

When the Accumulator is loaded either by the core or by the

LA or LEA instructions, bits 31–33 of the real and the imagi-

nary accumulators are loaded with the values of bit 30 of the

real and the imaginary parts respectively.

When the Accumulator is loaded either by the core or by the

LA instruction, bits 0–13 of the real and the imaginary accu-

mulators are loaded with zeros.

X, Y, Z - Vector Pointers

The format of X, Y, and Z registers is shown in Figure 2-6 .

31 16 15 8 7 4 3 0

ADDRESS Reserved WRAP-AROUND INCREMENT

FIGURE 2-6. X, Y, Z Registers Format

The X, Y, and Z registers are used for addressing up to

three vector operands. They are 32-bit registers, with three

fields: ADDRESS, INCREMENT, and WRAP-AROUND. The

value in the ADDRESS field specifies the address of a word

in the on-chip memory. This field has 16 bits, and can ad-

dress up to 64 Kwords of internal memory. The ADDRESS

fields are initialized with the vector operands’ start-address-

es by commands in the command list. At the beginning of

each vector operation, the contents of the ADDRESS field

are copied to incrementors. Increments can be used by vec-

tor instructions to step through the corresponding vector

operands while executing the appropriate calculations.

There is an address wrap-around for those vector instruc-

tions that require some of their operands to be located in

cyclic buffers. The allowed values for the increment field are

0 through 15. The actual increment will be 2INCREMENT

words. The allowed values for the WRAP-AROUND field are

0 through 15. The actual WRAP-AROUND will be

2WRAP-AROUND words. The WRAP-AROUND must be

greater or equal to the INCREMENT.

The X, Y, and Z registers can be read and written by the

core. These registers can be read and written by the com-

mand-list execution unit, as well as by the core, when using

SX, SXL, SXH, SY, SZ, LX, LY and LZ instructions.
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2.0 Architectural Description (Continued)

EABRÐExternal Address Base Register

The format of the external address base register is shown in

Figure 2-7 .

31 17 16 0

ADDRESS 0

FIGURE 2-7. EABR Register Format

The EABR register is used together with a 16-bit address

field to form a 32-bit external address. External addresses

are specified as the sum of the value in EABR and two times

the value of the 16-bit address pointed by registers X, Y or

Z. The only value allowed to be written into bits 0 through 16

of EABR is ‘‘0’’. The EABR register can be read and written

by the core. It can also be written by the command-list exe-

cution unit by using the LEABR instruction.

EABR can hold any value except for 0xFFFE0000. Access-

ing external memory with an 0xFFFE0000 in the EABR will

cause unpredictable results.

CLPTRÐCommand List Pointer

The CLPTR is a 16-bit register that holds the address of the

current command in the internal RAM. Writing into the

CLPTR causes the DSPM command-list execution unit to

begin executing commands, starting from the address in

CLPTR. The CLPTR can be read and written by the core

while the command-list execution is idle.

Whenever the DSPM command-list execution unit reads a

command from the DSPM RAM, the value of CLPTR is up-

dated to contain the address of the next command to be

executed. This implies, for example, that if the last com-

mand in a list is in address N, the CLPTR will hold a value of

N a 1 following the end of command list execution.

OVFÐOverflow Register

The format of the overflow register is shown in Figure 2-8 .

15 2 1 0

Reserved OVF SAT

FIGURE 2-8. OVF Register Format

The OVF register holds the current status of the DSPM

arithmetic unit. It has two fields: OVF and SAT. The OVF bit

is set to ‘‘1’’ whenever an overflow is detected in the DSPM

34-bit ALU (e.g., bits 32 and 33 of the ALU are not equal).

No overflow detection is provided for integers. The SAT bit

is set to ‘‘1’’ whenever a value read from the accumulator

cannot be represented within the limits of its data type (e.g.,

16 bits for real and integer, and 31 bits for extended real). In

this case the value read from the accumulator will either be

the maximum allowed value or the minimal allowed value for

this data type depending on the sign of the accumulator

value. Note that in some cases when the OVF is set, the

SAT will not be set. The reason is that if an OVF occurred,

the value in the accumulator can no longer be used for

proper SAT detection. Upon reset, and whenever the

ABORT register is written, the non reserved bits of the OVF

register is cleared to ‘‘0’’.

The OVF is a read only register. It can be read by the core. It

can also be read by the command-list execution unit using

the SOVF instruction. Reading the OVF by either the core or

the command-list execution unit clears it to ‘‘0’’.

PARAMÐVector Parameter Register

The format of the PARAM register is shown in Figure 2-9.

31 26 25 24 19 18 17 16 15 0

Reserved RND OP SUB CLR COJ Length

FIGURE 2-9. PARAM Register Format

The PARAM register is used to specify the number of itera-

tions and special options for the various instructions. The

options are: RND, OP, SUB, CLR, and COJ. The effect of

each of the bits of the PARAM register is specified in Sec-

tion 3.5.

The PARAM register can be read and written by the core. It

can also be written by the command-list execution unit, by

using the LPARAM instruction. The value written into

PARAM.LENGTH must be greater then 0.

The value of PARAM.LENGTH is not changed during com-

mand-list execution, unless it is written into using the LPAR-

AM instruction.

REPEATÐCommand-List Repeat Register

The format of the repeat register is shown in Figure 2-10.

31 16 15 0

COUNT TARGET

FIGURE 2-10. REPEAT Register Format

The REPEAT register is used, together with appropriate

commands, to implement loops and branches in the com-

mand list (see Section 3.5.5.7). The count is used to specify

the number of times a loop in the command list is to be

repeated. The target is used to specify a jump address with-

in the command list.

The REPEAT register can be read and written by the core. It

can also be read and written by the command-list execution

unit by using SREPEAT and LREPEAT instructions respec-

tively.

The value of REPEAT.COUNT changes during the execu-

tion of the DJNZ command.

ABORTÐAbort Register

The ABORT register is used to force execution of the com-

mand list to halt. Writing any value into this register stops

execution, and clears the contents of OVF, EXT, DSPINT

and DSPMASK. The ABORT register can only be written

and only by the core.

EXTÐExternal Memory Reference Control Register

The format of the external memory reference control regis-

ter is shown in Figure 2-11.

15 1 0

Reserved HOLD

FIGURE 2-11. EXT Register Format

The EXT register controls external references. The com-

mand-list execution unit checks the value of EXT. HOLD

before each external memory reference. When EXT.HOLD

is ‘‘0’’, external memory references are allowed. When

EXT.HOLD is ‘‘1’’, and external memory references are re-

quested, the execution of the command list will stop until

EXT.HOLD is ‘‘0’’. Upon reset, and whenever the ABORT

register is written, EXT.HOLD is cleared to ‘‘0’’. The EXT

register can be read or written by the core.

13



2.0 Architectural Description (Continued)

CLSTATÐCommand-List Execution Status Register

The format of the command-list execution status register is

shown in Figure 2-12.

15 1 0

Reserved RUN

FIGURE 2-12. CLSTAT Register Format

The CLSTAT register displays the current status of the exe-

cution of the command list. When the command-list execu-

tion is idle, CLSTAT.RUN is ‘‘0’’, and when it is active,

CLSTAT.RUN is ‘‘1’’. Upon reset, the CLSTAT register is

cleared to ‘‘0’’. It can only be read, and only by the core.

DSPINT, DSPMASK, NMISTATÐInterrupt Control

Registers

The format of DSPINT and DSPMASK is shown in Figure
2-13.

15 1 0

Reserved HALT

FIGURE 2-13. DSPINT and DSPMASK Register Format

The DSPINT register holds the current status of interrupt

requests. Whenever execution of the command list is

stopped, the DSPINT.HALT bit is set to ‘‘1’’. The DSPINT is

a read only register. It is cleared to ‘‘0’’ whenever it is read,

whenever the ABORT register is written, and upon reset.

The DSPMASK register is used to mask the DSPINT. HALT

flag. An interrupt request is transferred to the interrupt logic

of the IOUT output pin whenever the DSPINT.HALT bit is

set to ‘‘1’’, and the DSPMASK.HALT bit is unmasked (set to

‘‘1’’). See Section 6.1 for the functionality of IOUT.

DSPMASK can be read and written by the core. Upon reset,

and whenever the ABORT register is written, all the bits in

DSPMASK are cleared to ‘‘0’’.

The format of the NMISTAT register is shown inFigure 2-14.

15 4 3 2 1 0

Reserved WD ERR UND Res

FIGURE 2-14. NMISTAT Register Format

The NMISTAT holds the status of the current pending Non-

Maskable Interrupt (NMI) requests.

Whenever the core attempts to access the DSPM address

space while the CLSTAT.RUN bit is ‘‘1’’ (except for access-

es to the CLSTAT, EXT, DSPINT, NMISTAT DSPMASK, and

ABORT registers) NMISTAT.ERR is set to ‘‘1’’.

Whenever there is an attempt to execute a DBPT instruc-

tion, a reserved DSPM instruction (Section 3.5), the

NMISTAT.UND bit is set to ‘‘1’’.

When the WATCHDOG is not cleared in time (see Section

3.4.6), the NMISTAT.WD bit is set to ‘‘1’’.

When one of the bits in NMISTAT is set to ‘‘1’’, a NMI re-

quest to the core is issued.

The NMISTAT register is cleared to 0 upon reset, and each

time its contents are read.

When one of the bits in NMISTAT is set to 1, an NMI occurs.

The NMI handler can read the NMISTAT register to deter-

mine the source of the interrupt. Note that since NMIs may

be nested, it is possible that a second NMI handler (invoked

while the previous handler has not yet exited) will read and

handle more than one set bit in NMISTAT. Since the read

operation clears the register, the interrupted handler may

find that no bits are set.

2.1.6 Interrupt Control Unit (ICU) Register

IVCTÐInterrupt Vector Register

Byte wide. Read only. IVCT holds the encoded number of

the highest priority unmasked pending interrupt request. In-

terrupt vector numbers are always positive, in the range

0x11 to 0x14.

7 6 5 4 3 2 0

0 0 0 1 0 VECTOR

FIGURE 2-15. IVCT Register Format

IMASKÐMask Register

Byte wide. A value of ‘‘0’’ in bit position i (i in [1..4]) disables

the corresponding interrupt source. IMASK bits 0 and 5

through 7 are reserved. The non-reserved bits of IMASK

register are cleared to ‘‘0’’ upon reset, and when

CLKCTL.PDM is ‘‘1’’.

7 5 4 3 2 1 0

Reserved M4 M3 M2 M1 Reserved

FIGURE 2-16. IMASK Register Format

IPENDÐInterrupt Pending Register

Byte wide. Read only. Reading a value of ‘‘1’’ in bit position i

(i in [1..4]) indicates that the respective interrupt source is

active. IPEND bits 0 and 5 through 7 are reserved. The non-

reserved bits of IPEND are cleared to ‘‘0’’ upon reset and

when CLKCTL.PDM is ‘‘1’’.

7 5 4 3 2 1 0

Reserved P4 P3 P2 P1 Reserved

FIGURE 2-17. IPEND Register Format

IECLRÐEdge Interrupt Clear Register

Byte wide. Write only. A pending edge triggered interrupt is

cleared by writing ‘‘1’’ to the respective bit position in

IECLR. Writing ‘‘0’’ has no effect. Note that INT2 does not

have a corresponding clear bit in IECLR. INT2 is a level

sensitive interrupt, and it is cleared by writing directly to the

DSPINT register. IECLR bits 0 and 5 through 7 are reserved.

7 5 4 3 2 1 0

Reserved CLR4 CLR3 0 CLR1 Reserved

FIGURE 2-18. IECLR Register Format

2.1.7 CODEC Interface Registers

The CODEC Interface contains five 8-bit registers that are

used to select the CODEC interface and to communicate

with the CODEC. The CODEC Interface registers should not

be accessed during Power Down.

MCFGÐModules Configuration Register

This register controls the CODEC Interface configuration.

Bits 0–2 of MCFG are desinated CMC (CODEC Mode Con-

trol). Bits 3–7 are reserved.

14



2.0 Architectural Description (Continued)

The different configurations are as follows:

CMC
CODEC CODEC PWM/CFS1

Configuration Protocol Output

000 Undefined (Reset) PWM

001 One Serial CODEC Short Frame PWM

Format

101 One Serial CODEC Long Frame PWM

Format

011 Two Serial CODECs Short Frame CFS1

Format

111 Two Serial CODECs Long Frame CFS1

Format

All other CMC values are reserved.

Upon reset, CMC is set to 000. It must be set to the appro-

priate value prior to any reference to the CODEC, or to the

PWMCNT register, or to the other CODEC Interface regis-

ters. The value of MCFG is retained during power down.

CDATA0ÐCODEC0 Data

Data to be transferred to CODEC0 is written by software to

this register. It is shifted serially to that CODEC following the

next frame sync signal. Data that was shifted in from CO-

DEC0 can be read by software from this register. Bit 7 is

shifted first. The value of CDATA0 is unpredictable during

the shift itself.

CDATA1ÐCODEC1 Data

Data to be transferred to CODEC1 is written by software to

this register. It is shifted serially to that CODEC following the

next frame sync signal. Data that was shifted in from CO-

DEC1 can be read by software from this register. Bit 7 is

shifted first. The value of CDATA1 is unpredictable during

the shift itself.

CCTL1, CCTL2ÐCODEC Clock Control

Control the CODEC frame sync clock and master clock

(CCLK). The NSVOICE software package supports two

sampling ratesÐ8000 Hz and 7273 Hz. The respective

CCTL1 and CCTL2 values are the following:

Sampling Rate CCLK Frequency CCTL1 CCTL2

8000 Hz 2.048 MHz 0 33 (hex)

7273 Hz 1.862 MHz 0 23 (hex)

Upon reset and upon exit from Power Down mode, CCTL2

is set to 33 (hex), and CCTL1 to 0, selecting a sampling rate

of 8000 Hz.

2.1.8 Pulse Width Modulator (PWM) Registers

The Pulse Width Modulator (PWM) contains one 8-bit regis-

ter (PWMCTL) that controls the duty cycle of the 80 KHz

PWM output.

See Section 3.4.4 for a detailed description of the operation

of the PWM.

2.1.9 Clock Generator Registers

The Clock Generator contains one 8-bit register that con-

trols the high frequency oscillator and the power down

mode.

CLKCTLÐClock Generator Control Register

7 2 1 0

Reserved DHFO PDM

FIGURE 2-19. CLKCTL Register Format

PDM Power Down Mode Control

PDM e 0 : normal operation mode

PDM e 1 : power down mode

DHFO Disable High Frequency Oscillator

DHFO e 0 : High Frequency Oscillator enabled

DHFO e 1 : High Frequency Oscillator disabled

2.1.10 WATCHDOG (WD) Registers

The WATCHDOG (WD) contains one 8-bit register (WDCTL)

that controls the operation of the WD.

See Section 3.4.6 for a detailed description of the operation

of the WD.

2.1.11 I/O Ports Registers

The I/O Ports block contains two 8-bit write-only registers,

DIRA and DIRB, that control the direction of the bits of Port

A and Port B respectively.

A ‘‘1’’ in one of the bits configures the associated I/O pin as

an output. A ‘‘0’’ configures it as an input.

2.2 MEMORY ORGANIZATION

The main memory of the NS32AM162 is a uniform linear

address space. Memory locations are numbered sequential-

ly starting at zero and ending at 232 b 1. The number speci-

fying a memory location is called an address. The contents

of each memory location is a byte consisting of eight bits.

Unless otherwise noted, diagrams in this document show

data stored in memory with the lowest address on the right

and the highest address on the left. Also, when data is

shown vertically, the lowest address is at the top of a dia-

gram and the highest address at the bottom of the diagram.

When bits are numbered in a diagram, the least significant

bit is given the number zero, and is shown at the right of the

diagram. Bits are numbered in increasing significance and

toward the left.

7 0

A

Byte at Address A

Two contiguous bytes are called a word. Except where not-

ed, the least significant byte of a word is stored at the lower

address, and the most significant byte of the word is stored

at the next higher address. In memory, the address of a

word is the address of its least significant byte, and a word

may start at any address.

15 8 7 0

Aa1 A

MSB LSB
Word at Address A
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2.0 Architectural Description (Continued)

Two contiguous words are called a double-word. Except

where noted, the least significant word of a double-word is

stored at the lowest address and the most significant word

of the double-word is stored at the address two higher. In

memory, the address of a double-word is the address of its

least significant byte, and a double-word may start at any

address.

31 24 23 16 15 8 7 0

Aa3 Aa2 Aa1 A

MSB LSB
Double Word at Address A

Although memory is addressed as bytes, it is actually orga-

nized as words. Therefore, words and double-words that are

aligned to start at even addresses (multiples of two) are

accessed more quickly than words and double-words that

are not so aligned.

2.2.1 Address Mapping

The NS32AM162 supports the use of memory-mapped pe-

ripheral devices and coprocessors. Such memory-mapped

devices can be located at arbitrary locations within the

16-Mbyte address range available externally.

Figure 2-20 shows the NS32AM162 address mapping.

First Address Last Address

(Hex) (Hex)

00000000 000063FF(1) Internal ROM Mode Internal ROM (25 Kbytes)

00000000 0001FFFF External ROM Mode External Memory

00000000 0007FFFF Development Mode External Memory

02000000 027FFFFF External DRAM

FFFDFC10 FFFDFFFF System On-Chip RAM (1008 Bytes)

FFFE0000 FFFE045F DSPM Internal RAM (1120 Bytes)

FFFF8000 FFFF8027 DSPM Dedicated Registers

FFFF9000 FFFF9013 DSPM Control/Status Registers

FFFFA000 FFFFA047 On-Chip Modules Registers

FFFFFE00 FFFFFFFF ICU and NMI Control

All other address ranges are reserved.

FIGURE 2-20a. NS32AM162 Address Mapping

Note 1: 00007FFF in the NS32AM163 (32 Kbytes)

Module Register Address

ICU IVCT FFFFFE00

IMASK FFFFFE04

IPEND FFFFFE08

IECLR FFFFFE0C

I/O DIRA FFFFA101

DIRB FFFFA201

PORTA FFFFA401

PORTB FFFFA501

PORTC FFFFA601

Clock Generator CLKCTL FFFFA010

WATCHDOG WDCTL FFFFA000

PWM PWMCTL FFFFA020

CODEC Interface MCFG FFFFA024

CDATA0 FFFFA028

CDATA1 FFFFA02A

CCTL1 FFFFA02C

CCTL2 FFFFA02E

FIGURE 2-20b. NS32AM162 Modules Address Mapping
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2.0 Architectural Description (Continued)

2.3 INSTRUCTION SET

2.3.1 General Instruction Format

Figure 2-22 shows the general format of a Series 32000

instruction. The Basic Instruction is one to three bytes long

and contains the Opcode and up to two 5-bit General Ad-

dressing Mode (‘‘Gen’’) fields. Following the Basic Instruc-

tion field is a set of optional extensions, which may appear

depending on the instruction and the addressing modes se-

lected.

Index Bytes appear when either or both Gen fields specify

Scaled Index. In this case, the Gen field specifies only the

Scale Factor (1, 2, 4 or 8), and the Index Byte specifies

which General Purpose Register to use as the index, and

which addressing mode calculation to perform before index-

ing.

Following Index Bytes come any displacements (addressing

constants) or immediate values associated with the select-

ed addressing modes. Each Disp/lmm field may contain

one of two displacements, or one immediate value. The size

of a Displacement field is encoded within the top bits of that

field, as shown in Figure 2-23, with the remaining bits inter-

preted as a signed (two’s complement) value. The size of an

immediate value is determined from the Opcode field. Both

Displacement and Immediate fields are stored most-signifi-

cant byte first. Note that this is different from the memory

representation of data (Section 2.2).

Some instructions require additional ‘‘implied’’ immediates

and/or displacements, apart from those associated with ad-

dressing modes. Any such extensions appear at the end of

the instruction, in the order that they appear within the list of

operands in the instruction definition (Section 2.3.3).

TL/EE/11732–5

FIGURE 2-21. Index Byte Format

2.3.2 Addressing Modes

The NS32AM162 CPU generally accesses an operand by

calculating its Effective Address based on information avail-

able when the operand is to be accessed. The method to be

used in performing this calculation is specified by the pro-

grammer as an ‘‘addressing mode’’.

Addressing modes in the NS32AM162 are designed to opti-

mally support high-level language accesses to variables. In

nearly all cases, a variable access requires only one ad-

dressing mode, within the instruction that acts upon that

variable. Extraneous data movement is therefore minimized.

NS32AM162 Addressing Modes fall into eight basic types:

Register: The operand is available in one of the eight Gen-

eral Purpose Registers. In certain Slave Processor instruc-

tions, an auxiliary set of eight registers may be referenced

instead.

Register Relative: A General Purpose Register contains an

address to which is added a displacement value from the

instruction, yielding the Effective Address of the operand in

memory.

Memory Space: Identical to Register Relative above, ex-

cept that the register used is one of the dedicated registers

PC, SP, SB or FP. These registers point to data areas gen-

erally needed by high-level languages.

Memory Relative: A pointer variable is found within the

memory space pointed to by the SP, SB or FP register. A

displacement is added to that pointer to generate the Effec-

tive Address of the operand.

Immediate: The operand is encoded within the instruction.

This addressing mode is not allowed if the operand is to be

written.

Absolute: The address of the operand is specified by a

displacement field in the instruction.

Top of Stack: The currently-selected Stack Pointer (SP0 or

SP1) specifies the location of the operand. The operand is

pushed or popped, depending on whether it is written or

read.

Scaled Index: Although encoded as an addressing mode,

Scaled Indexing is an option on any addressing mode ex-

cept Immediate or another Scaled Index. It has the effect of

calculating an Effective Address, then multiplying any Gen-

eral Purpose Register by 1, 2, 4 or 8 and adding into the

total, yielding the final Effective Address of the operand.

Table 2-1 is a brief summary of the addressing modes. For a

complete description of their actions, see the Series 32000

Instruction Set Reference Manual.

In addition to the general modes, Register-Indirect with

auto-increment/decrement and warps or pitch are available

on several of the graphics instructions.

TL/EE/11732–6

FIGURE 2-22. General Instruction Format
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2.0 Architectural Description (Continued)

Byte Displacement: Range b64 to a63

Word Displacement: Range b8192 to a8191

Double Word Displacement:

Range (Entire Addressing Space)

TL/EE/11732–7

FIGURE 2-23. Displacement Encodings
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2.0 Architectural Description (Continued)

TABLE 2-1. NS32AM162 Addressing Modes

ENCODING MODE ASSEMBLER SYNTAX EFFECTIVE ADDRESS

Register

00000 Register 0 R0 or F0 None: Operand is in the specified

00001 Register 1 R1 or F1 register.

00010 Register 2 R2 or F2

00011 Register 3 R3 or F3

00100 Register 4 R4 or F4

00101 Register 5 R5 or F5

00110 Register 6 R6 or F6

00111 Register 7 R6 or F7

Register Relative

01000 Register 0 relative disp(R0) Disp a Register.

01001 Register 1 relative disp(R1)

01010 Register 2 relative disp(R2)

01011 Register 3 relative disp(R3)

01100 Register 4 relative disp(R4)

01101 Register 5 relative disp(R5)

01110 Register 6 relative disp(R6)

01111 Register 7 relative disp(R7)

Memory Relative

10000 Frame memory relative disp2(disp1 (FP)) Disp2 a Pointer; Pointer found at

10001 Stack memory relative disp2(disp1 (SP)) address Disp 1 a Register. ‘‘SP’’

10010 Static memory relative disp2(disp1 (SB)) is either SP0 or SP1, as selected

in PSR.

Reserved

10011 (Reserved for Future Use)

Immediate

10100 Immediate value None: Operand is input from

instruction queue.

Absolute

10101 Absolute @disp Disp.

Top Of Stack

10111 Top of stack TOS Top of current stack, using either

User or Interrupt Stack Pointer,

as selected in PSR. Automatic

Push/Pop included.

Memory Space

11000 Frame memory disp(FP) Disp a Register; ‘‘SP’’ is either

11001 Stack memory disp(SP) SP0 or SP1, as selected in PSR.

11010 Static memory disp(SB)

11011 Program memory *a disp

Scaled Index

11100 Index, bytes mode[Rn:B] EA (mode) a Rn.

11101 Index, words mode[Rn:W] EA (mode) a 2cRn.

11110 Index, double words mode[Rn:D] EA (mode) a 4cRn.

11111 Index, quad words mode[Rn:Q] EA (mode) a 8cRn.

‘‘Mode’’ and ‘‘n’’ are contained

within the Index Byte.

EA (mode) denotes the effective

address generated using mode.
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2.0 Architectural Description (Continued)

2.3.3 Instruction Set Summary

Table 2-2 presents a brief description of the NS32AM162

instruction set. The Format column refers to the Instruction

Format tables (Appendix A). The Instruction column gives

the instruction as coded in assembly language, and the De-

scription column provides a short description of the function

provided by that instruction. Further details of the exact op-

erations performed by each instruction may be found in the

Series 32000 Instruction Set Reference Manual and the

NS32CG16 Printer/Display Processor Programmer’s Refer-

ence.

Notations:

ieInteger length suffix: B e Byte

We Word

D e Double Word

feFloating Point length suffix: FeStandard Floating

LeLong Floating

geneGeneral operand. Any addressing mode can be speci-

fied.

shorteA 4-bit value encoded within the Basic Instruction

(see Appendix A for encodings).

immeImplied immediate operand. An 8-bit value appended

after any addressing extensions.

dispeDisplacement (addressing constant): 8, 16 or 32 bits.

All three lengths legal.

regeAny General Purpose Register: R0–R7.

aregeAny Processor Register: SP, SB, FP, INTBASE, PSR,

US (bottom 8 PSR bits).

condeAny condition code, encoded as a 4-bit field within

the Basic Instruction (see Appendix A for encodings).

TABLE 2-2. NS32AM162 Instruction Set Summary

MOVES

Format Operation Operands Description

4 MOVi gen,gen Move a value.

2 MOVQi short,gen Extend and move a signed 4-bit constant.

7 MOVMi gen,gen,disp Move multiple: disp bytes (1 to 16).

7 MOVZBW gen,gen Move with zero extension.

7 MOVZiD gen,gen Move with zero extension.

7 MOVXBW gen,gen Move with sign extension.

7 MOVXiD gen,gen Move with sign extension.

4 ADDR gen,gen Move effective address.

INTEGER ARITHMETIC

Format Operation Operands Description

4 ADDi gen,gen Add.

2 ADDQi short,gen Add signed 4-bit constant.

4 ADDCi gen,gen Add with carry.

4 SUBi gen,gen Subtract.

4 SUBCi gen,gen Subtract with carry (borrow).

6 NEGi gen,gen Negate (2’s complement).

6 ABSi gen,gen Take absolute value.

7 MULi gen,gen Multiply.

7 QUOi gen,gen Divide, rounding toward zero.

7 REMi gen,gen Remainder from QUO.

7 DIVi gen,gen Divide, rounding down.

7 MODi gen,gen Remainder from DIV (Modulus).

7 MEIi gen,gen Multiply to extended integer.

7 DEIi gen,gen Divide extended integer.

PACKED DECIMAL (BCD) ARITHMETIC

Format Operation Operands Description

6 ADDPi gen,gen Add packed.

6 SUBPi gen,gen Subtract packed.
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2.0 Architectural Description (Continued)

TABLE 2-2. NS32AM162 Instruction Set Summary (Continued)

INTEGER COMPARISON

Format Operation Operands Description

4 CMPi gen,gen Compare.

2 CMPQi short,gen Compare to signed 4-bit constant.

7 CMPMi gen,gen,disp Compare multiple: disp bytes (1 to 16).

LOGICAL AND BOOLEAN

Format Operation Operands Description

4 ANDi gen,gen Logical AND.

4 ORi gen,gen Logical OR.

4 BICi gen,gen Clear selected bits.

4 XORi gen,gen Logical exclusive OR.

6 COMi gen,gen Complement all bits.

6 NOTi gen,gen Boolean complement: LSB only.

2 Scondi gen Save condition code (cond) as a Boolean variable of size i.

SHIFTS

Format Operation Operands Description

6 LSHi gen,gen Logical shift, left or right.

6 ASHi gen,gen Arithmetic shift, left or right.

6 ROTi gen,gen Rotate, left or right.

BIT FIELDS

Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records used in

Pascal. ‘‘Extract’’ instructions read and align a bit field. ‘‘Insert’’ instructions write a bit field from an aligned source.

Format Operation Operands Description

8 EXTi reg,gen,gen,disp Extract bit field (array oriented).

8 INSi reg,gen,gen,disp Insert bit field (array oriented).

7 EXTSi gen,gen,imm,imm Extract bit field (short form).

7 INSSi gen,gen,imm,imm Insert bit field (short form).

8 CVTP reg,gen,gen Convert to bit field pointer.

ARRAYS

Format Operation Operands Description

8 CHECKi reg,gen,gen Index bounds check.

8 INDEXi reg,gen,gen Recursive indexing step for multiple-dimensional arrays.
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2.0 Architectural Description (Continued)

TABLE 2-2. NS32AM162 Instruction Set Summary (Continued)

STRINGS

String instructions assign specific functions to the General

Purpose Registers:

R4 Ð Comparison Value

R3 Ð Translation Table Pointer

R2 Ð String 2 Pointer

R1 Ð String 1 Pointer

R0 Ð Limit Count

Options on all string instructions are:

B (Backward): Decrement string pointers after each

step rather than incrementing.

U (Until match): End instruction if String 1 entry matches

R4.

W (While match): End instruction if String 1 entry does not

match R4.

All string instructions end when R0 decrements to zero.

Format Operation Operands Description

5 MOVSi options Move string 1 to string 2.

MOVST options Move string, translating bytes.

5 CMPSi options Compare string 1 to string 2.

CMPST options Compare, translating string 1 bytes.

5 SKPSi options Skip over string 1 entries.

SKPST options Skip, translating bytes for until/while.

JUMPS AND LINKAGE

Format Operation Operands Description

3 JUMP gen Jump.

0 BR disp Branch (PC Relative).

0 Bcond disp Conditional branch.

3 CASEi gen Multiway branch.

2 ACBi short,gen,disp Add 4-bit constant and branch if non-zero.

3 JSR gen Jump to subroutine.

1 BSR disp Branch to subroutine.

1 SVC Supervisor call.

1 FLAG Flag trap.

1 BPT Breakpoint trap.

1 ENTER [reg list], disp Save registers and allocate stack frame (Enter Procedure).

1 EXIT [reg list] Restore registers and reclaim stack frame (Exit Procedure).

1 RET disp Return from subroutine.

1 RETT disp Return from trap. (Privileged)

1 RETI Return from interrupt. (Privileged)

CPU REGISTER MANIPULATION

Format Operation Operands Description

1 SAVE [reg list] Save general purpose registers.

1 RESTORE [reg list] Restore general purpose registers.

2 LPRi areg,gen Load dedicated register. (Privileged if PSR or INTBASE)

2 SPRi areg,gen Store dedicated register. (Privileged if PSR or INTBASE)

3 ADJSPi gen Adjust stack pointer.

3 BISPSRi gen Set selected bits in PSR. (Privileged if not Byte length)

3 BICPSRi gen Clear selected bits in PSR. (Privileged if not Byte length)

5 SETCFG [option list] Set configuration register. (Privileged)
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2.0 Architectural Description (Continued)

TABLE 2-2. NS32AM162 Instruction Set Summary (Continued)

MISCELLANEOUS

Format Operation Operands Description

1 NOP No operation.

1 WAIT Wait for interrupt.

1 DIA Diagnose. Single-byte ‘‘Branch to Self’’ for hardware

breakpointing. Not for use in programming.

GRAPHICS

Format Operation Operands Description

5 BBOR options* Bit-aligned block transfer ‘OR’.

5 BBAND options Bit-aligned block transfer ‘AND’.

5 BBFOR Bit-aligned block transfer fast ‘OR’.

5 BBXOR options Bit-aligned block transfer ‘XOR’.

5 BBSTOD options Bit-aligned block source to destination.

5 BITWT Bit-aligned word transfer.

5 MOVMPi Move multiple pattern.

5 TBITS options Test bit string.

5 SBITS Set bit string.

5 SBITPS Set bit perpendicular string.

BITS

Format Operation Operands Description

4 TBITi gen,gen Test bit.

6 SBITi gen,gen Test and set bit.

6 CBITi gen,gen Test and clear bit.

6 IBITi gen,gen Test and invert bit.

8 FFSi gen,gen Find first set bit.

*Note: Options are controlled by fields of the instruction, PSR status bits, or dedicated register values.

2.4 GRAPHICS SUPPORT

The following sections provide a brief description of the

NS32AM162 graphics support capabilities. Basic discus-

sions on frame buffer addressing and BITBLT operations

are also provided. More detailed information on the

NS32AM162 graphics support instructions can be found in

the NS32CG16 Printer/Display Processor Programmer’s

Reference.

2.4.1 Frame Buffer Addressing

There are two basic addressing schemes for referencing

pixels within the frame buffer: Linear and Cartesian (or x-y).

Linear addressing associates a single number to each pixel

representing the physical address of the corresponding bit

in memory. Cartesian addressing associates two numbers

to each pixel representing the x and y coordinates of the

pixel relative to a point in the Cartesian space taken as the

origin. The Cartesian space is generally defined as having

the origin in the upper left. A movement to the right increas-

es the x coordinate; a movement downward increases the y

coordinate.

The correspondence between the location of a pixel in the

Cartesian space and the physical (BIT) address in memory

is shown in Figure 2-24. The origin of the Cartesian space

(xe0, ye0) corresponds to the bit address ‘‘ORG’’. Incre-

menting the x coordinate increments the bit address by one.

Incrementing the y coordinate increments the bit address by

an amount representing the warp (or pitch) of the Cartesian

space. Thus, the linear address of a pixel at location (x, y) in

the Cartesian space can be found by the following expres-

sion.

ADDR e ORG a y * WARP a x

Warp is the distance (in bits) in the physical memory space

between two vertically adjacent bits in the Cartesian space.

23



2.0 Architectural Description (Continued)

Example 1 below shows two NS32AM162 instruction se-

quences to set a single pixel given the x and y coordinates.

Example 2 shows how to create a fat pixel by setting four

adjacent bits in the Cartesian space.

Example 1: Set pixel at location (x, y)

Setup: R0 x coordinate

R1 y coordinate

Instruction Sequence 1:

MULD WARP, R1 ; Y*WARP

ADDD R0, R1 ; 0 X 4 BIT OFFSET

SBITD R1, ORG ; SET PIXEL

Instruction Sequence 2:

INDEXD R1, (WARP-1), R0 ; Y*WARP 0 X

SBITD R1, ORG ; SET PIXEL

Example 2: Create fat pixel by setting bits at locations

(x, y), (xa1, y), (x, ya1) and (xa1, ya1).

Setup: R0 x coordinate

R1 y coordinate

Instruction Sequence:

INDEXD R1, (WARP-1), R0 ; BIT ADDRESS

SBITD 41, ORG ; SET FIRST PIXEL

ADDQD 1, R1 ; (X01, Y)

SBITD R1, ORG ; SECOND PIXEL

ADDD (WARP-1), R1 ; (X, Y01)

SBITD R1, ORG ; THIRD PIXEL

ADDQD 1, R1 ; (X01, Y01)

SBITD R1, ORG ; LAST PIXEL

TL/EE/11732–8

FIGURE 2-24. Correspondence between

Linear and Cartesian Addressing

2.4.2 BITBLT Fundamentals

BITBLT, BIT-aligned BLock Transfer, is a general operator

that provides a mechanism to move an arbitrary size rectan-

gle of an image from one part of the frame buffer to another.

During the data transfer process a bitwise logical operation

can be performed between the source and the destination

data. BITBLT is also called RasterOp: operations on rasters.

It defines two rectangular areas, source and destination,

and performs a logical operation (e.g., AND, OR, XOR) be-

tween these two areas and stores the result back to the

destination. It can be expressed in simple notation as:

Source op Destination x Destination

op: AND, OR, XOR, etc.

2.4.2.1 Frame Buffer Architecture

There are two basic types of frame buffer architectures:

plane-oriented or pixel-oriented. BITBLT takes advantage of

the plane-oriented frame buffer architecture’s attribute of

multiple, adjacent pixels-per-word, facilitating the movement

of large blocks of data. The source and destination starting

addresses are expressed as pixel addresses. The width and

height of the block to be moved are expressed in terms of

pixels and scan lines. The source block may start and end

at any bit position of any word, and the same applies for the

destination block.

2.4.2.2 Bit Alignment

Before a logical operation can be performed between the

source and the destination data, the source data must first

be bit aligned to the destination data. In Figure 2-25, the

source data needs to be shifted three bits to the right in

order to align the first pixel (i.e., the pixel at the top left

corner) in the source data block to the first pixel in the desti-

nation data block.

2.4.2.3 Block Boundaries and Destination Masks

Each BITBLT destination scan line may start and end at any

bit position in any data word. The neighboring bits (bits shar-

ing the same word address with any words in the destination

data block, but not a part of the BITBLT rectangle) of the

BITBLT destination scan line must remain unchanged after

the BITBLT operation.

Due to the plane-oriented frame buffer architecture, all

memory operations must be word-aligned. In order to pre-

serve the neighboring bits surrounding the BITBLT destina-

tion block, both a left mask and a right mask are needed for

all the leftmost and all the rightmost data words of the desti-

nation block. The left mask and the right mask both remain

the same during a BITBLT operation.

The following example illustrates the bit alignment require-

ments. In this example, the memory data path is 16 bits

wide. Figure 2-25 shows a 32 pixel by 32 scan line frame

buffer which is organized as a long bit stream which wraps

around every two words (32 bits). The origin (top left corner)

of the frame buffer starts from the lowest word in memory

(word address 00 (hex)).

Each word in the memory contains 16 bits, D0–D15. The

least significant bit of a memory word, D0, is defined as the

first displayed pixel in a word. In this example, BITBLT ad-

dresses are expressed as pixel addresses relative to the

origin of the frame buffer. The source block starting address

is 021 (hex) (the second pixel in the third word). The desti-

nation block starting address is 204 (hex) (the fifth pixel in

the 33rd word). The block width is 13 (hex), and the height is

06 (hex) (corresponding to 6 scan lines). The shift value is 3.
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2.0 Architectural Description (Continued)

TL/EE/11732–9

FIGURE 2-25. 32-Pixel by 32-Scan Line Frame Buffer

TL/EE/11732–10

(a)

TL/EE/11732–11

(b)

FIGURE 2-26. Overlapping BITBLT Blocks

The left mask and the right mask are 0000,1111,1111,1111 and 1111,1111,0000,0000 respectively.

Note 1: Zeros in either the left mask or the right mask indicate the destination bits which will not be modified.

Note 2: The BB(function) instruction uses different set up parameters, and techniques.
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2.0 Architectural Description (Continued)

2.4.2.4 BITBLT Directions

A BITBLT operation moves a rectangular block of data in a

frame buffer. The operation itself can be considered as a

subroutine with two nested loops. The loops are preceded

by setup operations. In the outer loop the source and desti-

nation starting addresses are calculated, and the test for

completion is performed. In the inner loop the actual data

movement for a single scan line takes place. The length of

the inner loop is the number of (aligned) words spanned by

each scan line. The length of the outer loop is equal to the

height (number of scan lines) of the block to be moved. A

skeleton of the subroutine representing the BITBLT opera-

tion follows.

BITBLT: calculate BITBLT setup parameters;

(once per BITBLT operation).

such as

width, height

bit misalignment (shift number)

left, right masks

horizontal, vertical directions

etc

#
#

OUTERLOOP: calculate source, dest addresses;

(once per scanline).

INNERLOOP: move data, (logical operation) and incre-

ment addresses;

(once per word).

UNTIL done horizontally

UNTIL done vertically

RETURN (from BITBLT).

Note: In the NS32AM162 only the setup operations must be done by the

programmer. The inner and outer loops are automatically executed

by the BITBLT instructions.

Each loop can be executed in one of two directions: the

inner loop from left to right or right to left, the outer loop

from top to bottom (down) or bottom to top (up).

The ability to move data starting from any corner of the

BITBLT rectangle is necessary to avoid destroying the

BITBLT source data as a result of destination writes when

the source and destination are overlapped (i.e., when they

share pixels). This situation is routinely encountered while

panning or scrolling.

A determination of the correct execution directions of the

BITBLT must be performed whenever the source and

destination rectangles overlap. Any overlap will result in the

destruction of source data (from a destination write) if the

correct vertical direction is not used. Horizontal BITBLT di-

rection is of concern only in certain cases of overlap, as will

be explained below.

Figures 2-26(a) and (b) illustrate two cases of overlap. Here,

the BITBLT rectangles are three pixels wide by five scan

lines high; they overlap by a single pixel in (a) and a single

column of pixels in (b) . For purposes of illustration, the

BITBLT is assumed to be carried out pixel-by-pixel. This

convention does not affect the conclusions.

InFigure 2-26(a) , if the BITBLT is performed in the UP direc-

tion (bottom-to-top) one of the transfers of the bottom scan

line of the source will write to the circled pixel of the destina-

tion. Due to the overlap, this pixel is also part of the upper-

most scan line of the source rectangle. Thus, data needed

later is destroyed. Therefore, this BITBLT must be per-

formed in the DOWN direction. Another example of this oc-

curs any time the screen is moved in a purely vertical direc-

tion, as in scrolling text. It should be noted that, in both of

these cases, the choice of horizontal BITBLT direction may

be made arbitrarily.

Figure 2-26(b) demonstrates a case in which the horizontal

BITBLT direction may not be chosen arbitrarily. This is an

instance of purely horizontal movement of data (panning).

Because the movement from source to destination involves

data within the same scan line, the incorrect direction of

movement will overwrite data which will be needed later. In

this example, the correct direction is from right to left.

2.4.3 GRAPHICS SUPPORT INSTRUCTIONS

The NS32AM162 provides eleven instructions for support-

ing graphics oriented applications. These instructions are

divided into three groups according to the operations they

perform. General descriptions for each of them and the re-

lated formats are provided in the following sections.

2.4.3.1 BITBLT (BIT-aligned BLock Transfer)

This group includes six instructions. They are used to move

characters and objects into the frame buffer which will be

printed or displayed.

BIT-aligned BLock Transfer

Syntax: BB(function) Options

Setup: R0 base address, source data

R1 base address, destination data

R2 shift value

R3 height (in lines)

R4 first mask

R5 second mask

R6 source warp (adjusted)

R7 destination warp (adjusted)

0(SP) width (in words)

Function: AND, OR, XOR, FOR, STOD

Options: IA Increasing Address (default option).

When IA is selected, scan lines are

transferred in the increasing BIT/BYTE

order.

DA Decreasing Address.

S True Source (default option).

bS Inverted Source.

These five instructions perform standard BITBLT operations

between source and destination blocks. The operations

available include the following:

BBAND: src AND dst
bsrc AND dst

BBOR: src OR dst
bsrc OR dst

BBXOR: src XOR dst
bsrc XOR dst

BBFOR: src OR dst

BBSTOD: src TO dst
bsrc TO dst
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2.0 Architectural Description (Continued)

‘src’ and ‘bsrc’ stand for ‘True Source’ and ‘Inverted

Source’ respectively; ‘dst’ stands for ‘Destination’.

Note 1: For speed reasons, the BB instructions require the masks to be

specified with respect to the source block. In Figure 2-25 masking

was defined relative to the destination block.

Note 2: The options bS and DA are not available for the BBFOR instruc-

tion.

Note 3: BBFOR performs the same operation as BBOR with IA and S op-

tions.

Note 4: IA and DA are mutually exclusive and so are S and bS.

Note 5: The width is defined as the number of words of source data to read.

Note 6: An odd number of bytes can be specified for the source warp.

However, word alignment of source scan lines will result in faster

execution.

The horizontal and vertical directions of the BITBLT opera-

tions performed by the above instructions, with the excep-

tion of BBFOR, are both programmable. The horizontal di-

rection is controlled by the IA and DA options. The vertical

direction is controlled by the sign of the source and destina-

tion warps. Figure 2-27 and Table 2-3 show the format of

the BB instructions and the encodings for the ‘op’ and ‘i’

fields.

23 16 15 8 7 0

0 0 0 0 0 0 D X S 0 op i 0 0 0 0 1 1 1 0

# D is set when the DA option is selected

# S is set when the bS option is selected

# X is set for BBAND, and it is clear for all other BB instructions

FIGURE 2-27. BB Instructions Format

TABLE 2-3. ‘op’ and ‘i’ Field Encodings

Instruction Options ‘op’ Field ‘i’ Field

BBAND Yes 1010 11

BBOR Yes 0110 01

BBXOR Yes 1110 01

BBFOR No 1100 01

BBSTOD Yes 0100 01

BIT-aligned Word Transfer

Syntax: BITWT

Setup: R0 Base address, source word

R1 Base address, destination double word

R2 Shift value

The BITWT instruction performs a fast logical OR operation

between a source word and a destination double word,

stores the result into the destination double word and incre-

ments registers R0 and R1 by two. Before performing the

OR operation, the source word is shifted left (i.e., in the

direction of increasing bit numbers) by the value in register

R2.

This instruction can be used within the inner loop of a block

OR operation. Its use assumes that the source data is

‘‘clean’’ and does not need masking. The BITWT format is

shown in Figure 2-28.

23 16 15 8 7 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0

FIGURE 2-28. BITWT Instruction Format

2.4.3.2 Pattern Fill

Only one instruction is in this group. It is usually used for

clearing RAM and drawing patterns and lines.

Move Multiple Pattern

Syntax: MOVMPi

Setup: R0 base address of the destination

R1 pointer increment (in bytes)

R2 number of pattern moves

R3 source pattern

Note: R1 and R3 are not modified by the instruction. R2 will always be

returned as zero. R0 is modified to reflect the last address into which

a pattern was written.

This instruction stores the pattern in register R3 into the

destination area whose address is in register R0. The pat-

tern count is specified in register R2. After each store oper-

ation the destination address is changed by the contents of

register R1. This allows the pattern to be stored in rows, in

columns, and in any direction, depending on the value and

sign of R1. The MOVMPi instruction format is shown in Fig-
ure 2-29.

23 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 i 0 0 0 0 1 1 1 0

FIGURE 2-29. MOVMPi Instruction Format

2.4.3.3 Data Compression, Expansion and Magnify

The three instructions in this group can be used to com-

press data and restore data from compression. A com-

pressed character set may require from 30% to 50% less

memory space for its storage.

The compression ratio possible can be 50:1 or higher de-

pending on the data and algorithm used. TBITS can also be

used to find boundaries of an object. As a character is need-

ed, the data is expanded and stored in a RAM buffer. The

expand instructions (SBITS, SBITPS) can also function as

line drawing instructions.

Test Bit String

Syntax: TBITS option

Setup: R0 base address, source (byte address)

R1 starting source bit offset

R2 destination run length limited code

R3 maximum value run length limit

R4 maximum source bit offset

Option: 1 count set bits until a clear bit is found

0 count clear bits until a set bit is found

Note: R0, R3 and R4 are not modified by the instruction execution. R1

reflects the new bit offset. R2 holds the result.

This instruction starts at the base address, adds a bit offset,

and tests the bit for clear if ‘‘option’’ e 0 (and for set if

‘‘option’’ e 1). If clear (or set), the instruction increments to

the next higher bit and tests for clear (or set). This testing

for clear proceeds through memory until a set bit is found or

until the maximum source bit offset or maximum run length

value is reached. The total number of clear bits is stored in

the destination as a run length value.

When TBITS finds a set bit and terminates, the bit offset is

adjusted to reflect the current bit address. Offset is then

ready for the next TBITS instruction with ‘‘option’’ e 0. After
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2.0 Architectural Description (Continued)

the instruction is executed, the F flag is set to the value of

the bit previous to the bit currently being pointed to (i.e., the

value of the bit on which the instruction completed execu-

tion). In the case of a starting bit offset exceeding the maxi-

mum bit offset (R1 t R4), the F flag is set if the option was

1 and clear if the option was 0. The L flag is set when the

desired bit is found, or if the run length equalled the maxi-

mum run length value and the bit was not found. It is cleared

otherwise. Figure 2-30 shows the TBITS instruction format.

23 15 8 7 0

0 0 0 0 0 0 0 0 S 0 1 0 0 1 1 1 0 0 0 0 1 1 1 0

# S is set for ‘‘TBITS 1’’ and clear for ‘‘TBITS 0’’.

FIGURE 2-30. TBITS Instruction Format

Set Bit String

Syntax: SBITS

Setup: R0 base address of the destination

R1 starting bit offset (signed)

R2 number of bits to set (unsigned)

R3 address of string look-up table

Note: When the instruction terminates, the registers are returned un-

changed.

SBITS sets a number of contiguous bits in memory to 1, and

is typically used for data expansion operations. The instruc-

tion draws the number of ones specified by the value in R2,

starting at the bit address provided by registers R0 and R1.

In order to maximize speed and allow drawing of patterned

lines, an external 1k byte lookup table is used. The lookup

table is specified in the NS32CG16 Printer/Display Proces-

sor Programmer’s Reference Supplement.

When SBITS begins executing, it compares the value in R2

with 25. If the value in R2 is less than or equal to 25, the F

flag is cleared and the appropriate number of bits are set in

memory. If R2 is greater than 25, the F flag is set and no

other action is performed. This allows the software to use a

faster algorithm to set longer strings of bits. Figure 2-31
shows the SBITS instruction format.

23 15 8 7 0

0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 1 1 1 0

FIGURE 2-31. SBITS Instruction Format

Set BIT Perpendicular String

Syntax: SBITPS

Setup: R0 base address, destination (byte address)

R1 starting bit offset

R2 number of bits to set

R3 destination warp (signed value, in bits)

Note: When the instruction terminates, the R0 and R3 registers are re-

turned unchanged. R1 becomes the final bit offset. R2 is zero.

The SBITPS can be used to set a string of bits in any direc-

tion. This allows a font to be expanded with a 90 or 270

degree rotation, as may be required in a printer application.

SBITPS sets a string of bits starting at the bit address speci-

fied in registers R0 and R1. The number of bits in the string

is specified in R2. After the first bit is set, the destination

warp is added to the bit address and the next bit is set. The

process is repeated until all the bits have been set. A nega-

tive raster warp offset value leads to a 90 degree rotation. A

positive raster warp value leads to a 270 degree rotation. If

the R3 value is e (space warp a1 or b1), then the result is

a 45 degree line. If the R3 value is a1 or b1, a horizontal

line results.

SBITS and SBITPS allow expansion on any 90 degree an-

gle, giving portrait, landscape and mirror images from one

font. Figure 2-32 shows the SBITPS instruction format.

23 15 8 7 0

0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1 0

FIGURE 2-32. SBITPS Instruction Format

2.4.3.3.1 Magnifying Compressed Data

Restoring data is just one application of the SBITS and

SBITPS instructions. Multiplying the ‘‘length’’ operand used

by the SBITS and SBITPS instructions causes the resulting

pattern to be wider, or a multiple of ‘‘length’’.

As the pattern of data is expanded, it can be magnified by

2x, 3x, 4x, . . . , 10x and so on. This creates several sizes of

the same style of character, or changes the size of a logo. A

magnify in both dimensions X and Y can be accomplished

by drawing a single line, then using the MOVS (Move String)

or the BB instructions to duplicate the line, maintaining an

equal aspect ratio.

More information on this subject is provided in the

NS32CG16 Printer/Display Processor Programmer’s Refer-

ence Supplement.

28



3.0 Functional Description
This chapter provides details on the functional characteris-

tics of the NS32AM162 microprocessor.

The chapter is divided into five main sections:

Instruction Execution, Exception Processing, Debugging,

DSP Module and System Interface.

3.1 INSTRUCTION EXECUTION

To execute an instruction, the NS32AM162 performs the

following operations:

# Fetch the Instruction

# Read Source Operands, if Any (1)

# Calculate Results

# Write Result Operands, if Any

# Modify Flags, if Necessary

# Update the Program Counter

Under most circumstances, the CPU can be conceived to

execute instructions by completing the operations above in

strict sequence for one instruction and then beginning the

sequence of operations for the next instruction. However,

due to the internal instruction pipelining, as well as the oc-

currence of exceptions, the sequence of operations per-

formed during the execution of an instruction may be al-

tered. Furthermore, exceptions also break the sequentiality

of the instructions executed by the CPU.

Note 1: In this and following sections, memory locations read by the CPU to

calculate effective addresses for Memory-Relative addressing

modes are considered like source operands, even if the effective

address is being calculated for an operand with access class of

write.

3.1.1 Operating States

The CPU has four operating states regarding the execution

of instructions and the processing of exceptions: Reset, Ex-

ecuting Instructions, Processing An Exception and Waiting-

For-An-Interrupt. The various states and transitions be-

tween them are shown in Figure 3-1 .

Whenever the RST signal is asserted, the CPU enters the

reset state. The CPU remains in the reset state until the

RST signal is driven inactive, at which time it enters the

Executing-Instructions state. In the Reset state the contents

of certain registers are initialized. Refer to Section 3.5.4 for

details.

In the Executing-Instructions state, the CPU executes in-

structions. It will exit this state when an exception is recog-

nized or a WAIT instruction is encountered. At which time it

enters the Processing-An-Exception state or the Waiting-

For-An-Interrupt state respectively.

While in the Processing-An-Exception state, the CPU saves

the PC and PSR register contents on the stack.

Following the completion of all data references required to

process an exception, the CPU enters the Executing-In-

structions state.

In the Waiting-For-An-Interrupt state, the CPU is idle. A spe-

cial status identifying this state is presented on the system

interface (Section 3.5). When an interrupt is detected, the

CPU enters the Processing-An-Exception State.

3.1.2 Instruction Endings

The NS32AM162 checks for exceptions at various points

while executing instructions. Certain exceptions, like inter-

rupts, are in most cases recognized between instructions.

TL/EE/11732–12

FIGURE 3-1. Operating States

Other exceptions, like Divide-By-Zero Trap, are recognized

during execution of an instruction. When an exception is

recognized during execution of an instruction, the instruction

ends in one of four possible ways: completed, suspended,

terminated, or partially completed. Each type of exception

causes a particular ending, as specified in Section 3.2.

3.1.2.1 Completed Instructions

When an exception is recognized after an instruction is

completed, the CPU has performed all of the operations for

that instruction and for all other instructions executed since

the last exception occurred. Result operands have been

written, flags have been modified, and the PC saved on the

Interrupt Stack contains the address of the next instruction

to execute. The exception service procedure can, at its con-

clusion, execute the RETT instruction (or the RETI instruc-

tion for maskable interrupts), and the CPU will begin execut-

ing the instruction following the completed instruction.

3.1.2.2 Suspended Instructions

An instruction is suspended when one of several trap condi-

tions is detected during execution of the instruction. A sus-

pended instruction has not been completed, but all other

instructions executed since the last exception occurred

have been completed. Result operands and flags due to be

affected by the instruction may have been modified, but only

modifications that allow the instruction to be executed again

and completed can occur. For certain exceptions (Trap
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(UND)) the CPU clears the P-flag in the PSR before saving

the copy that is pushed on the Interrupt Stack. The PC

saved on the Interrupt Stack contains the address of the

suspended instruction.

To complete a suspended instruction, the exception service

procedure takes either of two actions:

1. The service procedure can simulate the suspended in-

struction’s execution. After calculating and writing the in-

struction’s results, the flags in the PSR copy saved on the

Interrupt Stack should be modified, and the PC saved on

the Interrupt Stack should be updated to point to the next

instruction to execute. The service procedure can then

execute the RETT instruction, and the CPU begins exe-

cuting the instruction following the suspended instruction.

2. The suspended instruction can be executed again after

the service procedure has eliminated the trap condition

that caused the instruction to be suspended. The service

procedure should execute the RETT instruction at its con-

clusion; then the CPU begins executing the suspended

instruction again. This is the action taken by a debugger

when it encounters a BPT instruction that was temporarily

placed in another instruction’s location in order to set a

breakpoint.

Note 1: It may be necessary for the exception service procedure to alter the

P-flag in the PSR copy saved on the Interrupt Stack: If the excep-

tion service procedure simulates the suspended instruction and the

P-flag was cleared by the CPU before saving the PSR copy, then

the saved T-flag must be copied to the saved P-flag (like the float-

ing-point instruction simulation described above). Or if the excep-

tion service procedure executes the suspended instruction again

and the P-flag was not cleared by the CPU before saving the PSR

copy, then the saved P-flag must be cleared (like the breakpoint

trap described above). Otherwise, no alteration to the saved P-flag

is necessary.

3.1.2.3 Terminated Instructions

An instruction being executed is terminated when reset oc-

curs. Any result operands and flags due to be affected by

the instruction are undefined, as is the contents of the PC.

3.1.2.4 Partially Completed Instructions

When an interrupt condition is recognized during execution

of a string instruction, the instruction is said to be partially

completed. A partially completed instruction has not com-

pleted, but all other instructions executed since the last ex-

ception occurred have been completed. Result operands

and flags due to be affected by the instruction may have

been modified, but the values stored in the string pointers

and other general-purpose registers used during the instruc-

tion’s execution allow the instruction to be executed again

and completed.

The CPU clears the P-flag in the PSR before saving the

copy that is pushed on the Interrupt Stack. The PC saved on

the Interrupt Stack contains the address of the partially

completed instruction. The exception service procedure

can, at its conclusion, simply execute the RETT instruction

(or the RETI instruction for maskable interrupts), and the

CPU will resume executing the partially completed instruc-

tion.

3.2 EXCEPTION PROCESSING

Exceptions are special events that alter the sequence of

instruction execution. The CPU recognizes two basic types

of exceptions: interrupts and traps.

An interrupt occurs in response to an event signaled by acti-

vating the NMI or INT3 input signals. Interrupts are typically

requested by peripheral devices that require the CPU’s at-

tention.

Traps occur as a result either of exceptional conditions

(e.g., attempted division by zero) or of specific instructions

whose purpose is to cause a trap to occur (e.g., supervisor

call instruction).

When an exception is recognized, the CPU saves the PC,

and the PSR register contents on the interrupt stack and

then it transfers control to an exception service procedure.

Details on the operations performed in the various cases by

the CPU to enter and exit the exception service procedure

are given in the following sections.

It is to be noted that the reset operation is not treated here

as an exception. Even though, like any exception, it alters

the instruction execution sequence.

The reason being that the CPU handles reset in a signifi-

cantly different way than it does for exceptions.

Refer to Section 3.6.4 for details on the reset operation.

3.2.1 Exception Acknowledge Sequence

When an exception is recognized, the CPU goes through

three major steps:

1) Adjustment of Registers.

Depending on the source of the exception, the CPU may

restore and/or adjust the contents of the Program Coun-

ter (PC), the Processor Status Register (PSR) and the

currently-selected Stack Pointer (SP). A copy of the PSR

is made, and the PSR is then set to reflect Supervisor

Mode and selection of the Interrupt Stack.

2) Vector Acquisition.

A Vector is either obtained from the Data Bus or is sup-

plied by default.

3) Service Call.

The Vector is used as an index into the Interrupt Dis-

patch Table, whose base address is taken from the CPU

Interrupt Base (INTBASE) Register. See Figure 3-2 . A

32-bit address of the exception service procedure is read

from the table entry, and is loaded into the PC register.
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3.0 Functional Description (Continued)

TL/EE/11732–13

FIGURE 3-2. Interrupt Dispatch and Cascade Tables

This process is illustrated in Figure 3-3, from the viewpoint

of the programmer.

Details on the sequences of events in processing interrupts

and traps are given in the following sections.

TL/EE/11732–14

FIGURE 3-3. Exception Acknowledge Sequence
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3.2.2 Returning from an Exception Service Procedure

To return control to an interrupted program, one of two in-

structions can be used: RETT (Return from Trap) and RETI

(Return from Interrupt).

RETT is used to return from any trap or a non-maskable

interrupt service procedure. Since some traps are often

used deliberately as a call mechanism for supervisor mode

procedures, RETT can also adjust the Stack Pointer (SP) to

discard a specified number of bytes from the original stack

as surplus parameter space.

RETI is used to return from a maskable interrupt service

procedure. A difference of RETT, RETI also informs any

external interrupt control units that interrupt service has

completed. Since interrupts are generally asynchronous ex-

ternal events, RETI does not discard parameters from the

stack.

Both of the above instructions always restore the PSR and

the PC registers to their previous contents.

3.2.3 Maskable Interrupts

Maskable interrupt requests are generated either externally

through the INT3 pin or internally. These requests are en-

abled to generate an interrupt only while the I-bit in the PSR

register is set to 1. The I-bit is automatically cleared during

service of a maskable interrupt or NMI, and is restored to its

original setting upon return from the interrupt service routine

via the RETT or RETI instruction.

Maskable interrupts can be configured through the I-bit in

the CFG register to be either non-vectored (CFG bit I e 0)

or vectored (CFG bit I e 1).

If the non-vectored mode is selected, a default vector value

of zero is always used. For the vectored mode instead, the

on-chip Interrupt Control Unit will provide the CPU with a

vector value. This vector value is then used as an index into

the Dispatch Table in order to find the entry for the proper

interrupt service procedure. The service procedure eventu-

ally returns via the Return from Interrupt (RETI) instruction,

which performs an End of Interrupt bus cycle.

3.2.3.1 Non-Vectored Mode

In the Non-Vectored mode, an interrupt request will cause

an Interrupt Acknowledge bus cycle, but the CPU will ignore

any value read from the bus and use instead a default vec-

tor of zero. This mode is useful for small systems in which

hardware interrupt prioritization is unnecessary.

3.2.4 Non-Maskable Interrupt

The Non-Maskable Interrupt is triggered whenever one of

the bits in the NMISTAT register is set to ‘‘1’’. The CPU

performs an ‘‘Interrupt Acknowledge’’ bus cycle from Ad-

dress FFFFFF0016 when processing of this interrupt actual-

ly begins. The vector value used for the Non-Maskable In-

terrupt is taken as 1, regardless of the value read from the

bus.

The service procedure returns from the Non-Maskable-In-

terrupt using the Return from Trap (RETT) instruction. No

special bus cycles occur on return.

3.2.5 Traps

Traps are processing exceptions that are generated as di-

rect results of the execution of an instruction.

The return address saved on the stack by any trap except

Trap (TRC) is the address of the first byte of the instruction

during which the trap occurred.

When a trap is recognized, maskable interrupts are not dis-

abled.

There are 7 trap conditions recognized by the NS32AM162

as described below.

Trap (ILL): Illegal operation. A privileged operation was at-

tempted while the CPU was in User Mode (PSR bit U e 1).

Trap (SVC): The Supervisor Call (SVC) instruction was exe-

cuted.

Trap (DVZ): An attempt was made to divide an integer by

zero. (The FPU trap is used for Floating-Point division by

zero.)

Trap (FLG): The FLAG instruction detected a ‘‘1’’ in the

PSR F-bit.

Trap (BPT): The Breakpoint (BPT) instruction was execut-

ed.

Trap (TRC): The instruction just completed is being traced.

Refer to Section 3.3.1 for details.

Trap (UND): An undefined opcode was encountered by the

CPU.

3.2.6 Priority among Exceptions

The CPU checks for specific exceptions at various points

while executing an instruction. It is possible that several ex-

ceptions occur simultaneously. In that event, the CPU re-

sponds to the exception with highest priority.

Figure 3-4 shows an exception processing flowchart.

Before executing an instruction, the CPU checks for pend-

ing interrupts, or Trap (TRC). The CPU responds to any

pending interrupt requests; nonmaskable interrupts are rec-

ognized with higher priority than maskable interrupts. If no

interrupts are pending, then the CPU checks the P-flag in

the PSR to determine whether a Trap (TRC) is pending. If

the P-flag is 1, a Trap (TRC) is processed. If no interrupt or

Trap (TRC) is pending, the CPU begins executing the in-

struction.

While executing an instruction, the CPU may recognize up

to two exceptions:

1. Interrupt, if the instruction is interruptible.

2. One of 6 mutually exclusive traps: ILL, SVC, DVZ, FLG,

BPT, UND

If no exception is detected while the instruction is executing,

then the instruction is completed and the PC is updated to

point to the next instruction.
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3.0 Functional Description (Continued)

TL/EE/11732–15

FIGURE 3-4. Exception Processing Flowchart
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3.0 Functional Description (Continued)

3.2.7 Exception Acknowledge Sequences: Detailed Flow

For purposes of the following detailed discussion of excep-

tion acknowledge sequences, a single sequence called

‘‘service’’ is defined in Figure 3-5 .

Upon detecting any interrupt request or trap condition, the

CPU first performs a sequence dependent upon the type of

exception. This sequence will include saving a copy of the

Processor Status Register and establishing a vector and a

return address. The CPU then performs the service se-

quence.

3.2.7.1 Maskable/Non-Maskable Interrupt Sequence

This sequence is performed by the CPU when an NMI re-

quest is active, or an interrupt request is active with the

PSR.I bit set. The interrupt sequence begins either at the

next instruction boundary or, in the case of the String in-

structions, or Graphics instructions which have interior

loops (BBOR, BBXOR, BBAND, BBFOR, MOVMP, SBITPS,

TBITS), at the next interruptible point during its execution.

The graphics instructions are interruptible.

1. If a String instruction was interrupted and not yet com-

pleted:

a. Clear the Processor Status Register P bit.

b. Set ‘‘Return Address’’ to the address of the first byte

of the interrupted instruction.

Otherwise, set ‘‘Return Address’’ to the address of the

next instruction.

2. Copy the Processor Status Register (PSR) into a tempo-

rary register, then clear PSR bits S, U, T, P and I.

3. If the interrupt is Non-Maskable:

a. Read a byte from address FFFFFF0016, applying

Status Code 0100 (Interrupt Acknowledge). Discard

the byte read.

b. Set ‘‘Vector’’ to 1.

c. Go to Step 6.

4. If the interrupt is Non-Vectored:

a. Read a byte from address FFFFFE0016, applying

Status Code 0100 (Interrupt Acknowledge). Discard

the byte read.

b. Set ‘‘Vector’’ to 0.

c. Go to Step 6.

5. Here the interrupt is Vectored.

a. Read ‘‘Byte’’ from address FFFFFE0016, applying

Status Code 0100 (Interrupt Acknowledge).

b. Read vector byte from the IVECT register of the on-

chip Interrupt Control Unit.

6. Perform Service (Vector, Return Address), Figure 3-5.

3.2.7.2 ILL/SVC/DVZ/FLG/BPT/UND

Trap Sequence

1. Restore the currently selected Stack Pointer and the

Processor Status Register to their original values at the

start of the trapped instruction.

2. Set ‘‘Vector’’ to the value corresponding to the trap type.

ILL: Vector e 4.

SVC: Vector e 5.

DVZ: Vector e 6.

FLG: Vector e 7.

BPT: Vector e 8.

UND: Vector e 10.

3. If Trap (UND)

a. Clear the Processor Status Register P Bit.

4. Copy the Processor Status Register (PSR) into a tempo-

rary register, then clear PSR bits T, U, S, and P.

5. Set ‘‘Return Address’’ to the address of the first byte of

the trapped instruction.

6. Perform Service (Vector, Return Address), Figure 3-5 .

3.2.7.3. Trace Trap Sequence

1. In the Processor Status Register (PSR), clear the P bit.

2. Copy the PSR into a temporary register, then clear PSR

bits S, U and T.

3. Set ‘‘Vector’’ to 9.

4. Set ‘‘Return Address’’ to the address of the next instruc-

tion.

5. Perform Service (Vector, Return Address), Figure 3-5 .

Service (Vector, Return Address):

1. Push the PSR copy onto the Interrupt Stack

as a 16-bit value.

2. Read the 32-bit Interrupt Dispatch Table (IDT)

entry: address is Vector*4aINTBASE Regis-

ter contents.

3. Place the IDT entry in the Program Counter.

4. Push the Return Address onto the Interrupt

Stack as a 32-bit quantity.

5. Flush Queue: Non-sequentially fetch first in-

struction of Interrupt Routine.

FIGURE 3-5. Service Sequence

Invoked during All Interrupt/Trap Sequences

3.3 DEBUGGING SUPPORT

The NS32AM162 provides features to assist in program de-

bugging.

Besides the Breakpoint (BPT) instruction that can be used

to generate soft breaks, the CPU also provides the instruc-

tion tracing capability.

3.3.1 Instruction Tracing

Instruction tracing is a very useful feature that can be used

during debugging to single-step through selected portions of

a program. Tracing is enabled by setting the T-bit in the PSR

Register. When enabled, the CPU generates a Trace Trap

(TRC) after the execution of each instruction.

At the beginning of each instruction, the T-bit is copied into

the PSR P (Trace ‘‘Pending’’) bit. If the P-bit is set at the end

of an instruction, then the Trace Trap is activated. If any

other trap or interrupt request is made during a traced in-

struction, its entire service procedure is allowed to complete

before the Trace Trap occurs. Each interrupt and trap se-

quence handles the P-bit for proper tracing, guaranteeing

only one Trace Trap per instruction, and guaranteeing that

the Return Address pushed during a Trace Trap is always

the address of the next instruction to be traced.

The beginning of the execution of a TRAP(UND) is not con-

sidered to be a beginning of an instruction, and hence the

T-bit is not copied into the P-bit.

Due to the fact that some instructions can clear the

T- and P-bits in the PSR, in some cases a Trace Trap may

not occur at the end of the instruction. This happens when
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3.0 Functional Description (Continued)

TABLE 3-1. Summary of Exception Processing

Exception
Instruction Cleared before Cleared after

Ending Saving PSR Saving PSR

Interrupt Before Instruction None /P* TUSPI

UND Suspended P TUS

SVC, DVZ, FLG, BPT, ILL Suspended None TUSP

TRC Before Instruction P TUS

one of the privileged instructions BICPSRW or LPRW PSR

is executed.

In other cases, it is still possible to guarantee that a Trace

Trap occurs at the end of the instruction, provided that spe-

cial care is taken before returning from the Trace Trap Serv-

ice Procedure. In case a BICPSRB instruction has been ex-

ecuted, the service procedure should make sure that the

T-bit in the PSR copy saved on the Interrupt Stack is set

before executing the RETT instruction to return to the pro-

gram being traced. If the RETT or RETI instructions have to

be traced, the Trace Trap Service Procedure should set the

P- and T-bits in the PSR copy on the Interrupt Stack that is

going to be restored in the execution of such instructions.

While debugging the NS32AM162 instructions which have

interior loops (BBOR, BBXOR, BBAND, BBFOR, MOVMP,

SBITPS, TBITS), special care must be taken with the single-

step trap. If an interrupt occurs during a single-step of one

of the graphics instructions, the interrupt will be serviced.

Upon return from the interrupt service routine, the new

NS32AM162 instruction will not be re-entered, due to a sin-

gle-step trap. Both the NMI and INT interrupts will cause this

behavior. Another single-step operation (S command in

DBG16/MONCG) will resume from where the instruction

was interrupted. There are no side effects from this early

termination, and the instruction will complete normally.

For all other Series 32000 instructions, a single-step opera-

tion will complete the entire instruction before traping back

to the debugger. On the instructions mentioned above, serv-

eral single-step commands may be required to complete the

instruction, ONLY when interrupts are occurring.

There are some methods to give the appearance of single-

stepping for these NS32AM162 instructions.

1. MON16/MONCG monitors the return from single-step

trap vector, PC value. If the PC has not changed since

the last single-step command was issued, the single-step

operation is repeated. It is also advisable to ensure that

one of the NS32AM162 instructions is being single-

stepped, by inspecting the first byte of the address point-

ed to by the PC register. If it is 0x0E, then the instruction

is an NS32AM162-specific instruction.

2. A breakpoint following the instruction would also trap af-

ter the instruction had completed.

Note: If instruction tracing is enabled while the WAIT instructioin is execut-

ed, the Trap (TRC) occurs after the next interrupt, when the interrupt

service procedure has returned.

3.4 ON-CHIP PERIPHERALS

3.4.1 Interrupt Controller Unit

The Interrupt Control Unit (ICU) monitors the internal and

external interrupt sources and generates a vectored inter-

rupt to the NS32AM162 when required. Priority is resolved

on a fixed scheme. Each interrupt source can be masked by

a mask register. Pending interrupts can be polled using the

interrupt pending register.

The ICU handles four sources of interrupts: three of them

are internal, and one external. The external interrupt is trig-

gered by a falling edge on the INT3 input pin. The INT3 has

a Schmitt Trigger input buffer in order to produce jitter-free

interrupt requests out of slowly changing input signals. An

on-chip circuit synchronizes INT3 to the NS32AM162 clock.

For proper interrupt detection, INT3 must be pulled low for

at least 3 clock cycles.

Another interrupt, INT2, is level sensitive. It is triggered by

the DSPM upon completion of a command list execution

and when both DSPINT.HALT and DSPMASK.HALT are

‘‘1’’. INT2 is used to synchronize between command list

execution, and a core program. This can reduce the total

CPU utilization of applications which require asynchronous

operation of the DSPM.

The other two interrupts are called INT4 and INT1 and are

edge sensitive. They are triggered by the falling edge of the

CODEC and 500 Hz clocks respectively. These clocks are

generated in the Clock Generation Unit.

INT4 is used for timing the accesses to the CODEC. The

same clock that triggers the interrupt is also connected to

the CFS input of the CODEC.

All the interrupts are latched by the interrupt pending regis-

ter (IPEND). An edge sensitive pending interrupt is cleared

by writing to the edge interrupt clear register (IECLR). The

INT4 pending bit is also reset when the CODEC is ac-

cessed.

There is no hardware limitation on nesting of interrupts. In-

terrupt nesting is controlled by software writing into the

mask register (IMASK). When an interrupt is acknowledged

by the core, the PSR.I bit is cleared to ‘‘0’’, thus disabling

interrupts. While an interrupt is in service, the user may al-

low other interrupts to occur by setting PSR.I bit to ‘‘1’’. The

IMASK register can be used to control which of the other

interrupts is allowed. Clearing bits in the IMASK register

should be done while the PSR.I bit is ‘‘0’’. Setting bits in the

IMASK register may be done regardless of the PSR.I bit

state.

Clearing an interrupt request before it is serviced may cause

a false interrupt, where the NS32AM162 may detect an in-

terrupt not reflected by IVCT. The user is advised to clear

interrupt requests only when interrupts are disabled.

During power down mode (CLKCTL.PDM e ‘‘1’’), the ICU is

disabled. The user must clear the PSR.I bit to ‘‘0’’ before

entering power down mode, and should not attempt to read

or write the ICU registers while in this mode.
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3.0 Functional Description (Continued)

3.4.1.1 Interrupt Sources

Name Type Source Vector Priority

INT1 2 ms Clock Generator 0x11 Lowest Priority

INT2 DSPM DSPM 0x12

INT3 External 0x13

INT4 CODEC Clock Genertor 0x14 Highest Priority

3.4.2 BIU and DRAM Controller

The BIU controls all the internal and external accesses. It

provides control signals for the internal cycles to the other

on-chip modules. It also provides control signals to four

types of external devices: DRAM, ROM/RAM, CODEC, and

I/O ports. Different type of accesses are done to each of

the different devices.

The BIU provides four types of accesses to the DRAM:

read, write, refresh cycles during normal operation, and spe-

cial refresh cycles during power down mode (CLKCTL.PDM
e ‘‘1’’). No reads and writes to the DRAM are allowed in

power down mode.

The BIU provides two type of accesses to the ROM/RAM

devices: read and write cycles. These cycles can also be

performed in power down mode.

The BIU provides two type of accesses to the CODEC: read

and write cycles. These cycles are not allowed in power

down mode.

The BIU provides two type of accesses to I/O devices in

External ROM mode and in Development mode: read and

write cycles. These cycles can also be performed in power

mode.

All control signals of external devices are inactive while re-

set.

3.4.2.1 DRAM Accesses

The DRAM Controller (DRAMC) supports transactions be-

tween the NS32AM162 and external DRAM and performs

refresh cycles. The DRAMC supports 1M x 4, 1M x 1, 4M x 1

or 4M x 4 DRAM devices. The supported DRAM devices

require minimum 500 ns cycle time and minimum 350 ns

RAS access time, and a short refresh period.

The external data bus used for all DRAM accesses is 8-bit

wide. There is no hardware support for nibble or byte gath-

ering. The user can handle the nibble gathering with soft-

ware. CPU accesses are only to an aligned word in the

DRAM (byte or double word accesses are not allowed).

During read cycles the DRAMC provides the RAS and CAS

signals. The DRAMC does not use fast page mode access-

es. The user must connect the OE pin of the DRAM to GND.

On write cycles the DRAMC provides the RAS, CAS, and

WE signals to perform early writes according to the DRAM

specifications.

When the NS32AM162 enters the power down mode, the

DRAMC continues to refresh the DRAM array. The low fre-

quency clock generates RAS and CAS signals. In this mode

no reads and writes to the DRAM are allowed. Note also

that the user must make sure that the instruction that sets

CLKCTL.PDM bit does not directly follow an access to the

DRAM.

The DRAM address range is 0x02000000 to 0x027FFFFF,

and its size is 8 Mbytes. In a typical system, where only a

single 1M x 4-DRAM device is used, only 2 Mbytes are ac-

cessible, and only one nibble out of four can actually store

data.

During reads and writes to the DRAM in Internal ROM

mode, the DRAMC provides the row and column address on

pins A1–A11 and RA12. The row address is bits A11–A22

of the data item’s address. It is provided on pins A1–A11

and RA12. The column address is bits A1–A10 of the data

item’s address. It is provided on pins A1–A10.

During reads and writes to the DRAM in External ROM or

Development modes, the DRAMC provides the row and col-

umn address on pins A1–A12. The row address is bits A11–

A22 of the data item’s address. It is provided on pins A1–

A12. The column address is bits A1–A10 of the data item’s

address. It is provided on pins A1–A10.

DRAM accesses can be divided into two parts: During the

first part (11 cycles), the external data bus is used by the

DRAMC. During the following 2 cycles, the external data

bus can be used to access every device except for the

DRAM (to ensure enough DRAM precharge time).

In normal operation (CLKCTL.PDM e ‘‘0’’), DRAM refresh

is done at a rate of 160000 cycles/second. The refresh

clock is generated by the clock generator block. Any bus

transaction except for DRAM accesses can be performed in

parallel with a refresh cycle.

In power down mode (CLKCTL.PDM e ‘‘1’’), DRAM refresh

is done at a (/4 of the low speed crystal oscillator frequency

(If Crystal-2 is 455 kHz, the refresh rate is 113750 cycles/

second). The RAS and CAS signals are activated for half a

DRAM refresh cycle.

In both modes, the DRAM controller provides control sig-

nals to execute automatic (CAS before RAS) refresh cycles.

3.4.2.2 CODEC Interface

The NS32AM162 provides an on-chip interface to one or

two serial CODECs. The interface supports two CODEC

modes of operationÐlong frame format and short frame for-

mat.

Selecting the CODEC interface is done through the MCFG

register.

CODEC accesses are done as regular memory accesses to

the addresses of the CODEC Interface registers.

The CODEC interface uses five signalsÐCDIN, CDOUT,

CCLK, CFS0 and CFS1. When one CODEC is used, the

interface uses CDIN, CDOUT, CCLK and CFS0. When two

CODECs are used, they share CDIN, CDOUT and CCLK.

One CODEC receives CFS0 and the other CODEC receives

CFS1.

The master clock CCLK and the sampling rate are con-

trolled by the CCTL1 and CCTL2 registers. Two values can

be used, depending on the required sampling rate, as

shown below:

Sampling CCLK
CCTL CTTL1 CCTL2

Rate Frequency

8000 Hz 2.048 MHz 20.48 MHz 0 33 (hex)

7273 Hz 1.862 MHz 20.48 MHz 0 23 (hex)

Data is transferred to the CODEC through the CDOUT pin.

Data is read from the CODEC through the CDIN pin. The

CPU core accesses the CODECs through the CDATA0 and

CDATA1 registers.
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3.0 Functional Description (Continued)

When a short frame format is selected via the MCFG regis-

ter (CMC e 001 or 011), data transfer between the

NS32AM162 and the serial CODEC starts by asserting

(high) the CFS0 frame sync signal. After one CCLK cycle,

CFS0 is de-asserted, data from the NS32AM162 is sent to

the CODEC through CDOUT, and simultaneously data from

the CODEC is sent to the NS32AM162 through CDIN. After

eight bits are shifted out (these are the bits of the CDATA0

register), CFS1 is asserted for one CCLK cycle, and then

the eight bits of CDATA1 are shifted out through CDOUT,

while eight bits from the CODEC are shifted in through

CDIN. See Figure 3-6 .

When a long frame format is selected via the MCFG register

(CMC e 101 or 111), data transfer between the

NS32AM162 and the serial CODEC starts by asserting

(high) the CFS0 frame sync signal. When CFS0 is asserted,

data from the NS32AM162 is sent to the CODEC through

CDOUT, and simultaneously data from the CODEC is sent

to the NS32AM162 through CDIN. After eight bits are shift-

ed out (these are the bits of the CDATA0 register), CFS0 is

de-asserted. One CCLK cycle later CFS1 is asserted, and

the eight bits of CDATA1 are shifted out through CDOUT,

while eight bits from the CODEC are shifted in through

CDIN. See Figure 3-7 .

Note that the bits of CDATA1 are shifted out as part of the

protocol, regardless of whether one or two CODECs are

used in the system.

The CODEC interrupt is issued after data to both CODECs

is transferred. This is regardless of the actual number of

CODECs in the system. The CODEC interrupt pending bit is

cleared either by writing ‘‘1’’ to the CLR4 bit of the IECLR

register, or by accessing CDATA0 or CDATA1. In order to

ensure proper operation, after a CODEC interrupt, the soft-

ware must first read CDATA0 (and CDATA1 if there are two

CODECs), and then write new data into CDATA0 (and

CDATA1 if there are two CODECs), before the next frame

sync clock. Failure to update a register before the next

frame sync clock will cause a value of FF (hex) to be sent

from that register.

Note: In cases where two serial CODECs are used, but the PWM output is

needed, the user can program the MCFG register to indicate one

serial CODEC, and restore CFS1 using an external circuit. This circuit

can use a 9-bit shift register, whose data input is connected to CFS0,

and whose clock input is connected to CCLK.

3.4.2.3 Accesses to Off-Chip Memory Devices

In the External ROM mode, the NS32AM162 performs read

accesses from external memory for all the addresses be-

tween 0x00000000 and 0x0001FFFF. In the Development

mode, the NS32AM162 performs read or write accesses to

external memory for all the addresses between 0x00000000

and 0x0007FFFF.

On the first cycle (T1) of a read access, the NS32AM162

asserts A1–A16, in the External ROM mode, or A1–A18 in

the Development mode. The address remains active for four

clock cycles (T1 through T4). In the following cycle (T2), the

NS32AM162 activates the MRD signal. MRD remains active

until the fourth cycle (T4). Data is sampled at the end of the

third cycle (T3). See Section 4.4.3 for detailed timing dia-

grams.

On the first cycle (T1) of a write access, the NS32AM162 in

the Development mode asserts A1–A18. The address re-

mains active for four clock cycles (T1 through T4). In the

following cycle (T2), D0–D15 are activated, and MWR0 and

MWR1 are asserted (depending on the byte needed to be

written into). D0–D15 remains active until the next T1.

MWR0 and MWR1 remain active until the fourth cycle (T4).

See Section 4.4.3 for detailed timing diagrams.

TL/EE/11732–16

FIGURE 3-6. CODEC ProtocolÐShort Frame

TL/EE/11732–17

FIGURE 3-7. CODEC ProtocolÐLong Frame
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3.4.3 I/O Ports

Three 8-bit I/O ports are provided in the Internal ROM

mode: PA, PB and PC. Each of the bits in Ports A and B can

be individually programmed as either an input or as an out-

put. Programming the direction of the bits in ports PA and

PB is done by writing to registers DIRA and DIRB respec-

tively. Writing ‘‘1’’ to one of the bits in a DIR register config-

ures the corresponding bit in the port as an output port.

Writing ‘‘0’’ to one of the bits in a DIR register configures the

corresponding bit in the port as an input. Port PC serves as

an output only, and does not have a direction control regis-

ter. On reset, DIRA and DIRB are cleared to ‘‘0’’, and ports

PA and PB are initiated as input ports.

The bits in ports PA and PB that are programmed as outputs

can also be read by the CPU by accessing the port. The

values of the output in ports PA, PB, and PC can be set by

writing to the port.

In the External ROM and Development modes the pins of

ports PB and PC are used for different functions. In order to

use these ports, external logic can be added. An external

latch can be connected to the D8–D15, and IOWR signals

to provide the functionality of PC. An external buffer can be

connected to the D8–D15 and IORD signals to provide part

of the functionality of PB. Note that in this mode PB can

serve as an input only.

In the Development mode, PA pins are also used, and

hence there are no ports available in this mode.

Accesses to the external latch and external buffer are simi-

lar to the accesses to off-chip memory devices, except for

the pins that control the actual reads and writes. On reads,

IORD is asserted, and on writes, IOWR is asserted. The

timings of these signals are exactly the same as the timings

of MRD and MWR1.

3.4.4 Pulse Width Modulator

The Pulse Width Modulator provides one output signal, with

a fixed frequency and a variable duty cycle. The frequency

of the PWM output is 80 KHz. The duty cycle can be pro-

grammed by writing a value from 0 to 0xFF to the PWMCTL

register. The PWM output is active (high) for the number of

20.48 MHz cycles specified in the PWMCTL register. It is

inactive (low) for the rest of the 20.48 MHz cycles in the

80 KHz PWM cycle. During power down mode, and upon

reset, PWMCTL register is cleared to ‘‘0’’, and the PWM

output signal is not active (low). The PWM output pin is

shared with the CFS1 pin of the CODEC interface. Conse-

quently, when the MCM field in the MCFG register is set to

011 or 111, to select a direct interface to two CODECs, the

PWM output signal is not available.

3.4.5 Clock Generator

The clock generator provides all the clocks needed for the

various parts of the device. Two crystal oscillators provide

the basic frequencies needed. The high-speed crystal oscil-

lator is designed to operate with a 40.96 MHz crystal. The

low-speed oscillator is designed to operate with a ceramic

resonator at a frequency of 455 KHz. The user can operate

the NS32AM162 in either normal operation or power down

modes. In power down mode, most of the on-chip modules

are running from a very low frequency clock or are totally

disabled. In power down mode, the user can turn off the

high speed crystal oscillator to further reduce the power.

The clock generator provides two clocks to the CODEC: a

1.28 MHz clock, and an 8 KHz clock. The 8 KHz clock also

generates INT4.

The clock generator provides a 2 ms (0.5 KHz) time base for

the system software. This time base signal generates INT1.

The clock generator provides a refresh request signal at a

rate of 160 KHz during normal operation mode, and a (/4 of

Crystal-2 frequency in power down mode.

The operation of the clock generator is affected by moving

to power down mode. See Section 3.6.3 for a description of

this mode.

3.4.6 WATCHDOG Counter

The WATCHDOG (WD) counter is used to activate a Non-

Maskable Interrupt (NMI) whenever the software is out of

control. The WD module is a 10 Hz timer with a reset mech-

anism. During normal operation mode, the user must clear

the WD at a rate higher than 10 Hz by writing 0x0E into the

WDCTL register. These write accesses ensure that the

WATCHDOG will not issue an NMI for a full 0.1 second.

Failing to clear the WD before 0.1 of a second has passed,

will cause an NMI. If the user does not clear the WATCH-

DOG, an NMI occurs exactly ten times a second. This NMI

can be used to track the time. Upon reset, the WD is dis-

abled until the first write access to the WDCTL register.

3.4.7 Internal ROM

The size of the internal ROM is 25 Kbytes (32 Kbyte in the

NS32AM163). The ROM is organized as a 16-bit wide mem-

ory array with a zero wait-state access time. The ROM’s

starting address is 0x00000000. When the NS32AM162 is in

either External ROM or Development modes, the lower

128 Kbytes or 512 Kbytes respectively are mapped to exter-

nal accesses instead of accesses to the on-chip ROM.

3.4.8 Internal RAM Arrays

The NS32AM162 provides two zero wait-state on-chip RAM

arrays: a 1008 byte system RAM array and a 1120 byte

DSPM RAM array. The data bus between the CPU and the

system RAM array is 16 bits wide. The data bus between

the DSPM and its RAM is 32 bits wide, to allow high

throughput during DSP operations. While the DSPM is ac-

tive, the CPU is not allowed to access the DSPM RAM.

3.5 DSP MODULE

The following sections give full specifications for the

NS32AM162 on-chip DSP Module.

3.5.1 Programming Model

The DSPM programming model consists of the following el-

ements:

# Internal RAM

# Dedicated registers

# Command-list execution unit

# Interface with CPU core

# Vector instruction set

The Internal RAM is used by the DSPM for fetching com-

mands to be executed, and for reading or writing data that is

needed in the course of program execution. DSPM Pro-

grams are encoded as command lists and are interpreted by

the command-list execution unit.

Computations are performed by commands selected from

the set of available ones. These commands employ the

DSP-oriented datapath in a pipelined manner, thus maximiz-
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ing the utilization of on-chip hardware resources. A set of

dedicated registers is used to specify operands and options

for subsequent vector commands. These dedicated regis-

ters can be loaded and stored by appropriate commands in

between initiations of vector commands. Additional com-

mands are available for controlling the flow of execution of

the command list, as needed for programming loops and

branches (see Section 4.7.3).

The CPU core interface specifies the mapping of the DSPM

internal RAM as a contiguous block within the CPU core’s

address space, thus making it possible for normal CPU in-

structions to access and manipulate data and commands in

the DSPM internal RAM (see Section 3.6.2). In addition, the

CPU core interface contains control and status registers

that are needed to synchronize the execution of CPU core

instructions concurrently with execution of the DSPM com-

mand lists (see Section 3.6.1).

3.5.2 RAM Organization and Data Types

The DSPM internal RAM is organized as a word or double-

word addressable, uniform, linear address space. Memory

locations are numbered sequentially, starting at 0 for the

first location, and incremented by 1 for each successive lo-

cation. The content of each memory location is a 16-bit

word. Double-words must be aligned to an even address.

Valid RAM addresses for access by the command-list exe-

cution unit are 0 through 0x22F. Access to memory loca-

tions out of the DSMP RAM boundary are not allowed.

The organization of the DSPM internal RAM is shown be-

low:

15 0

Location 0

Location 1

. . .

Locationn

. . .

The RAM array is not restricted to use by the DSPM, it can

also be accessed by the core with any type of memory ac-

cess (e.g., byte, word, or double-word accesses aligned to

any byte address).

The internal RAM stores command lists to be executed, and

data to be manipulated during program execution. Com-

mand lists consist of 16-bit commands, so that each individ-

ual command occupies one memory location.

Each data item is represented as having either a 16-bit or

32-bit value, as follows:

# Integer values (16-bit)

# Aligned-integer values (32-bit)

# Real values (16-bit)

# Aligned-real values (32-bit)

# Extended-precision real values (32-bit)

# Complex values (32-bit)

3.5.2.1 Integer Values

Integer values are represented as signed 16-bit binary num-

bers in 2’s complement format. The range of integer values

is from b215 (b32768) through 215 b 1 (32767). Bit 0 is

the Least Significant Bit (LSB), and bit 15 is the Most Signifi-

cant Bit (MSB).

15 0

Integer Value

Integer values are typically used for addressing vector oper-

ands and for lookup-table index manipulations.

3.5.2.2 Aligned-Integer Values

Aligned-integer values are represented as pairs of integer

values, and must be aligned on a double-word boundary.

The less significant half represents one integer vector ele-

ment, and must be contained in an even-numbered memory

location. The more significant half represents the next vec-

tor element, and must be contained in the next (odd-num-

bered) memory location.

15 0

Integer Value (Low) (Location 2n )

Integer Value (High) (Location 2n a 1)

Aligned-integer values are used for higher throughput in op-

erations where two sequential integer vector elements can

be used in a single iteration. Both elements of an aligned-in-

teger value have the same range and accuracy as specified

for integer values above.

3.5.2.3 Real Values

Real values are represented as 16-bit signed fixed-point

fractional numbers, in 2’s complement format. Bit 15 (MSB)

is the sign bit. Bits 0 (LSB) through 14 represent the frac-

tional part. The binary digit is assumed to lie between bits 14

and 15.

15 0

Real Value

Real values are used to represent samples of analog sig-

nals, coefficients of filters, energy levels, and similar contin-

uous quantities that can be represented using 16-bit accura-

cy. The range of real values is from b1.0 (represented as

0x8000) through 1.0 b 2b15 (represented as 0x7FFF).

3.5.2.4 Aligned-Real Values

Aligned-real values are represented as pairs of real values,

and they must be aligned on a double-word boundary. The

less significant half represents one real vector element, and

must be contained in an even-numbered memory location.

The more significant half represents the next vector ele-

ment, and must be contained in the next (odd-numbered)

memory location.

15 0

Real Value (Low) (Location 2n )

Real Value (High) (Location 2n a 1)

Aligned-real values are used for higher throughput in opera-

tions where two sequential real vector elements can be

used in a single iteration. Both elements of an aligned-real

value have the same range and accuracy as specified for

real values above.

3.5.2.5 Extended-Precision Real Values

Extended-precision real values are represented as 32-bit

signed fixed-point fractional numbers, in 2’s complement

format. Extended-precision real values must be aligned on a

double-word boundary, so that the less significant half is

39



3.0 Functional Description (Continued)

contained in an even-numbered memory location, and the

more significant half is contained in the next (odd-num-

bered) memory location. Bit 15 (MSB) of the more signifi-

cant part is the sign bit. Bits from 0 (LSB) of the less signifi-

cant part, through 14 of the more significant part, are used

to represent the fractional part. The binary digit is assumed

to lie between bits 14 and 15 of the more significant part.

When extended-precision values are loaded or stored in the

accumulator, bits 1 through 31 of the extended-precision

argument are loaded or stored in bits 0 through 30 of the

accumulator. Bit 0 of the extended-precision argument is

not used during calculations. This bit is always set to ‘‘0’’

when stored back in the internal memory.

15 0

Less Significant Part (Location 2n )

More Significant Part (Location 2n a 1)

Extended-precision real values are used to represent vari-

ous continuous quantities that require high accuracy. The

range of extended-precision real values is from b1.0 (repre-

sented as 0x80000000) through 1.0 b2b30 (represented

as 0x7FFFFFFE).

3.5.2.6 Complex Values

Complex values are represented as pairs of real values, and

must be aligned on a double-word boundary. The less signif-

icant half represents the real part, and must be contained in

an even-numbered memory location. The more significant

half represents the imaginary part, and must be contained in

the next (odd-numbered) memory location.

15 0

Real Part (Location 2n )

Imaginary Part (Location 2n a 1)

Complex values are used to represent samples of complex

baseband signals, constellation points in the complex plane,

coefficients of complex filters, and rotation angles as points

on the unit circle, etc. Both the real and imaginary parts

have the same range and accuracy as specified for real

values above.

3.5.3 Command List Format

All commands have the same fixed format, consisting of a

5-bit opcode field and a 11-bit arg field, as shown below:

15 11 10 0

opcode arg

The opcode field specifies an operation to be performed.

The arg field interpretation is determined by the class to

which the command belongs. There are several classes of

commands, as follows:

# Load Register Instructions

# Store Register Instructions

# Adjust Register Instructions

# Flow Control Instructions

# Internal Memory Move Instructions

# External Memory Move Instructions

# Arithmetic/Logical Instructions

# Multiply-and-Accumulate Instructions

# Multiply-and-Add Instructions

# Clipping and Min/Max Instructions

# Special Instructions

See Section 3.4.5 for detailed information on the DSPM in-

struction set.

3.5.4 CPU Core Interface

The interface between the DSPM and the CPU core con-

sists of the following elements:

# Parallel Operation and Synchronization

# CPU Core Address Space Map

# External Memory References

3.5.4.1 Synchronization of Parallel Operation

Since the DSPM is capable of autonomous operation paral-

lel to the CPU core operation, a mechanism is needed to

synchronize the two threads of execution. The parallel syn-

chronization mechanism consists of several control and

status registers, which are used to synchronize the following

activities:

# Initiation of the command list execution

# Termination of the command list execution

# Check the DSPM status

# Access to DSPM internal RAM and registers by CPU

core instructions

# Access to external memory by DSPM commands

The following CPU core interface control and status regis-

ters are available:

Register Function

CLPTR Command-List Pointer

CLSTAT Command-List Status Register

ABORT Abort Register

EXT Disable External Memory References

DSPINT Interrupt Register

DSPMASK Mask Register

NMISTAT NMI Status Register

Execution of the command list begins when the CPU core

writes a value into the CLPTR control register. This causes

the DSPM command-list execution unit to begin executing

commands, starting at the address written to the CLPTR

register. If the written value is outside the range of valid

RAM addresses, the result is unpredictable.

Once started, execution of the command list continues until

one of the following occurs: a HALT or a DBPT command is

executed, the CPU core writes any value into the ABORT

control register, an attempt to execute a reserved com-

mand, an attempt to access the DSPM address space while

the CLSTAT.RUN bit is ‘‘1’’ (except for accesses to the

CLSTAT, EXT, DSPINT, DSPMASK, NMISTAT, and ABORT

registers), or reset occurs. In the last case, the contents of

the DSPM internal RAM, REPEAT, and CLPTR registers are

unpredictable when execution terminates.

The CLSTAT status register can be read by CPU core in-

structions to check whether execution of the DSPM com-

mand list is active or idle. A ‘‘0’’ value read from the

CLSTAT.RUN bit indicates that execution is idle, and a ‘‘1’’

value indicates that it is active.
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Whenever the execution of the command list terminates,

CLSTAT.RUN changes its value from ‘‘1’’ to ‘‘0’’, and

DSPINT.HALT is set to ‘‘1’’. The value of the DSPINT.HALT

status bit can be used to generate interrupts. If

DSPMASK.HALT is set, a ‘‘1’’ value on the DSPINT.HALT

will activate interrupt level 2 in the on-chip ICU.

The DSPM internal RAM and the dedicated registers, as

well as the interface control and status registers, are

mapped into certain areas of the CPU core address space

(see Section 2.2.1). Whenever execution of the DSPM com-

mand list is idle, CPU core instructions may access these

memory areas for any purpose, exactly as they would ac-

cess external off-chip memory locations. However, when

the DSPM command list execution unit is active, any at-

tempt to read or write a location within the above memory

areas, except for accessing the CLSTAT, EXT, DSPMASK,

DSPINT, NMISTAT, or ABORT control registers (see be-

low), will be treated as follows: All read data will have unpre-

dictable values, and any attempt to write data will not

change the DSPM memory and registers. Whenever such

an access occurs, NMISTAT.ERR bit is set to ‘‘1’’, an NMI

request to the core is issued, and the command list execu-

tion terminates. In this case, as the command-list execution

terminates asyncronously, the currently executed command

may be aborted. The DSPM RAM and the A, X, Y, Z, and

REPEAT registers may hold temporary values created in

this aborted instruction.

Some of the vector instructions executable by the DSPM

can access external off-chip memory to transfer data in or

out of the internal RAM, or to reference large lookup tables.

Normally, external memory references initiated by the

DSPM and CPU core are interleaved by the CPU core bus-

arbitration logic. As a result, it is the user’s responsibility, to

make sure that whenever a write operation is involved, the

DSPM and CPU core should not reference the same exter-

nal memory locations, since the order of these transactions

is unpredictable.

Each time the DSPM needs to access the external bus, it

issues an internal HOLD request to the CPU core, and waits

for an internal HOLD acknowledge. External HOLD requests

(when the HOLD signal is asserted) have higher priority than

DSPM HOLD requests.

In order to ensure fast response for time-critical interrupt

requests, the DSPM external referencing mechanism will re-

linquish the core bus for one clock cycle after each memory

transaction. This allows the core to use the bus for one

memory transaction. To further enhance the core speed on

critical interrupt routines, the EXT.HOLD control flag is pro-

vided.

Whenever the core sets EXT.HOLD to ‘‘1’’, the DSPM stops

its external memory references. When the DSPM needs to

perform an external memory reference but is disabled, it

enters a HOLD state until a value of ‘‘0’’ is written to the

EXT.HOLD control register.

3.5.4.2 DSPM RAM Organization

The mapping of these locations to CPU core address space

is shown below, where base corresponds to the start of the

mapped area (address 0xFFFE0000):

15 8 7 0

base a 1 base a 0 (RAM Location 0)

base a 3 base a 2 (RAM Location 1)

. . . . . .

base a 2n a 1 base a 2n (RAM Locationn )

. . . . . .

The RAM array is not restricted to use by the DSPM, but can

also be used by the core as a fast, zero wait-state, on-chip

memory for instructions and data storage. The core can ac-

cess each byte, word, or double-word of the RAM, with no

restrictions on alignment.

3.5.5 DSPM Instruction Set

3.5.5.1 Conventions

The formal description below of DSPM command-list in-

structions is based on the ‘‘C’’ programming language, us-

ing the following conventions:

low Bits 0 through 15 of a 32 bits entity.

high Bits 16 through 31 of a 32 bits entity.

LENG Value of PARAM.LENGTH.

A Accumulator.

alignedÐaddr An even number in the range [0, 216], used

for specifying a double word-aligned address

in internal memory.

mem[k ] A value in internal memory whose first word

address is k , where 0 s k k 216.

extÐmem[k ] A value in external memory whose first byte

address is k , where 0 s k k 232.

X Vector in internal memory whose first ad-

dress is pointed to by X.ADDR.

Y Vector in internal memory whose first ad-

dress is pointed to by Y.ADDR.

Z Vector in internal memory whose first ad-

dress is pointed to by Z.ADDR.

X[n ] A value in internal memory whose address is

formed by adding an offset to a cyclic buffer

base address. The base address is formed

by clearing the (X.WRAP b 1) less-signifi-

cant bits of X.ADDR. The offset within the

buffer is calculated by: (X.ADDR a

n c 2X.INCR) modulo 2X.WRAP.

Y[n ] A value in internal memory whose address is

formed by adding an offset to a cyclic buffer

base address. The base address is formed

by clearing the (Y.WRAP b 1) less-signifi-

cant bits of Y.ADDR. The offset within the

buffer is calculated by: (Y.ADDR a

n c 2Y.INCR) modulo 2Y.WRAP.

Z[n ] A value in internal memory whose address is

formed by adding an offset to a cyclic buffer

base address. The base address is formed

by clearing the (Z.WRAP b 1) less-signifi-

cant bits of Z.ADDR. The offset within the

buffer is calculated by: (Z.ADDR a

n c 2Z.INCR) modulo 2Z.WRAP.

&X[n ] The word address of X[n ].
&Y[n ] The word address of Y[n ].
&Z[n ] The word address of Z[n ].
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3.5.5.2 Type Casting

The following data type definitions are used in DSPM in-

struction description:

integer An integer value, as described in Section

3.5.2.1.

alignedÐinteger An aligned integer value, as described in

Section 3.5.2.2.

real A real value, as described in Section

3.5.2.3.

alignedÐreal An aligned real value, as described in Sec-

tion 3.5.2.4.

extended An extended-precision real value, as de-

scribed in Section 3.5.2.5.

complex A complex value, as described in Section

3.5.2.6.

vectorÐptr A valid value for X, Y, and Z registers.

repeatÐreg A valid value for REPEAT register.

paramÐreg A valid value for PARAM register.

eabrÐreg A valid value for EABR register.

realÐacc A 34-bit value inside either the real part or

the imaginary part of the accumulator.

complexÐacc A 68-bit value inside the complex accumu-

lator.

3.5.5.3 General Notes

The values of the EABR, PARAM, X, Y, and Z registers are

not changed by the execution of the command list.

Some instructions use the accumulator as a temporary reg-

ister and therefore destroy its contents. In general, the user

should assume that the contents of the accumulator are

unpredictable after an instruction terminates, unless stated

otherwise in the notes section following that instruction’s

formal specification.

Non-complex instructions that use the accumulator, can use

either the real or the imaginary parts, or both. In general,

when an integer or real data type is to be read, it is taken

from the real part. An extended-precision real data type is

taken from the imaginary part. When a non-complex data

type is loaded into the accumulator (by the LEA instruction

or within other instructions prior to saving it into memory), it

is written to both real and imaginary parts.

Rounding is implemented by copying PARAM.RND into bit

position 14 of both the real and the imaginary part of the

accumulator, performing the requested operation, and trun-

cating the contents of the accumulator upon storing results

to memory. In Multiply-and-Add instructions and some of the

special instructions, this is done transparently on each vec-

tor element iteration. In Multiply-and-Accumulate instruc-

tions, when PARAM.CLR is ‘‘0’’, the previous content of the

accumulator is used, so that rounding control is actually per-

formed when the accumulator is first loaded and not when

the multiply operations is executed. On the other hand, if

PARAM.CLR is ‘‘1’’, the PARAM.RND value is copied into

bit 14 of the cleared accumulator, so that rounding control is

done at the same time that the multiply operation is execut-

ed.

Rounding is performed only for real, aligned-real and com-

plex data types. In operations on complex operands, the

order of accumulation is as follows: the result of the multipli-

cation with the real part of the X operand is added first to

the accumulator, and only then the result of the multiplica-

tion with the imaginary part of the X operand is added.

In general, the X, Y, and Z vectors can overlap. However,

because of the pipelined structure of the DSPM datapath,

the user must verify that a value written into the DSPM inter-

nal memory will not be used in the same vector instruction

as a source operand for the next 8 iterations, in all instruc-

tions except VCPOLY. In VCPOLY, Y[0] cannot be over-rid-

den at all.

The description below specifies the encoding of each DSPM

instruction. All other values are reserved for future use. Any

attempt to execute any reserved instructions will terminate

execution of the command list, issue an NMI request, and

set NMISTAT.UND to ‘‘1’’. In this case the contents of the

EXT and DSPMASK remain unchanged, but the contents of

the Accumulator and OVF may change.

3.5.5.4 Load Register Instructions

LXÐLoad X Vector Pointer

The LX instruction loads the double-word at alignedÐaddr
into the X register.

Syntax:

LX alignedÐaddr

15 11 10 0

00010 alignedÐaddr

Operation:

À

X 4 (vector ptr) mem[aligned addr];
Ó

Notes: The value at mem[alignedÐaddr ] should conform to vector pointer

specification format.

Accumulator is not affected.

LYÐLoad Y Vector Pointer

The LY instruction loads the double-word at alignedÐaddr
into the Y register.

Syntax:

LY alignedÐaddr

15 7 10 0

00011 alignedÐaddr

Operation:

À

Y 4 (vector ptr) mem[aligned addr];
Ó

Notes: The value at mem[alignedÐaddr ] should conform to vector pointer

specification format.

Accumulator is not affected.

LZÐLoad Z Vector Pointer

The LZ instruction loads the double-word at alignedÐaddr
into the Z register.

Syntax:

LZ alignedÐaddr

15 11 10 0

00100 alignedÐaddr
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Operation:

À

Z 4 (vector ptr) mem[aligned addr];
Ó

Notes: The value at mem[alignedÐaddr ] should conform to vector pointer

specification format.

Accumulator is not affected.

LAÐLoad Accumulator

The LA instruction loads the complex value at alignedÐ
addr into the A accumulator as a complex value.

Syntax:

LA alignedÐaddr

15 11 10 0

00101 alignedÐaddr

Operation:

À

(complex) A 4 (complex) mem[aligned addr];
Ó

Notes: The real and imaginary parts are placed in bits 15 through 30 of the

real and imaginary parts of the accumulator.

When PARAM.RND is set to ‘‘1’’, bit 14 of the real and imaginary

parts is set to ‘‘1’’, in order to implement rounding upon subsequent

additions into the accumulator. Otherwise, it is cleared to ‘‘0’’.

LEAÐLoad Extended Accumulator

The LEA instruction loads the accumulator with the extend-

ed value specified by X[0].
Both the real and the imaginary parts of the accumulator are

loaded.

Syntax:

EXEC LEA

15 11 10 0

10000 101 0011 0011

Operation:

À

extended X;

A 4 (extended) X[0];
Ó

Note: Bits 1 through 31 of the memory location are read into bit positions 0

through 30 of the accumulator.

LPARAMÐLoad Parameters Register

The LPARAM instruction loads the double-word at

alignedÐaddr into the PARAM register.

Syntax:

LPARAM alignedÐaddr

15 11 10 0

00000 alignedÐaddr

Operation:

À

PARAM 4 (param reg) mem[aligned addr];
Ó

Notes: The value at mem[alignedÐaddr ] should conform to this register

format. The value written into PARAM.LENGTH must be greater

then 0.

Accumulator is not affected.

LREPEATÐLoad Repeat Register

The LREPEAT instruction loads the double-word at

alignedÐaddr into the REPEAT register.

Syntax:

LREPEAT alignedÐaddr

15 11 10 0

00110 alignedÐaddr

Operation:

À

REPEAT 4 (repeat reg) mem[aligned addr];
Ó

Notes: The value at mem[alignedÐaddr ] should conform to the REPEAT

register format.

Accumulator is not affected.

LEABRÐLoad External Address Base Register

The LEABR instruction loads the double-word at

mem[alignedÐaddr ] into the EABR register.

Syntax:

LEABR alignedÐaddr

15 11 10 0

00111 alignedÐaddr

Operation:

À

EABR 4 (eabr reg) mem[aligned addr];
Ó

Notes: The value at mem[alignedÐaddr ] should conform to vector pointer

specification format, that is, bit positions 0 through 16 must be speci-

fied as ‘‘0’.

Accumulator is not affected.

3.5.5.5 Store Register Instructions

SXÐStore X Vector Pointer

The SX instruction stores the contents of the X register into

the double-word at alignedÐaddr .

Syntax:

SX alignedÐaddr

15 11 10 0

01010 alignedÐaddr

Operation:

À

(vector ptr) mem[aligned addr] 4 X;

Ó

Note: Accumulator is not affected.

SXLÐStore X Vector Pointer Lower Half

The SXL instruction stores the contents of the lower-half of

the X register into the word at mem[addr ].
Syntax:

SXL addr

15 11 10 0

11100 addr
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Operation:

À

mem[aligned addr] 4 X.low;
Ó

Note: Accumulator is not affected.

SXHÐStore X Vector Pointer Higher Half

The SXH instruction stores the contents of the higher-half of

the X register into the word at mem[addr ].
Syntax:

SXH addr

15 11 10 0

11101 addr

Operation:

À

mem[aligned addr] 4 X.high;
Ó

Note: Accumulator is not affected.

SYÐStore Y Vector Pointer

The SY instruction stores the contents of the Y register into

the double-word at alignedÐaddr.

Syntax:

SY alignedÐaddr

15 11 10 0

01011 alignedÐaddr

Operation:

À

(vector ptr) mem[aligned addr] 4 Y;
Ó

Note: Accumulator is not affected.

SZÐStore Z Vector Pointer

The SZ instruction stores the contents of the Z register into

the double-word at alignedÐaddr .

Syntax:

SZ alignedÐaddr

15 11 10 0

01100 alignedÐaddr

Operation:

À

(vector pointer mem[aligned addr] 4 Z;
Ó

Note: Accumulator is not affected.

SAÐStore Accumulator

The SA instruction stores the contents of the A accumulator

as a complex value into mem[alignedÐaddr ].
Syntax:

SA alignedÐaddr

15 11 10 0

01101 alignedÐaddr

Operation:

À

(complex mem[aligned addr] 4 (complex) A;
Ó

Notes: Bits 15 through 30 of the real and imaginary parts of the accumulator

are placed in the real and imaginary parts of the complex value at

mem[alignedÐaddr ].

Accumulator is not affected.

SEAÐStore Extended Accumulator

The SEA stores the contents of bits 0–30 of the imaginary

accumulator as an extended value into a DSPM memory

location specified by Z[0].
Bit 0 of this memory location is loaded with ‘‘0’’.

Syntax:

EXEC SEA

15 11 10 0

10000 101 0011 0110

Operation:

À

extended Z;

Z[0] 4 (extended) A;
Ó

Note: Accumulator is not affected.

SREPEATÐStore Repeat Register

The SREPEAT instruction stores the contents of the

REPEAT register in the double-word at mem[alignedÐ
addr ].
Syntax:

SREPEAT alignedÐaddr

15 11 10 0

01110 alignedÐaddr

Operation:

À

(repeat reg) mem[aligned addr] 4 REPEAT;
Ó

Note: Accumulator is not affected.

SOVFÐStore and Clear OVF Register

The SOVF instruction stores the contents of the OVF regis-

ter in the word at mem[addr ]. The OVF register is then

cleared to ‘‘0’’.

Syntax:

SOVF addr

15 11 10 0

01001 addr

Operation:

À

(ovf reg) mem[aligned addr] 4 OVF;
Ó

Note: Accumulator is not affected.

3.5.5.6 Adjust Register Instructions

INCXÐIncrement X Vector Pointer

The INCX instruction increments the X vector pointer by one

element, according to the increment and the wrap.
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Syntax:

EXEC INCX

15 11 10 0

10000 100 0101 1001

Operation:

À

X.ADDR 4 &X[1];
Ó

Note: Accumulator is not affected.

INCYÐIncrement Y Vector Pointer

The INCY instruction increments the Y vector pointer by one

element, according to the increment and the wrap.

Syntax:

EXEC INCY

15 11 10 0

10000 100 0101 1011

Operation:

À

Y.ADDR 4 &Y[1];
Ó

Note: Accumulator is not affected.

INCZÐIncrement Z Vector Pointer

The INCZ instruction increments the Z vector pointer by one

element, according to the increment and the wrap.

Syntax:

EXEC INCZ

15 11 10 0

10000 100 0101 1101

Operation:

À

Z.ADDR 4 &Z[1];
Ó

Note: Accumulator is not affected.

DECXÐDecrement X Vector Pointer

The DECX instruction decrements the X vector pointer by

one element, according to the increment and the wrap.

Syntax:

EXEC DECX

15 11 10 0

10000 101 0010 1101

Operation:

À

X.ADDR 4 &X[b1]
Ó

Note: Accumulator is not affected.

DECYÐDecrement Y Vector Pointer

The DECY instruction decrements the Y vector pointer by

one element, according to the increment and the wrap.

Syntax:

EXEC DECY

15 11 10 0

10000 101 0010 1111

Operation:

DECY
À

Y.ADDR 4 &YÀ11];
Ó

Note: Accumlator is not affected.

DECZÐDecrement Z Vector Pointer

The DECZ instruction decrements the Z vector by one ele-

ment, according to the increment and the wrap.

Syntax:

EXEC DECZ

15 11 10 0

10000 101 0011 0001

Operation:

À

Z.ADDR 4 &Z[11];
Ó

Note: Accumulator is not affected.

3.5.5.7 Flow Control Instructions

NOPRÐNo Operation

The NOPR command passes control to the next command

in the command list. No operation is performed.

Syntax:

NOPR

15 11 10 0

11010 00000000

Note: Accumulator is not affected.

HALTÐTerminate Command-List Execution

The HALT command terminates execution of the command

list. No further commands are executed. This event is made

visible to the CPU core, as specified in Section 3.6.

Syntax:

HALT

15 11 10 0

11001 00000000000

Note: Accumulator is not affected.

DJNZÐDecrement and Jump If Not Zero

The DJNZ command is used to implement loops and

branches in the command list. The value of the REPE-

AT.COUNT field is decremented by 1 and compared to 0. If

it is not equal to 0, then execution of the command list con-

tinues with the command located in the RAM address speci-

fied by the REPEAT.TARGET field. When the

REPEAT.COUNT field is equal to 0, then execution contin-

ues with the next command in the command list.

The DSPM has only one REPEAT register. To nest loops,

user must save the contents of the REPEAT register before

starting an inner loop, and restore it at the end of the inner

loop.
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Syntax:

EXEC DJNZ

15 11 10 0

10000 101 0110 1100

Note: Accumulator is not affected.

DBPTÐDebug Breakpoint

The DBPT instruction is used for implementing software de-

bug breakpoint in the DSPM command-list. Whenever there

is an attempt to execute a DBPT instruction, the NMIS-

TAT.UND bit is set to ‘‘1’’, (See Section 3.4.4).

Syntax:

EXEC DBPT

15 11 10 0

10000 111 1111 1110

Note: Accumulator is not affected.

3.5.5.8 Internal Memory Move Instructions

VRMOVÐVector Real Move

The VRMOV instruction copies the real X vector to the real

Z vector.

Syntax:

EXEC VRMOV

15 11 10 0

10000 101 0010 1011

Operation:

À

real X, Z;

for (n 4 0; n k LENG; n00)
À

Z[n] 4 X[n];
Ó

Ó

VARMOVÐVector Aligned Real Move

The VARMOV instruction copies the aligned real X vector to

the aligned real Z vector.

Syntax:

EXEC VARMOV

15 11 10 0

10000 100 0011 1000

Operation:

À

aligned real X, Z;

for (n 4 0; n k LENG; n00)
À

Z[n].low 4 X[n].low;

Z[n].high 4 X[n].high;
Ó

Ó

VRGATHÐVector Real Gather

The VRGATH instruction gathers non-contiguous elements

of the X real vector, as specified by the Y integer vector, and

places them in contiguous locations in the Z real vector.

Syntax:

EXEC VRGATH

15 11 10 0

10000 100 0011 1010

Operation:

À

real X, Z;

integer X.ADDR, Y;

for (n 4 0; n k LENG; n00)
À

Z[n] 4 mem[(X.ADDR0Y[n]) & 0xFFFF];
Ó

Ó

VRSCATÐVector Real Scatter

The VRSCAT instruction scatters contiguous elements of

the X real vector, and places them in non-contiguous loca-

tions in the Z real vector, as specified by the Y integer vec-

tor.

Syntax:

EXEC VRSCAT

15 11 10 0

10000 100 0100 0000

Operation:

À

real X, Z;

integer Z.ADDR, Y;

for (n40; n k LENG; n00)
À

mem[Z.ADDR0Y[n]) & 0xFFFF] 4 X[n];
Ó

Ó

3.5.5.9 External Memory Move Instructions

VXLOADÐVector External Load

The VXLOAD instruction loads a vector from external mem-

ory into the Z vector. The external memory address is speci-

fied in the EABR and X registers.

Syntax:

EXEC VXLOAD

15 11 10 0

10000 100 0100 1111

Operation:

VXLOAD
À

real X, Z;

ext address EABR;

for (n40; nkLENG; n00)
À

Z[n] 4 ext mem[EABR 0 (ext address)

2*&X[n]]
Ó

Ó

VXSTOREÐVector External Store

The VXSTORE instruction stores the Z vector into an exter-

nal memory vector. The external memory address is speci-

fied in the EABR and X registers.
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Syntax:

EXEC VXSTORE

15 11 10 0

10000 100 0101 0101

Operation:

À

real X, Z;

ext address EABR;

for (n40; n k LENG; n00)
À

ext mem[EABR 0 (ext address)

2*&Z[n]] 4 X[n];
Ó

Ó

VXGATHÐVector External Gather

The VXGATH instruction gathers non-contiguous elements

of the external memory vector, as specified by the Y integer

vector, and places them in contiguous locations in the Z real

vector. The external memory address is specified in the

EABR and X registers.

Syntax:

EXEC VXGATH

15 11 10 0

10000 100 0100 0110

Operation:

À

real X, Z;

ext address EABR;

integer X.ADDR, Y;

for (n40; n k LENG; n00)
À

Z[n]4ext mem

[EABR0(ext address)2*((X.ADDR0(integer)Y[n])

& 0xFFFF)];
Ó

Ó

3.5.5.10 Arithmetic/Logical Instructions

VROPÐVector Real Op

The VROP instruction performs one of 7 operations be-

tween corresponding elements of the X and Y real vectors,

and writes the result in the corresponding place in the Z

output vector. The operation to be performed is specified in

PARAM.OP field.

Syntax:

EXEC VROP

15 11 10 0

10000 101 0110 1000

Operation:

À

real X,Y,Z;

for (n40; n k LENG; n00)
À

Z[n] 4 (real) (X[n] kopl Y[n]);
Ó

Ó

The allowed values in PARAM.OP are:

kopl Operation

011010 ADD Z e X a Y

100111 SUB Z e X b Y

001000 BIC Z e X & Y

100000 AND Z e X & Y

111000 OR Z e X l Y

011000 XOR Z e X Z Y

001100 INV Z e Y

VAROPÐVector Aligned Real Op

The VAROP instruction performs one of 7 operations be-

tween corresponding elements of the X and Y aligned vec-

tors, and writes the result in the coresponding place in the Z

output vector. The operation to be performed is specified in

PARAM.OP field.

Syntax:

EXEC VAROP

15 11 10 0

10000 100 0001 1010

Operation:

À

aligned real X,Y,Z;

for (n40; n k LENG; n00)
À

Z[n].low 4 (real) (X[n].low kopl

Y[n].low);

Z[n].high 4 (real) (X[n].high kopl

Y[n].high);
Ó

Ó

Note: The allowed values in PARAM.OP are the same as those in VROP.

3.5.5.11 Multiply-and-Accumulate Instructions

VRMACÐVector Real Multiply and Accumulate

The VRMAC instruction performs a convolution sum of the

X and Y real vectors. The previous value of the accumulator

is used and the result stored in Z[0].

Syntax:

EXEC VRMAC

15 11 10 0

10000 100 0000 0111

Operation:

À

real X,Y,Z;

real acc A;

for (n40; n k LENG; n00)
À

A 4 A 0 X[n] * Y[n];
Ó

Z[0] 4 (real) A;
Ó

Note: When PARAM.CLR is set to ‘‘1’’, A is cleared to ‘‘0’’ prior to the first

addition. When PARAM.SUB is set to ‘‘1’’, the ‘‘a’’ sign is replaced

by a ‘‘b’’ sign.
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VARMACÐVector Aligned Real Multiply

and Accumulate

The VARMAC instruction performs a convolution sum of the

X and Y real vectors. The previous value of the accumulator

is used and the result is stored in Z[0].

Syntax:

EXEC VARMAC

15 11 10 0

10000 100 0000 0000

Operation:

À

aligned real X,Y;

real Z;

real acc A;

for (n40; n k LENG; n00)
À

A 4 A 0 X[n].low * Y[n].low 0
X[n].high * Y[n].high ;

Ó

Z[0] 4 (real) A;
Ó

Note: When PARAM.CLR is set to ‘‘1’’, A is cleared to ‘‘0’’ prior to the first

addition. When PARAM.SUB is set to ‘‘1’’, the ‘‘a’’ sign is replaced

by a ‘‘b’’ sign.

VCMACÐVector Complex Multiply and Accumulate

The VCMAC instruction performs a convolution sum of the

X and Y complex vectors. The previous value of the accu-

mulator is used, and the result is stored in Z[0].
Syntax:

EXEC VCMAC

15 11 10 0

10000 100 0111 0101

Operation:

À

complex X,Y,Z;

complex acc A;

for (n40; n k LENG; n00)
À

A 4 A 0 X[n] * Y[n];
Ó

Z[0] 4 (complex) A;
Ó

Note: When PARAM.COJ is set to ‘‘1’’, X[n] is multiplexed by the conjugate

of Y[n]. When PARAM.CLR is set to ‘‘1’’, A is cleared to ‘‘0’’ prior to

the first addition. When PARAM.SUB is set to ‘‘1’’, the ‘‘a’’ sign is

replaced by a ‘‘b’’ sign.

VRLATPÐVector Real Lattice Propagate

The VRLATP instruction is used for implementing lattice and

inverse lattice filter operations. This instruction is used to

update the propagating values of vector Z.

Syntax:

EXEC VRLATP

15 11 10 0

10000 100 0010 1100

Operation:

À

real X,Y,Z;

real acc A;

A 4 (real acc) Z[0];

for (n41; n k LENG; n00)
À

A 4 A 0 X[n 1 1] * Y[n 1 1];

Z[n] 4 (real) A;

A 4 (real acc) Z[n];
Ó

Ó

Note: When PARAM.SUB is set to ‘‘1’’, the ‘‘a’’ sign is replaced by a ‘‘b’’

sign. The LENG parameter for this operation must be greater than 1.

3.5.5.12 Multiply-and-Add Instructions

VAIMADÐVector Aligned Integer Multiply and Add

The VAIMAD instruction multiplies corresponding elements

of the X and Y integer vectors, and adds or subtracts the

result, as an integer value, to the integer vector Z. This re-

sult is placed in the Z output vector.

Syntax:

EXEC VAIMAD

15 11 10 0

10000 100 0001 0100

Operation:

À

aligned integer X,Y;

integer Z;

for (n40; n k LENG; n00)
À

Z[2n] 4 (integer) (Z[2n] 0 X[n].low *

Y[n].low);

Z[2n01] 4 (integer) (Z[2n01] 0 X[n].high

* Y[n].high);
Ó

Ó

Note: When PARAM.CLR is set to ‘‘1’’, only multiplication is done without

addition. When PARAM.SUB is set to ‘‘1’’, the ‘‘a’’ sign is replaced

by a ‘‘b’’ sign.

VRMADÐVector Real Multiply and Add

The VRMAD instruction multiplies corresponding elements

of the X and Y real vectors and adds or subtracts the result

to the real vector Z. This result is placed in the Z output

vector.

Syntax:

EXEC VRMAD

15 11 10 0

10000 100 0011 0011
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Operation:

À

real X,Y,Z;

for (n40; n k LENG; n00)
À

Z[n] 4 (real) (Z[n] 0 X[n] * Y[n]);
Ó

Ó

Note: When PARAM.CLR is set to ‘‘1’’, only multiplication is performed,

without addition. When PARAM.SUB is set to ‘‘1’’, the ‘‘a’’ sign is

replaced by a ‘‘b’’ sign.

VARMADÐVector Aligned Real Multiply and Add

The VARMAD instruction multiplies corresponding elements

of the X and Y real vectors and adds or subtracts the result

to the real vector Z. This result is placed in the Z output

vector.

Syntax:

EXEC VARMAD

15 11 10 0

10000 100 0000 1110

Operation:

À

aligned real X,Y,Z;

for (n40; n k LENG; n00)
À

Z[n].low 4 (real) (Z[n].low 0 X[n].low *

Y[n].low);

Z[n].high 4 (real) (Z[n].high 0 X[n].high

* Y[n].high);
Ó

Ó

Note: When PARAM.CLR is set to ‘‘1’’, only multiplication is performed,

without addition. When PARAM.SUB is set to ‘‘1’’, the ‘‘a’’ sign is

replaced by a ‘‘b’’ sign.

VCMADÐVector Complex Multiply and Add

The VCMAD instruction multiplies the corresponding ele-

ments of the X and Y complex vectors and adds or sub-

tracts the result to the complex vector Z. This result is

placed in the Z output vector.

Syntax:

EXEC VCMAD

15 11 10 0

10000 100 1110 0000

Operation:

À

complex X,Y,Z;

for (n40; n k LENG; n00)
À

Z[n] 4 (complex) (Z[n] 0 X[n] * Y[n]);
Ó

Ó

Note: When PARAM.COJ is set to ‘‘1’’, X[n] is multiplied by the conjugate

of Y[n]. When PARAM.CLR is set to ‘‘1’’, only multiplication is per-

formed, without addition. When PARAM.SUB is set to ‘‘1’’, the ‘‘a’’

sign is replaced by a ‘‘b’’ sign.

3.5.5.13 Clipping and Min/Max Instructions

VARABSÐVector Aligned Real Absolute Value

The VARABS instruction computes the absolute value of

each element in the real vector X and places the result in

the corresponding place in the Y output vector.

Syntax:

EXEC VARABS

15 11 10 0

10000 100 0001 1111

Operation:

À

aligned real X,Z;

for (n40; n k LENG; n00)
À

Z[n].low 4 abs (X[n].low);

Z[n].high 4 abs (X[n].high);
Ó

Ó

Note: There is no representation for the absolute value of 0x8000. Whenev-

er an absolute value of 0x8000 is needed, OVF.SAT is set to ‘‘1’’, and

the maximum positive number 0x7FFF is returned.

VARMINÐVector Aligned Real Minimum

The VARMIN instruction compares corresponding elements

of the X and Y real vectors, and writes the smaller of the two

in the corresponding place in the Z integer vector.

Syntax:

EXEC VARMIN

15 11 10 0

10000 100 0101 1111

Operation:

À

aligned real X,Y,Z;

for (n40; n k LENG; n00)
À

Z[n].low 4 min (X[n].low ,Y[n].low);

Z[n].high 4 min (X[n].high ,Y[n].high);
Ó

Ó

VARMAXÐVector Aligned Real Maximum

The VARMAX instruction compares corresponding ele-

ments of the X and Y real vectors, and writes the larger of

the two in the corresponding place in the Z integer vector.

Syntax:

EXEC VARMAX

15 11 10 0

10000 100 0110 0110
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Operation:

À

aligned real X,Y,Z;

for (n40; n k LENG; n00)
À

Z[n].low 4 max (X[n].low , Y[n].low);

Z[n].high 4 max (X[n].high , Y[n].high);
Ó

Ó

VRFMAXÐVector Real Find Maximum

The VRFMAX instruction scans the X real vector and re-

turns the address of the element with maximum value. The

resulting address is placed in Z[0].
Syntax:

EXEC VRFMAX

15 11 10 0

10000 100 0010 0100

Operation:

À

real X;

integer Z;

internal register real tempX;

internal register integer tempA;

tempX 4 X[0];

tempA 4 &X[0];

for (n41; n k LENG; n00)
À

if (X[n] l tempX)
À

tempX 4 X[n];

tempA 4 &X[n];
Ó

Ó

Z[0] 4 tempA;
Ó

Note: The LENG parameter for this operation must be greater than 1.

EFMAXÐExtended Find Maximum

The EFMAX instruction implements a single iteration of

maximum search loop. The extended value in the accumula-

tor is compared with the first element of the extended Z

vector. The larger value is stored back into the Z vector. In

case the larger value was the accumulator, then the value of

X.ADDR is stored in the second location of the Z-vector (as

an integer).

Syntax:

EXEC EFMAX

15 11 10 0

10000 101 0100 1011

Operation:

À

integer Y, Z[1];
extended temp, Z[0];

real X;

real acc A;

A 4 (extended acc) ((extended)A);

temp 4 Z[0];

if (A l temp)
À

temp 4 (extended) A;

Z[1] 4 &X[0];
Ó

Z[0] 4 temp;
Ó

Note: The Y vector must hold the following values: Y[0] must be 0x7fff, Y[1]
must be 0x0001, and Y[2] must be 0x4000.

3.5.5.14 Special Instructions

ESHLÐExtended Shift Left

The ESHL instruction performs a shift-left operation on ex-

tended-precision data in the accumulator, and stores the

more significant half of the result as a real value into the first

element of the real Z vector.

Syntax:

EXEC ESHL

15 11 10 0

10000 101 0110 0100

Operation:

À

real acc A;

A 4 (real acc) ((extended)A);

if (LENG l 1) for (n41; nkLENG; n00)
À

A 4 A 0 A;
Ó

Z[0] 4 (real) A;
Ó

Note: The LENG parameter for this operation must be greater than 0. When

LENG equals 1, only the real part of the accumulator is updated.

When LENG is greater than 1, both the real and the imaginary parts of

the accumulator are updated to the same value.

VCPOLYÐVector Complex Polynomial

The VCPOLY instruction performs one iteration of evaluat-

ing polynomials with real coefficients, for a vector of com-

plex-valued arguments.
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Syntax:

EXEC VCPOLY

15 11 10 0

10000 101 0001 1000

Operation:

À

complex X,Z;

real Y;

complex temp;

temp.re 4 (real) Y[0] * X[0].re;

temp.im 4 0;

for (n40; n k LENG; n00)
À

Z[n] 4 (complex) Z[n] * X[n01] 0 temp;
Ó

Z[LENG].re 4 (real) (Z[LENG].re *

X[LENG01].re 0 Y[0] * temp.re);

Y.ADDR 4 &Y[1];
Ó

Note: The LENG parameter for this operation must be greater than 1.

VESIIRÐVector Extended Single-Pole IIR

The VESIIR instruction performs a special form of an Infi-

nite-Impulse Response (IIR) filter. The samples and coeffi-

cients are given as real values, as well as the output result.

However, the accumulation is performed using extended-

precision arithmetic.

Syntax:

EXEC VESIIR

15 11 10 0

10000 101 0011 0111

Operation:

À

real X,Y,Z;

real acc A;

for (n40; n k LENG; n00)
À

A 4 (real acc) ((extended)A);

A 4 (real acc) (A * X[n])) 0 Y[n02];

Z[n] 4 (real) A;
Ó

Ó

Note: The term (A * X[n]) is a 32-bit by 16-bit multiplication. During the

conversion of this product to a realÐaccumulator data type, rounding

is done if PARAM.RND is ‘‘1’’. During the conversion of A to a real

data type, the result is rounded if Y[0] e 0x0080, or truncated if Y[0]
e 0x0. The result with other values of Y[0] are unpredictable. Y[1]
must be specified as 0x7fff.

TL/EE/11732–18

FIGURE 3-8. DSP Module Block Diagram
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3.6 SYSTEM INTERFACE

This section provides general information on the

NS32AM162 interface to the external world. Descriptions of

the CPU requirements as well as the various bus character-

istics are provided here. Details on other device characteris-

tics including timing are given in Chapter 4.

3.6.1 Power and Grounding

The NS32AM162 requires a single 5V power supply, applied

on the VCC pins. These pins should be connected together

by a power (VCC) plane on the printed circuit board.

The grounding connections are made on the GND pins.

These pins should be connected together by a ground

(GND) plane on the printed circuit board.

For optimal noise immunity, the power and ground pins

should be connected to VCC and ground planes respective-

ly. If VCC and ground planes are not used, single conductors

should be run directly from each VCC pin to a power point,

and from each GND pin to a ground point. Daisy-chained

connections should be avoided.

Decoupling capacitors should also be used to keep the

noise level to a minimum. Standard 0.1 mF ceramic capaci-

tors can be used for this purpose. They should attach to

VCC, GND pins as close as possible to the NS32AM162.

During prototype using wire-wrap or similar methods, the

capacitors should be soldered directly to the power pins of

the NS32AM162 socket, or as close as possible, with very

short leads.

Design Notes

When constructing a board using high frequency clocks with

multiple lines switching, special care should be taken to

avoid resonances on signal lines. A separate power and

ground layer is recommended. This is true when designing

boards for the NS32AM162. Switching times of under 5 ns

on some lines are possible. Resonant frequencies should

be maintained well above the 200 MHz frequency range on

signal paths by keeping traces short and inductance low.

Loading capacitance at the end of a transmission line con-

tributes to the resonant frequency and should be minimized

if possible. Capacitors should be located as close as possi-

ble across each power and ground pair near the

NS32AM162.

3.6.2 Clocking

3.6.2.1 High Speed Clock Oscillator

The NS32AM162 provides an internal oscillator that inter-

acts with an external High-Speed clock source through two

signals; OSCIN1 and OSCOUT1.

Either an external single-phase clock signal or a crystal can

be used as the clock source. If a single-phase clock source

is used, only the connection to OSCIN1 is required;

OSCOUT1 should be left unconnected or loaded with no

more then 5 pF of stray capacitance.

When operation with a crystal is desired, special care

should be taken to minimize stray capacitance and induc-

tance. The crystal, as well as the external components,

should be placed in close proximity to OSCIN1 and

OSCOUT1 pins to keep the printed circuit trace lengths to

an absolute minimum. Figure 3-9 shows the external crystal

interconnections. Table 3-2 provides the crystal characteris-

tics and the values of R, C, and L components, including

stray capacitance.

TL/EE/11732–19

FIGURE 3-9. High Frequency Crystal Connections

3.6.2.2 Low Frequency Clock Oscillator

The NS32AM162 provides an internal oscillator that inter-

acts with an external clock Low-Frequency source through

two signals; OSCIN2 and OSCOUT2.

Either an external single-phase clock signal or a resonator

can be used as the clock source. If a single-phase clock

source is used, only the connection to OSCIN2 is required;

OSCOUT2 should be left unconnected or loaded with no

more then 5 pF of stray capacitance.

When operation with a crystal is desired, special care

should be taken to minimize stray capacitances and induc-

tance. The resonator, as well as the external components,

should be placed in close proximity to OSCIN2 and

OSCOUT2 pins to keep the printed circuit trace lengths to

an absolute minimum. Figure 3-10 shows the external crys-

tal interconnections. Table 3-3 provides the crystal charac-

teristics and the values of R, and C components, including

stray capacitance.

52



3.0 Functional Description (Continued)

TABLE 3-2. High-Frequency Oscillator Circuit

Component Value Tolerance Units

XTAL Resonance 40.96 MHz

Third Overtone (parallel)

Type AT-Cut

Maximum Series Resistance 50 X

Maximum Shunt Capacitance 7 pF

R1 150k 10% X

R2 51 5% X

C1 20 10% pF

C2 20 10% pF

C3 1000 20% pF

L 1.8 10% mH

TL/EE/11732–20

FIGURE 3-10. Low Frequency Resonator Connections

TABLE 3-3. Low Frequency Oscillator Circuit

Component Value Tolerance Units

RESONATOR Ceramic Resonator 455 kHz

R1 1M 10% X

R2 4.7k 10% X

C1 100 20% pF

C2 100 20% pF

TL/EE/11732–21

FIGURE 3-11. Recommended Reset Connections
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3.0 Functional Description (Continued)

3.6.3 Power Down Mode

The Clock Generator Control register (CLKCTL) has two

control bits: PDM and DHFO. The DHFO controls the high-

frequency oscillator. When ‘‘0’’, the high-frequency oscilla-

tor is operating. When CLKCTL.DHFO is ‘‘1’’, the high-fre-

quency oscillator is disabled. The PDM bit changes the

mode of operation. When CLKCTL.PDM is ‘‘0’’, the proces-

sor is in normal operation mode, where all the modules op-

erate from the high-frequency oscillator. When

CLKCTL.PDM is ‘‘1’’, the NS32AM162 is in down power

mode, where some of the modules are not operating, and

others operate from the low-frequency oscillator. In the

power down mode, DRAM refresh cycles are done at a rate

of (/4 of Crystal-2 frequency, and the core operates from a

clock whose frequency is (/8 of Crystal-2. Accesses to the

following modules are not allowed during low power mode:

# ICU

# CODEC

# PWM generator

# DRAM read and write cycles.

When changing from normal operation mode to power down

mode, the user must set CLKCNTL.PDM to ‘‘1’’, and only

then set CLKCNTL.DHFO to ‘‘1’’. When changing from pow-

er down mode to normal operation mode, the user must

clear CLKCNTL.DHFO to ‘‘0’’, and only then clear

CLKCNTL.PDM.

The transition between normal operation mode and power

down mode occurs after a new value is written into

CLKCTL.PDM. The NS32AM162 may delay this transition, if

a DRAM refresh cycle is in process. The CLKCTL.PDM bit

will change its value only when the transition is done. Note

however that it is usually not needed to wait until the tran-

sition is done, since it is guaranteed that the processor will

change its mode when the DRAM refresh cycle is over.

3.6.4 Resetting

The RST input pin is used to reset the NS32AM162. The

CPU samples RST on the falling edge of CTTL.

Whenever a low level is detected, the CPU responds imme-

diately. Any instruction being executed is terminated; any

results that have not yet been written to memory are dis-

carded; and any pending interrupts and traps are eliminated.

The internal latch for the edge-sensitive NMI signal is

cleared.

On application of power, RST must be held low for at least

50 ms after VCC is stable. This is to ensure that all on-chip

voltages are completely stable before operation. Whenever

a Reset is applied, it must also remain active for not less

than 50 ms. See Figures 3-12 and 3-13.

TL/EE/11732–22

FIGURE 3-12. Power-On Reset Requirements

TL/EE/11732–23

FIGURE 3-13. General Reset Timing

While in the Reset state, the CPU drives the signals CRD,

CWR and CFS inactive.

The internal CPU clock and CTTL run at half the frequency

of the signal on the OSCIN1 pin. CCLK is active (high).

The PSR is reset to 0. The following conditions are present

after reset due to the PSR being reset to 0:

Tracing is disabled.

Supervisor mode is enabled.

Supervisor stack space is used when the TOS addressing

mode is indicated.

No trace traps are pending.

Only NMI is enabled. Maskable interrupts are disabled.

Note that vector/non-vectored interrupts have not been se-

lected. While interrupts are disabled, a SETCFG [I] instruc-

tion must be executed to enable vectored interrupts. If non-

vectored interrupts are required, a SETCFG without the [I]
must be executed.
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4.0 Device Specifications
4.1 NS32AM162 PIN DESCRIPTIONS

The following is a brief description of all NS32AM162 pins.

4.1.2 Input Signals

RST Reset Input. Schmitt triggered, asyn-

chronous signal used to generate a CPU

reset.

INT3 External Interrupt. Schmitt triggered. A

High-to-Low transition requests a maska-

ble interrupt.

OSCIN1 Crystal1/External Clock Input

(40.96 MHz). Input from a crystal or an

external clock source.

OSCIN2 Crystal2/External Clock Input

(455 KHz). Input from a crystal or an ex-

ternal clock source.

CDIN Data In from CODEC. Data is input from

CODEC via this pin.

Note: After reset this pin is configured as

an output, until the MCFG register is set

to the appropriate value.

4.1.3 Output Signals

A1–A11 Address Bus. These are the 11 least sig-

nificant bits of the memory address bus.

During DRAM accesses these are the

row and column address bits.

RAS Row Address Strobe for DRAM Control

and Refresh. During DRAM accesses

controls DRAM’s row address latches;

signals the beginning of a DRAM bus cy-

cle. Activated also during DRAM refresh

cycles.

CAS Column Address Strobe for DRAM

Control and Refresh. During DRAM ac-

cesses controls DRAM’s column address

latches. Activated also during DRAM re-

fresh cycles.

DWE DRAM Write/Read Control. Activated

during DRAM write bus cycles. Enables

writing data to the DRAM.

CFS0 CODEC0 Frame Sync. Starts a new en-

code and decode cycle.

CDOUT Data Out to CODEC. Data is output to

the CODEC via this pin.

CCLK CODEC Master ClockÐ

CODEC’s Clock input for the switched-

capacitor filters and CODEC.

PWM/CFS1 PWM Generator Output/CODEC1

Frame Sync. When one CODEC is

usedÐPulse Width Modulator output sig-

nal. This signal has a fixed frequency and

a variable duty cycle.

When two CODECs are usedÐ

CODEC1’s Frame Sync input. Starts a

new encode and decode cycle.

OSCOUT1 Crystal1 Clock Output (40.96 MHz).

This line is used as the return path for the

high frequency crystal. When an external

clock source is used, OSCOUT1 should

be left unconnected or loaded with no

more than 5 pF of stray capacitance.

OSCOUT2 Crystal2 Clock Output (455 KHz). This

line is used as the return path for the low

frequency crystal. When an external

clock source is used, OSCOUT2 should

be left unconnected or loaded with no

more than 5 pF of stray capacitance.

PC0/A12 Output Port/External ROM Address

Line A12. Output Port, bit 0 in Internal

ROM mode, A12 in External ROM and

Development modes.

PC1/A13 Output Port/External ROM Address

Line A13. Output Port, bit 1 in Internal

ROM mode, A13 in External ROM and

Development modes.

PC2/A14 Output Port/External ROM Address

Line A14. Output Port, bit 2 in Internal

ROM mode, A14 in External ROM and

Development modes.

PC3/A15 Output Port/External ROM Address

Line A15. Output Port, bit 3 in Internal

ROM mode, A15 in External ROM and

Development modes.

PC4/A16 Output Port/External ROM Address

Line A16. Output Port, bit 4 in Internal

ROM mode, A16 in External ROM and

Development modes.

PC5/MRD Output Port/External ROM OE Signal.

Output Port, bit 5 in Internal ROM mode,

external memory Output Enable control

in External ROM and Development

modes.

4.1.4 Input/Output Signals

D0–D1 Data Bus Bits 0 and 1. Data bit 0 is the

l.s.b.

D2/RA12 Data Bus Bit 2/DRAM Row Address

Line A12. Data bit 2. Row Address Line

12 in Internal ROM mode. Address line

12 is asserted valid during DRAM ac-

cesses when RAS is activated.

D3–D7 Data Bus Bits 3 to 7.

PA0/MWR0 Port A, Bit Programmable/External

RAM WE/Signal. Port A, bit 0 in Internal

and External ROM modes, WE signal in

Development mode, activated during ex-

ternal memory write cycles in order to en-

able writing of data to the memory’s even

bytes.

PA1/MWR1 Port A, Bit Programmable/External

RAM WE Signal. Port A, bit 1 in Internal

and External ROM modes, WE signal in

Development mode, activated during ex-

ternal memory write cycles in order to en-

able writing of data to the memory’s odd

bytes.

PA2/CTTL Port A, Bit Programmable/CPU Clock.

Port A, bit 2 in Internal and External ROM

modes, CTTL clock in Development

mode, this clock is similar to internal

PHI1. The skew between CCTL rising

edge and PHI1 rising edge is kept to a

minimum.
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4.0 Device Specifications (Continued)

PA3/NSF Port A, Bit Programmable/Non-Se-

quential Fetch Status. Port A, bit 3 in

Internal and External ROM modes, NSF

in Development mode. NSF is a status

signal activated during Non-Sequential

Instruction Fetches (meaningful if T1 is

also activated).

PA4/T1 Port A, Bit Programmable/T1 (First bus

transaction’s cycle). Port A, bit 4 in Inter-

nal and External ROM modes, T1 in De-

velopment mode. T1 is activated at the

beginning of any core or DSPM bus

transaction.

PA5/DDIN Port A, Bit Programmable/Data Direc-

tion. Port A, bit 5 in Internal and External

ROM modes, DDIN in Development

mode. DDIN is a status signal indicating

the direction of the data transfer during a

bus cycle.

PA6/A17 Port A, Bit Programmable/External

Address Line A17. Port A, bit 6 in Inter-

nal and External ROM modes, address

bit 17 in Development mode.

PA7/A18 Port A, Bit Programmable/External

Address Line A18. Port A, bit 7 in Inter-

nal and External ROM modes, address

bit 18 in Development mode.

PB0–PB7/ Port B, Bit Programmable/Extended
D8–D15 Data Bus Bit 8 through 15. Port B bits 0

to 7 in Internal ROM mode, Data odd

byte in External ROM and Development

modes.

PC6/IOWR/ Output Port/External IO Write Con-
MODE0 trol/Mode Control. Output Port, bit 6 in

internal ROM mode, external IO write

control in External ROM and Develop-

ment modes.

Synchronize bit 0, sampled upon reset to

determine the mode of operation.

PC7/IORD/ Output Port/External IO Read Con-
MODE1 trol/Mode Control. Output Port, bit 7 in

Internal ROM mode, external IO read

control in External ROM and Develop-

ment modes.

Synchronize bit 1, sampled upon reset to

determine the mode of operation.

68-Pin PCC Package

TL/EE/11732–24

Top View

Order Number NS32AM162V-20 or NS32AM163V-20

NS Package Number V68A

FIGURE 4-1. Connection Diagram
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4.0 Device Specifications (Continued)

4.2 ABSOLUTE MAXIMUM RATINGS

If Military/Aerospace specified devices are required,

please contact the National Semiconductor Sales

Office/Distributors for availability and specifications.

Storage Temperature b65§C to a150§C
Temperature under Bias 0§C to a70§C
All Input or Output Voltages

with Respect to GND b0.5V to a6.5V

Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation
at these limits is not intended; operation should be limited to
those conditions specified under Electrical Characteristics.

4.3 ELECTRICAL CHARACTERISTICS

TA e 0§C to a70§C, VCC e 5V g10% GND e 0V.

Symbol Parameter Conditions Min Typ Max Units

VIH Logical 1 Input Voltage 2.0 VCC a 0.5 V

VIL Logical 0 Input Voltage b0.5 0.8 V

VOH Logical 1 Output Voltage IOH e b400 mA 2.4 V

VPWMH PWM Logical 1 Voltage IOH e b400 mA
VCC b 0.5 VCC a 0.5 V

(Note 1)

VOL Logical 0 Output Voltage IOL e 4 mA 0.45 V

VPWML PWM Logical 0 Voltage IOL e 400 mA
b0.5 a0.5 V

(Note 1)

VX1H OSCIN1/OSCIN2 Input
4.2 V

VX2H High Voltage (Note 2)

VX1L OSCIN1/OSCIN2 Input
1.0 V

VX2L Low Voltage (Note 2)

IL Input Load Current 0V s VIN s VCC b20 20 mA

IO (Off) Output Leakage Current 0V s VOUT s VCC
b20 20 mA

(I/O Pins in Input Mode)

ICCH Active Supply Current IOUT e 0,

(High Power Mode) TA e 25§C 200 mA

OSCIN1 e 40.96 MHz VCC e 5V

ICCL Active Supply Current IOUT e 0,

(Low Power Mode) TA e 25§C 2.5 mA

OSCIN2 e 455 KHz VCC e 5V

VHYS Hysteresis Loop Width
0.5 V

(Note 1)

VHh High Level Input Voltage Max (3.5,
V

VCC b 1.5)

VHl Low Level Input Voltage 0.7 V

VMODh MODE0 and MODE1 Max (3.5,
V

High Level Input Voltage VCC b 1.5)

VMOD1 MODE0 and MODE1
0.7 V

Low Level Input Voltage

Note 1: Guaranteed by design.

Note 2: When an external single-phase clock signal is used, the Min value of VX1H, VX2H is 4.5V, and the Max value of VX1L, VX2L is 0.5V.
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4.0 Device Specifications (Continued)

4.4 SWITCHING CHARACTERISTICS

4.4.1 Definitions

All the timing specification given in this section refer to 0.8V

or 2.0V on the rising or falling edges of all the signals as

illustrated in Figures 4-2, 4-3 and 4-4 unless specifically

stated otherwise. CTTL and all other output signals capaci-

tive load is assumed to be 50 pF. OSCIN1 crystal frequency

is 40.96 MHz. OSCIN2 ceramic resonator frequency is

455 KHz.

TL/EE/11732–25

FIGURE 4-2. Synchronous Output Signals Specification

TL/EE/11732–26

FIGURE 4-3. Synchronous Input Signals Specification

TL/EE/11732–27

FIGURE 4-4. Asynchronous Signals Specification

Abbreviations:

L.E. - Leading Edge T.E. - Trailing Edge

R.E. - Rising Edge F.E. - Falling Edge

TL/EE/11732–28

FIGURE 4-4a. PWM Output Signal Specification

TL/EE/11732–29

FIGURE 4-4b. Hysteresis Inputs Definition
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4.0 Device Specifications (Continued)

4.4.2 Synchronous Timing Tables

4.4.2.1 Output Signals: Internal Propagation Delays, NS32AM162-20

Symbol Figure Description Reference Conditions
NS32AM162

Units
Min Max

tCTp 4-15 CTTL Clock Period (Note 1) R.E. CTTL to Next R.E. CTTL 48.8 17582.0 ns

tCTh 4-15 CTTL High Time At 2.0V (Both Edges) tCTp/2 b 5 ns

tCT1 4-15 CTTL Low Time At 0.8V (Both Edges) tCTp/2 b 5 ns

tCCLKa 4-10 CCLK Active After R.E. CTTL 13.0 ns

tCCLKia 4-10 CCLK Inactive After R.E. CTTL 13.0 ns

tCFSa 4-8 CFS0, CFS1/Active After R.E. CTTL 25.0 ns

tCFSia 4-8 CFS0, CFS1/Inactive After R.E. CTTL 25.0 ns

tAv 4-5a Address Valid (Note 5) After R.E. CTTL T1 or T3 12.0 ns

tDv 4-5c D(0:15) Valid After R.E. CTTL T2 13.0 ns

tDf 4-5c D(0:15) Float (Note 4) After R.E. CTTL T1 13.0 ns

tCDOv 4-8 CDOUT Valid After R.E. CTTL 13.0 ns

4-9

tCDOh 4-10 CDOUT Hold After R.E. CTTL 0.0 ns

tDDINv 4-11a DDIN Valid After R.E. CTTL T1 13.0 ns

tT1a 4-11a T1 Active After R.E. CTTL T1 13.0 ns

tT1ia 4-11a T1 Inactive After R.E. CTTL T2 13.0 ns

tNSFa 4-11a NSF Active After R.E. CTTL T4 13.0 ns

tNSFia 4-11a NSF Inactive After R.E. CTTL T4 13.0 ns

tRASa 4-5a RAS Active (Note 2) After R.E. CTTL T1 or T3RF tCTp/2 b 6 tCTp/2 a 16 ns

tRASia 4-5a Ras Inactive (Note 4) After R.E. CTTL T4 or T4RF tCTp/2 b 6 tCTp/2 a 16 ns

tCASa 4-5a CAS Active (Note 2) After R.E. CTTL T3 or T1RF tCTp/2 b 6 tCTp/2 a 16 ns

tCASia 4-5a CAS Inactive (Note 4) After R.E. CTTL T4 or T4RF tCTp/2 b 6 tCTp/2 a 16 ns

tDWEa 4-5c DRAM Write Enable Active After R.E. CTTL T2 13.0 ns

tDWEia 4-5c DRAM Write Enable Inactive After R.E. CTTL T4 13.0 ns

tMRDa 4-11a MRD Active After R.E. CTTL T2 13.0 ns

tMRDia 4-11a MRD Inactive After R.E. CTTL T4 13.0 ns

tIORDa 4-11b IORD Active After R.E. CTTL T2 13.0 ns

tIORDia 4-11b IORD Inactive After R.E. CTTL T4 13.0 ns

tMWRa 4-12a MWR Active After R.E. CTTL T2 13.0 ns

tMWRia 4-12a MWR Inactive After R.E. CTTL T4 13.0 ns

tIOWRa 4-12b IOWR Active After R.E. CTTL T2 13.0 ns

tIOWRia 4-12b IOWR Inactive After R.E. CTTL T4 13.0 ns

tPABCv 4-13a PA, PB and PC Valid After R.E. CTTL T2 13.0 ns
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4.0 Device Specifications (Continued)

4.4.2 Synchronous Timing Tables (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32AM162-20 (Continued)

Symbol Figure Description Reference Conditions
NS32AM162

Units
Min Max

tPWMv 4-13b PWM Valid After R.E. CTTL 25.0 ns

tRASLa 4-7 DRAM L.P. RAS Active After R.E. OSCIN2 tX2p b 0.2 ms

tRASLia 4-7 DRAM L.P. RAS Inactive After R.E. OSCIN2 tX2p b 0.2 ms

tCASLa 4-7 DRAM L.P. CAS Active After R.E. OSCIN2 tX2p b 0.2 ms

tCASLia 4-7 DRAM L.P. CAS Inactive After R.E. OSCIN2 tX2p b 0.2 ms

Note 1: tCTp can be only 48.8 ns (normal operation) or 17582 ns (power down mode).

4.4.2.2 Input Signals

Symbol Figure Description Reference Conditions
NS32AM162

Units
Min Max

tX1p 4-15 OSCIN1 Clock Period R.E. OSCIN1 24.4 ns

tX1h 4-15 OSCIN1 High (External Clock) At 4.2V (Both Edges) tX1p/2 b 5 ns

tX11 4-15 OSCIN1 Low (External Clock) At 1.0V (Both Edges) tX1p/2 b 5 ns

tX2p 4-15 OSCIN2 Clock Period R.E. OSCIN2 2.2 ms

tX2h 4-15 OSCIN2 High (External Clock) At 4.2V (Both Edges) 0.8 ms

tX2l 4-15 OSCIN2 Low (External Clock) At 1.0V (Both Edges) 0.8 ms

tDIs 4-5a Data In Setup Before R.E. CTTL T4 11.0 ns

tDIh 4-5a Data In Hold (Note 3) After R.E. CTTL T4 2.0 ns

tCDIs 4-8 CDIN Setup Before R.E. CTTL 11.0 ns

4-9

tCDIh 4-8 CDIN Hold After R.E. CTTL 2.0 ns

4-9

tPABs 4-14 PA and PB Data in Setup Before R.E. CTTL T4 11.0 ns

tPABh 4-14 PA and PB in Hold After R.E. CTTL T4 2.0 ns

tRSTw 4-16 RST Pulse Width At 0.8V (Both Edges) 50 ms

tPWR 4-17 Power Stable to R.E. of RST (Note 4) After VCC Reaches 4.5V 50 ms

Note 2: Address setup before RAS, Address setup before CAS and Data Setup before CA are at least 9 ns, guaranteed by design.

Note 3: tDIh is always less than or equal to tMRDia, tIORDIa and tCRDia, guaranteed by design.

Note 4: Not tested, guaranteed by design.

Note 5: Refers to A(1:18) in Development mode, to A(1:16) in External ROM mode, to A(1:11) in Internal ROM mode.
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4.0 Device Specifications (Continued)

4.4.3 TIMING DIAGRAMS

TL/EE/11732–30

FIGURE 4-5a. DRAM Read Cycle Timing (Internal ROM Mode Only)

TL/EE/11732–31

FIGURE 4-5b. DRAM Read Cycle Timing (External ROM or Development Modes)
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4.0 Device Specifications (Continued)

TL/EE/11732–32

FIGURE 4-5c. DRAM Write Cycle Timing (Internal ROM Mode Only)

TL/EE/11732–33

FIGURE 4-5d. DRAM Write Cycle Timing (External ROM or Development Modes)

TL/EE/11732–34

FIGURE 4-6. DRAM Refresh Cycle Timing (In Normal Operation Mode)
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4.0 Device Specifications (Continued)

TL/EE/11732–35

FIGURE 4-7. DRAM Power Down Refresh

TL/EE/11732–36

FIGURE 4-8. CODEC Long Frame Timing, 8 KHz Sampling Rate

TL/EE/11732–37

FIGURE 4-9. CODEC Short Frame Timing, 8 KHz Sampling Rate
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4.0 Device Specifications (Continued)

TL/EE/11732–38

FIGURE 4-10. CDOUT Hold Timing

TL/EE/11732–39

FIGURE 4-11a. External Memory Read Timing
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4.0 Device Specifications (Continued)

TL/EE/11732–40

FIGURE 4-11b. I/O Read Cycle

TL/EE/11732–41

FIGURE 4-12a. External Memory WriteÐCycle Timing
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4.0 Device Specifications (Continued)

TL/EE/11732–42

FIGURE 4-12b. I/O Write Cycle Timing

TL/EE/11732–43

FIGURE 4-13a. Port A, Port B and Port C Timing

TL/EE/11732–44

FIGURE 4-13b. PWM Output Timing

TL/EE/11732–45

FIGURE 4-14. Port A and Port B Input Timing
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4.0 Device Specifications (Continued)

TL/EE/11732–46

FIGURE 4-15. CTTL, OSCIN1 and OSCIN2 Timing

TL/EE/11732–47

FIGURE 4-16. Non Power On Reset

TL/EE/11732–48

FIGURE 4-17. Power On Reset

67



Appendix A: Instruction Formats
NOTATIONS

i e Integer Type Field

B e 00 (Byte)

W e 01 (Word)

D e 11 (Double Word)

f e Floating-Point Type Field

F e 1 (Std. Floating: 32 bits)

L e 0 (Long Floating: 64 bits)

op e Operation Code

Valid encodings shown with each format.

gen, gen 1, gen 2 e General Addressing Mode Field

See Section 2.4.2 for encodings.

reg e General Purpose Register Number

cond e Condition Code Field

0000 e EQual: Z e 1

0001 e Not Equal: Z e 0

0010 e Carry Set: C e 1

0011 e Carry Clear: C e 0

0100 e Higher: L e 1

0101 e Lower or Same: L e 0

0110 e Greater Than: N e 1

0111 e Less or Equal: N e 0

1000 e Flag Set: F e 1

1001 e Flag Clear: F e 0

1010 e LOwer: L e 0 and Z e 0

1011 e Higher or Same: L e 1 or Z e 1

1100 e Less Than: N e 0 and Z e 0

1101 e Greater or Equal: N e 1 or Z e 1

1110 e (Unconditionally True)

1111 e (Unconditionally False)

short e Short Immediate Value. May contain

quick: Signed 4-bit value, in MOVQ, ADDQ,

CMPQ, ACB

cond: Condition Code (above), in Scond.

areg: CPU Dedicated Register, in LPR, SPR

0000 e UPSR

0001–0111 e (Reserved)

1000 e FP

1001 e SP

1010 e SB

1011 e (Reserved)

1100 e (Reserved)

1101 e PSR

1110 e INTBASE

1111 e MOD

Options: in String Instructions

U/W B T

T e Translated

B e Backward

U/W e 00: None

01: While Match

11: Until Match

7 0

cond 1 0 1 0

Format 0

Bcond (BR)

7 0

op 0 0 1 0

Format 1

BSR Ð0000 ENTER Ð1000

RET Ð0001 EXIT Ð1001

RETT Ð0100 NOP Ð1010

RETI Ð0101 WAIT Ð1011

SAVE Ð0110 DIA Ð1100

RESTORE Ð0111 FLAG Ð1101

SVC Ð1110

BPT Ð1111

15 8 7 0

gen short op 1 1 i

Format 2

ADDQ Ð000 ACB Ð100

CMPQ Ð001 MOVQ Ð101

SPR Ð010 LPR Ð110

Scond Ð011

15 8 7 0

gen op 1 1 1 1 1 i

Format 3

BICPSR Ð0010 ADJSP Ð1010

JUMP Ð0100 JSR Ð1100

BISPSR Ð0110 CASE Ð1110

Trap (UND) on XXX1, 1000

15 8 7 0

gen 1 gen 2 op i

Format 4

ADD Ð0000 SUB Ð1000

CMP Ð0001 ADDR Ð1001

BIC Ð0010 AND Ð1010

ADDC Ð0100 SUBC Ð1100

MOV Ð0101 TBIT Ð1101

OR Ð0110 XOR Ð1110
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23 16 15 8 7 0

0 0 0 0 0 short 0 op i 0 0 0 0 1 1 1 0

Format 5

MOVS b0000 BITWT b1000

CMPS b0001 TBITS b1001

SETCFG b0010 BBAND b1010

SKPS b0011 SBITPS b1011

BBSTOD b0100 BBFOR b1100

BBOR b0110 SBITS b1101

MOVMP b0111 BBXOR b1110

No Operation on 1111

23 16 15 8 7 0

gen 1 gen 2 op i 0 1 0 0 1 1 1 0

Format 6

ROT b0000 NOT b1001

ASH b0001 Trap (UND) b1011

CBIT b0010 SUBP b1011

Trap (UND) b0100 ABS b1100

LSH b0101 COM b1101

SBIT b0110 IBIT b1110

NEG b1000 ADDP b1111

23 16 15 8 7 0

gen 1 gen 2 op i 1 1 0 0 1 1 1 0

Format 7

MOVM b0000 MUL b1000

CMPM b0001 MEI b1001

INSS b0010 Trap (UND) b1010

EXTS b0011 DEI b1011

MOVXBW b0100 QUO b1100

MOVZBW b0101 REM b1101

MOVZiD b0110 MOD b1110

MOVXiD b0111 DIV b1111

TL/EE/11732–49

Format 8

EXT b0 00 INDEX b1 00

CVTP b0 01 FFS b1 01

INS b0 10

CHECK b0 11

Trap (UND) on b1 10 and b1 11

TL/EE/11732–50

Format 10

Trap (UND) Always

TL/EE/11732–51

Format 13

Trap (UND) Always

TL/EE/11732–52

Format 14

Trap (UND) Always

TL/EE/11732–53

Format 15

Trap (UND) Always

TL/EE/11732–54

Format 16

Trap (UND) Always

TL/EE/11732–55
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Format 17

Trap (UND) Always

TL/EE/11732–56

Format 18

Trap (UND) Always

TL/EE/11732–57

Format 19

Trap (UND) Always

Implied Immediate Encodings:

7 0

r7 r6 r5 r4 r3 r2 r1 r0

Register Mask, appended to SAVE, ENTER

7 0

ro r1 r2 r3 r4 r5 r6 r7

Register Mask, appended to RESTORE, EXIT

7 0

offset lengthb1

Offset/Length Modifier appended to INSS, EXTS

Note 1: Opcode not defined; CPU treats like MOVf. First operand has access class of read; second operand has access class of write; f-field selects 32-bit or

64-bit data.

Note 2: Opcode not defined; CPU treats like ADDf. First operand has access class of read; second operand has access class of read-modify-write. f-field selects

32-bit or 64-bit data.

Note 3: Reserved opcode; execution of this opcode will generate an undefined result.
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Appendix B: Instruction Execution Times
This section provides the necessary information to calculate

the instruction execution times for the NS32AM162.

The following assumptions are made:
Y The entire instruction, with all displacements and imme-

diate operands, is assumed to be present in the instruc-

tion queue when needed.
Y Interference from instruction prefetches, which is very

dependent upon the preceding instruction(s), is ignored.

This assumption will tend to affect the timing estimate

in an optimistic direction.
Y It is assumed that all memory operand transfers are

completed before the next instruction begins execution.

In the case of an operand of access class rmw in

memory, this is pessimistic, as the Write transfer occurs

in parallel with the execution of the next instruction.
Y It is assumed that there is no overlap between the

fetch of an operand and the following sequences of mi-

crocode. This is pessimistic, as the fetch of Operand 1

will generally occur in parallel with the effective address

calculation of Operand 2, and the fetch of Operand 2

will occur in parallel with the execution phase of the in-

struction.
Y Where possible, the values of operands are taken into

consideration when they affect instruction timing, and a

range of times is given. Where this is not done, the

worst case is assumed.

B.1 BASIC INSTRUCTIONS

Execution times for basic and floating-point instructions are

given in Table B-1. The parameters needed for the various

calculations are defined below.

TEAÐ The time required to calculate an operand’s Effec-

tive Address. For a Register or Immediate oper-

and, this includes the fetch of that operand.

TEA1Ð TEA value for the GEN or GEN1 operand.

TEA2Ð TEA value for the GEN2 operand.

TOPBÐ The time needed to read or write a memory byte.

TOPWÐ The time needed to read or write a memory word.

TOPDÐ The time needed to read or write a memory dou-

ble-word.

TOPiÐ The time needed to read or write a memory oper-

and, where the operand size is given by the opera-

tion length of the instruction. It is always equiva-

lent to either TOPB, TOPW or TOPD.

TCYÐ Internal processing overhead, in clock cycles.

LÐ Internal processing whose duration depends on

the operation length. The number of clock cycles

is derived by multiplying this value by the number

of bytes in the operation length.

NCYCÐ Number of bus cycles performed by the CPU to

fetch or store an operand. NCYC depends on the

operand size and alignment.

fÐ This parameter is related to the floating-point op-

erand size.

TfÐ The time required to transfer 32 bits of floating

point value to or from the FPU.

TiÐ The time required to transfer an integer value to or

from the FPU.

B.1.1 Equations

The following equations assume that:

# Memory accesses occur at full speed.

# Any wait states should be reflected in the calculations of

TOPB, TOPW and TOPD.

Note: When multiple writes are performed during the execution of an in-

struction, wait states occurring during intermediate write transactions

may be partially hidden by the internal execution. Therefore, a certain

number of wait states can be inserted with no effect on the execution

time. For example, in the case of the MOVSi instructions each wait

state on write operations subtracts 1 clock cycle per write bus access,

from the TCY of the instruction, since updating the pointers occurs in

parallel with the write operation. This means that wait states can be

added to write cycles without changing the execution time of the in-

struction, up to a maximum of 13 wait states on writes for MOVSB and

MOVSW, and 4 wait states on writes for MOVSD.

TEAÐ TEA values for the various addressing modes are

provided in the following table.

TEA TABLE

Addressing TEA
Notes

Mode Value

IMMEDIATE,
4

ABSOLUTE

MEMORY RELATIVE 7 a TOPD

REGISTER 2

REGISTER RELATIVE,
5

MEMORY SPACE

TOP OF STACK 4 Access Class Write

2 Access Class Read

3 Access Class RMW

SCALED INDEXED TI1 a TI2

TI1 e TEA of the basemode except:

if basemode is REGISTER then TI1 e 5

if basemode is TOP OF STACK then TI1 e 4

TI2 depends on the scale factor:

if byte indexing TI1 e 5

if word indexing TI2 e 7

if double-word indexing TI2 e 8

if quad-word indexing TI2 e 10

TOPBÐ If operand is in a register or is immediate then

TOPB e 0

else TOPB e 3

TOPWÐ If operand is in a register or is immediate then

TOPW e 0

else TOPW e 4 # NCYC b 1

TOPDÐ If operand is in a register or is immediate then

TOPD e 0

else TOPD e 4 # NCYC b 1
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TOPiÐ If operand is in a register or is immediate then

TOPi e 0

else if i e byte then TOPi e TOPB

else if i e word then TOPi e TOPW

else (i e double-word) then TOPi e TOPD

LÐ If i (operation length) e byte then L e 1

else if i e word then L e 2

else (i e double-word) L e 4

fÐ If standard floating (32 bits): f e 1

If long floating (64 bits): f e 2

TfÐ Tf e 4

TiÐ If integer e byte or word, then Ti e 2

If integer e double-word, then Ti e 4

B.1.2 Notes on Table Use

Values in the ÝTEA1 and ÝTEA2 columns indicate whether

effective addresses need to be calculated.

A value of 1 indicates that address calculation time is re-

quired for the corresponding operand. A 0 indicates that the

operand is either missing, or it is in a register and the in-

struction has an optimized form which eliminates the TEA

calculation for it.

In the L column, multiply the entry by the operation length in

bytes (1, 2 or 4).

In the TCY column, special notations sometimes appear:

n1 x n2 means n1 minimum, n2 maximum

n1%n2 means that the instruction flushes the instruction

queue after n1 clock cycles and nonsequentially fetches the

next instruction. The value n2 indicates the number of clock

cycles for the internal execution of the instruction (including

n1).

The effective number of cycles (TCY) must take into ac-

count the time (Tfetch) required to fetch the portion of the

next instruction including the basic encoding and the index

bytes. This time depends on the size and the alignment of

this portion.

If only one memory cycle is required, then:

TCY e n1 a 6 a Tfetch

If more than one memory cycle is required, then:

TCY e n1 a 5 a Tfetch

In the notes column, notations held within angle brackets
k l indicate alternatives in the operand addressing modes

which affect the execution time. A table entry which is af-

fected by the operand addressing may have multiple values,

corresponding to the alternatives. These addressing nota-

tions are:

kIl Immediate

kRl CPU Register

kMl Memory

kxl Any Addressing Mode

kabl a and b represent the addressing modes of operand

1 and 2 respectively. Both a and b can be any ad-

dressing mode (e.g., kMRl means memory to CPU

register).

Note: Unless otherwise specified the TCY value for immediate addressing is

the same as for CPU register addressing.

B.1.3. Calculation of the Execution Time TEX for Basic

Instructions

The execution time for a basic instruction is obtained by

performing the following steps:

1. Find the desired instruction in Table B-1.

2. Calculate the values of TEA, TOPB, etc. using the num-

bers in the table and the equations given in the previous

sections.

3. The result derived by adding together these values is the

execution time TEX in clock cycles.

EXAMPLE

Calculate TEX for the instruction CMPW R0, TOS.

Operand 1 is in a register; Operand 2 is in memory. This

means that we must use the table values corresponding to

the kxMl case as given in the Notes column.

Only the ÝTEA1, ÝTEA2, ÝTOPi and TCY columns have

values assigned for the CMPi instruction. Therefore, they

are the only ones that need to be calculated to find TEX.

The blank columns are irrelevant to this instruction.

Both ÝTEA1 and ÝTEA2 columns contain 1 for the kxMl

case. This means that effective address times have to be

calculated for both operands. (For the kMRl case, the

Register operand would have required no TEA time, there-

fore only the Memory operand TEA would have been neces-

sary.) From the equations:

TEA1 (Register mode) e 2.

TEA2 (Top of Stack mode, access class read) e 2.

The ÝTOPi column represents potential operand transfers

to or from memory. For a Compare instruction, each oper-

and is read once, for a total of two operand transfers.

TOPi (Word, Register) e 0,

TOPi (Word, TOS) e 3 (assuming the operand aligned)

Total TOPi e 3

TCY is the time required for internal operation within the

CPU. The TCY value for this case is 3.

TEX e TEA1 a TEA2 a TOPi a TCY e 2 a 2 a 3 a 3
e 10 machine cycles.

If the CPU is running at 20 MHz then a machine cycle (clock

cycle) is 50 ns. Therefore, this instruction would take 10 c

50 ns, or 0.5 ms, to execute.
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TABLE B-1. Basic Instructions

Mnemonic ÝTEA1 ÝTEA2 ÝTOPB ÝTOPW ÝTOPD ÝTOPi ÝL TCY Notes

ABSi 1 1 Ð Ð Ð 2 Ð 9 SCR k 0

1 1 Ð Ð Ð 2 Ð 8 SCR l 0

ACBi 1 Ð Ð Ð Ð 2 Ð 16 kMl no branch

1 Ð Ð Ð Ð 2 Ð 15%20 kMl branch

Ð Ð Ð Ð Ð Ð Ð 18 kRl no branch

Ð Ð Ð Ð Ð Ð Ð 17%22 kRl branch

ADDi 1 1 Ð Ð Ð 3 Ð 3 kxMl

1 Ð Ð Ð Ð 1 Ð 4 kMRl

Ð Ð Ð Ð Ð Ð Ð 4 kRRl

ADDCi 1 1 Ð Ð Ð 3 Ð 3 kxMl

1 Ð Ð Ð Ð 1 Ð 4 kMRl

Ð Ð Ð Ð Ð Ð Ð 4 kRRl

ADDPi 1 1 Ð Ð Ð 3 Ð 16 No Carry

1 1 Ð Ð Ð 3 Ð 18 Carry

ADDQi Ð 1 Ð Ð Ð 2 Ð 6 kMl

Ð Ð Ð Ð Ð Ð Ð 4 kRl

ADDR 1 1 Ð Ð 1 Ð Ð 2 kxMl

1 Ð Ð Ð Ð Ð Ð 3 kxRl

ADJSPi 1 Ð Ð Ð Ð 1 Ð 6

ANDi 1 1 Ð Ð Ð 3 Ð 3 kxMl

1 Ð Ð Ð Ð 1 Ð 4 kMRl

Ð Ð Ð Ð Ð Ð Ð 4 kRRl

ASHi 1 1 1 Ð Ð 2 Ð 14 x 45

Bcond Ð Ð Ð Ð Ð Ð Ð 7 no branch

Ð Ð Ð Ð Ð Ð Ð 6%10 branch

BICi 1 1 Ð Ð Ð 3 Ð 3 kxMl

1 Ð Ð Ð Ð 1 Ð 4 kMRl

Ð Ð Ð Ð Ð Ð Ð 4 kRRl
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TABLE B-1. Basic Instructions (Continued)

Mnemonic ÝTEA1 ÝTEA2 ÝTOPB ÝTOPW ÝTOPD ÝTOPi ÝL TCY Notes

BICPSRB 1 Ð 1 Ð Ð Ð Ð 18%22

BICPSRW 1 Ð Ð 1 Ð Ð Ð 30%34

BISPSRB 1 Ð 1 Ð Ð Ð Ð 18%22

BISPSRW 1 Ð Ð 1 Ð Ð Ð 30%34

BPT Ð Ð Ð 2 4 Ð Ð 40

BR Ð Ð Ð Ð Ð Ð Ð 4%10

BSR Ð Ð Ð Ð 1 Ð Ð 6%16

CASEi 1 Ð Ð Ð Ð 1 Ð 4%9

CBITi 1 1 2 Ð Ð 1 Ð 15 kxMl

1 Ð Ð Ð Ð 1 Ð 7 kxRl

CHECKi 1 1 Ð Ð Ð 3 Ð 7 high

1 1 Ð Ð Ð 3 Ð 10 low

1 1 Ð Ð Ð 3 Ð 11 ok

CMPi 1 1 Ð Ð Ð 2 Ð 3 kxMl

1 Ð Ð Ð Ð 1 Ð 3 kMRl

Ð Ð Ð Ð Ð Ð Ð 3 kRRl

CMPMi
1 1 Ð Ð Ð 2 * n Ð 9 * n a 24

n e Ý of elements

in block

CMPQi 1 Ð Ð Ð Ð 1 Ð 3 kMl

Ð Ð Ð Ð Ð Ð Ð 3 kRl

CMPSi
Ð Ð Ð Ð Ð 2 * n Ð 35 * n a 53

n e Ý of elements,

not Translated

CMPST Ð Ð n Ð Ð 2 * n Ð 38 * n a 53 Translated

COMi 1 1 Ð Ð Ð 2 Ð 7

CVTP 1 1 Ð Ð 1 Ð Ð 7

DEIi 1 1 Ð Ð Ð 5 16 38 kxMl

1 Ð Ð Ð Ð 1 16 31 kxRl

DIA Ð Ð Ð Ð Ð Ð Ð 3%7

DIVi 1 1 Ð Ð Ð 3 16 58 x 68

ENTER
Ð Ð Ð Ð n a 1 Ð Ð 4 * n a 18

n e Ý of general

registers saved

EXIT
Ð Ð Ð Ð n a 1 Ð Ð 5 * n a 17

n e Ý of general

registers restored

EXTi 1 1 Ð Ð 1 1 Ð 19 x 29 field in memory

1 1 Ð Ð Ð 1 Ð 17 x 51 field in register

EXTSi 1 1 Ð Ð 1 1 Ð 26 x 36

FFSi 1 1 2 Ð Ð 1 24 24 x 28

FLAG Ð Ð Ð Ð Ð Ð Ð 6 no trap

Ð Ð Ð 4 3 Ð Ð 44 trap

IBITi 1 1 2 Ð Ð 1 Ð 17 kxMl

1 Ð Ð Ð Ð Ð Ð 9 kxRl
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TABLE B-1. Basic Instructions (Continued)

Mnemonic ÝTEA1 ÝTEA2 ÝTOPB ÝTOPW ÝTOPD ÝTOPi ÝL TCY Notes

INDEXi 1 1 Ð Ð Ð 2 16 25

INSi 1 1 Ð Ð 2 1 Ð 29 x 39 field in memory

1 Ð Ð Ð Ð 1 Ð 28 x 96 field in register

INSSi 1 1 Ð Ð 2 1 Ð 39 x 49

JSR 1 Ð Ð Ð 1 1 Ð 5%15

JUMP 1 Ð Ð Ð Ð Ð Ð 2%6

LPRi 1 Ð Ð Ð Ð 1 Ð 19 x 33

LSHi 1 1 1 Ð Ð 2 Ð 14 x 45

MEIi 1 1 Ð Ð Ð 4 16 23

MODi 1 1 Ð Ð Ð 3 16 54 x 73

MOVi 1 1 Ð Ð Ð 2 Ð 1 kxMl

1 Ð Ð Ð Ð 1 Ð 3 kMRl

Ð Ð Ð Ð Ð Ð Ð 3 kRRl

MOVMi
1 1 Ð Ð Ð 2 * n Ð 3 * n a 20

n e Ý of elements

in block

MOVQi 1 Ð Ð Ð Ð 1 Ð 2 kMl

Ð Ð Ð Ð Ð Ð Ð 3 kRl

MOVSB, W n e Ý elements

Ð Ð Ð Ð Ð 2 * n Ð 14 * n a 59 no options

Ð Ð Ð Ð Ð 2 * n Ð 24 * n a 54 B, W and/or U

option in effect

MOVSD n e Ý of elements

Ð Ð Ð Ð Ð 2 * n Ð 10 * n a 59 no options

Ð Ð Ð Ð Ð 2 * n Ð 24 * n a 54 B, W and/or U

option in effect

MOVST Ð Ð n Ð Ð 2 * n Ð 27 * n a 54 Translated

MOVXBD 1 1 1 Ð 1 Ð Ð 6

MOVXBW 1 1 1 1 Ð Ð Ð 6

MOVXWD 1 1 Ð 1 1 Ð Ð 6

MOVZBD 1 1 1 Ð 1 Ð Ð 5

MOVZBW 1 1 1 1 Ð Ð Ð 5

MOVZWD 1 1 Ð 1 1 Ð Ð 5

MULi 1 1 Ð Ð Ð 3 16 15

NEGi 1 1 Ð Ð Ð 2 Ð 5

NOP Ð Ð Ð Ð Ð Ð Ð 3

NOTi 1 1 Ð Ð Ð 2 Ð 5

ORi 1 1 Ð Ð Ð 3 Ð 3 kxMl

1 Ð Ð Ð Ð 1 Ð 4 kMRl

Ð Ð Ð Ð Ð Ð Ð 4 kRRl

QUOi 1 1 Ð Ð Ð 3 16 49 x 55
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TABLE B-1. Basic Instructions (Continued)

Mnemonic ÝTEA1 ÝTEA2 ÝTOPB ÝTOPW ÝTOPD ÝTOPi ÝL TCY Notes

REMi 1 1 Ð Ð Ð 3 16 57 x 62

RESTORE
Ð Ð Ð Ð n Ð Ð 5 * n a 12

n e Ý of general

registers restored

RET Ð Ð Ð Ð 1 Ð Ð 2%8

RETI Ð Ð 1 2 2 Ð Ð 60 Non-Cascaded

Ð Ð 2 2 3 Ð Ð 60 Cascaded

RETT Ð Ð Ð 2 2 Ð Ð 45

ROTi 1 1 1 Ð Ð 2 Ð 14 x 45

Scondi 1 Ð Ð Ð Ð 1 Ð 9 False

1 Ð Ð Ð Ð 1 Ð 10 True

SAVE
Ð Ð Ð Ð n Ð Ð 4 * n a 13

n e Ý of general

registers saved

SBITi 1 1 2 Ð Ð 1 Ð 15 kxMl

1 Ð Ð Ð Ð 1 Ð 7 kxRl

SETCFG Ð Ð Ð Ð Ð Ð Ð 15

SKPSi
Ð Ð Ð Ð Ð n Ð 27 * n a 51

n e Ý of elements,

not Translated

SKPST Ð Ð n Ð Ð n Ð 30 * n a 51 Translated

SPRi 1 Ð Ð Ð Ð 1 Ð 21 x 27

SUBi 1 1 Ð Ð Ð 3 Ð 3 kxMl

1 Ð Ð Ð Ð 1 Ð 4 kMRl

Ð Ð Ð Ð Ð Ð Ð 4 kRRl

SUBCi 1 1 Ð Ð Ð 3 Ð 3 kxMl

1 Ð Ð Ð Ð 1 Ð 4 kMRl

Ð Ð Ð Ð Ð Ð Ð 4 kRRl

SUBPi 1 1 Ð Ð Ð 3 Ð 16 no carry

1 1 Ð Ð Ð 3 Ð 18 carry

SVC Ð Ð Ð 2 4 Ð Ð 40

TBIti 1 1 1 Ð Ð 1 Ð 14 kxMl

1 Ð Ð Ð Ð 1 Ð 4 kxRl

WAIT
Ð Ð Ð Ð Ð Ð Ð 6 x ?

? e until an

interrupt/reset

XORi 1 1 Ð Ð Ð 3 Ð 3 kxMl

1 Ð Ð Ð Ð 1 Ð 4 kMRl

Ð Ð Ð Ð Ð Ð Ð 4 kRRl
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B.2 SPECIAL GRAPHICS INSTRUCTIONS

This section provides the execution times for the special

graphics instructions. Table B-2 lists the average instruction

execution times for different shift values and for a no-wait-

state system design. The ‘‘No Option’’ of each instruction is

used. The effect of wait states on the execution time is rath-

er difficult to evaluate due to the pipelined nature of the read

and write operations.

Instructions that have shift amounts, such as BBOR,

BBXOR, BBAND, BBFOR and BITWT, make use of the par-

allel nature of the Series 32000É/EP processors by doing

the actual shift during the reading of the double-word desti-

nation data. This means that if there are wait states on read

operations, these instructions are able to shift further, with-

out impacting the overall execution time. For example, the

total execution time for a BBFOR operation, shifting 8 bits,

with 2 wait states on read operations, is the same as for a

BBFOR operation shifting by 12 bits. This is because a des-

tination read takes 4 clock cycles longer than a no-wait-

state double-word read does. Note that this effect is not

valid for more than 4 wait states because at 4 wait states, all

possible shift values (0–15) are ‘‘hidden’’ during the desti-

nation read.

Table B-3 shows the average execution times with wait

states, assuming a shift value of eight unless stated other-

wise. The parameters used in the execution time equations

are defined below.

Twaitrd The number of wait states applied for a Read

operation.

Twaitr The number of wait states applied for a Write op-

eration.

Twaitrds The number of wait states applied for a Read

operation on source data. This also refers to the

number of wait states applied for a table memory

access (in the SBITS instruction, for example).

Twaitrdd The number of wait states applied for a Read

operation on destination data.

Twaitwrd The number of wait states applied for a Write op-

eration on destination data.

Twaitbt Twaitrds a Twaitrdd * 2 a Twaitwrd * 2, the

value used for BITBLT timing.

width The width of a BITBLT operation, in words.

height The height of a BITBLT operation, in scan lines.

shift The number of bits of shift applied.

B.2.1 Execution Time Calculation for Special Graphics

Instructions

The execution time for a special graphics instruction is ob-

tained by inserting the appropriate parameters to the equa-

tion for that instruction and evaluating it.

For example, to calculate the execution time of the BBOR

instruction applied to a 10-word wide and 5-line high data

block, assuming a shift count of 15 and a no-wait-state sys-

tem, the following equation from Table B-2 is used.

42 a (107 a 44 * (width b 2)) * height a ((shift b 8) *
width * height)

Substituting the appropriate values to the shift, width and

height parameters yields:

45 a (107 a 44 * (10 b 2)) * 50 a ((15 b 8) * 10 * 50)

or

42 a (107 a 352) * 50 a (7 * 500) e 26,492 clocks

This represents the ‘‘worst case’’ time for this instruction,

since a shift of greater than 15 bits can be handled by mov-

ing the source and destination pointers by 2 bytes and ad-

justing the shift amount.

The ‘‘best case’’ and ‘‘average case’’ times for most in-

structions are the same, due to reading the destination data

during the shifting of the source data.

TABLE B-2. Average Instruction Execution Times with No Wait-States

Instruction Number of Clock Cycles Notes

BBOR 42 a (107 a 44 * (width b 2)) *height Shift e 0 x 8

42 a (107 a 44 * (width b 2)) *height Shift l 8

a ((shift b 8) *width *height )

BBXOR 44 a (107 a 44 * (width b 2)) *height Shift e 0 x 8

44 a (107 a 44 * (width b 2)) *height Shift l 8

a ((shift b 8) *width *height )

BBAND 45 a (111 a 44 * (width b 2)) *height Shift e 0 x 8

45 a (111 a 44 * (width b 2)) *height Shift l 8

a ((shift b 8) *width *height )

BBFOR 48 a (61 a 25 * (width b 2)) *height Shift e 0

48 a (74 a 32 * (width b 2)) *height Shift e 1 x 8

48 a (74 a 32 * (width b 2))*height a Shift l 8

((shift b 8) *width *height )

BBSTOD 66 a (170 a 60 * (width b 2)) *height Shift e 0 x 8

66 a (170 a 60 * (width b 2)) *height Shift l 8

a ((shift b 8) *width *height )
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TABLE B-2. Average Instruction Execution Times with No Wait-States (Continued)

Instruction Number of Clock Cycles Notes

BITWT 16 Shift e 0

28 Shift e 1 x 8

28 a (shift b 8) Shift l 8

MOVMPB,W 16 a 7 * R2

MOVMPD,W 16 a 8 * R2

SBITS 39 R2 s 25

42 R2 l 25

SBITP 8 a (34 * R2)

TABLE B-3. Average Instruction Execution Times with Wait-States

Instruction Number of Clock Cycles Notes

BBOR 42 a ((107 a 2 * Twaitblt) a (44 a Twaitblt) * (width b 2)) *height

BBXOR 44 a ((107 a 2 * Twaitblt) a (44 a Twaitblt) * (width b 2)) *height

BBAND 45 a ((111 a 2 * Twaitblt) a (44 a Twaitblt) * (width b 2)) *height

BBFOR 48 a ((74 a 2 * Twaitblt) a (32 a Twaitblt) * (width b 2)) *height

BBSTOD 66 a ((170 a 2 * Twaitblt) a (60 a Twaitblt) * (width b 2)) *height

BITWIT 16 a Twaitrds a Twaitrdd a Twaitwrd Shift e 0

28 a Twaitblt Shift e 1 x 8

MOVMPB,W 16 a 7 * R2 a (Twaitwr b 1) * R2 Twaitwr l 1

16 a 7 * R2 Twaitwr s 1

MOVMPD 16 a 8 * R2 a Twaitwr * R2

SBITS 39 a (2 * Twaitrdd a 2 * Twaitwrd a 2 * Twaitrds) R2 s 25

42 a (2 * Twaitrdd a 2 * Twaitrds) R2 l 25

SBITP 8 a (34 * R2) a ((Twaitrdd a Twaitwrd) * R2)
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Appendix B: Instruction Execution Times (Continued)

B3. COMMAND LIST OPERATIONS

Load Register Instructions

Instruction Cycles

LX 3

LY 3

LZ 3

LA 3

LEA 5

LPARAM 3

LREPEAT 3

LEABR 3

Store Register Instructions

Instruction Cycles

SX 3

SXL 3

SXH 4

SY 3

SZ 3

SA 3

SEA 3

SREPEAT 3

SOVF 3

Adjust Register Instructions

Instruction Cycles

INCX 4

INCY 4

INCZ 4

DECX 4

DECY 4

DECZ 4

Flow Control Instructions

Instruction Cycles

NOPR 2

HALT 1

DJNZ 5

DBPT 3

Internal Memory Move Instructions

Instruction Cycles

VRMOV 2 * leng a 2

VARMOV 2 * leng a 2

VRGATH 4 * leng a 4

VRSCAT 4 * leng a 4

External Memory Move Instructions

Assuming EXT.HOLD e 0:

Instruction Cycles

VXLOAD (5a Wa k) * leng a 2

VXSTORE (5a Wa k) * leng a 2

VXGATH (5a Wa k) * leng a 2

Where:

w e Number of wait states in external memory access.

k e Number of cycles until HLDA is received, in external

memory instructions.

Arithmetic/Logic Instructions

Instruction Cycles

VROP 3 * leng a 2

VAROP 3 * leng a 4

Multiply-and-Accumulate Instructions

Instruction Cycles

VRMAC 2 * leng a 7

VARMAC 2 * leng a 7

VCMAC 4 * leng a 6

VRLATP 4 * leng a 5

Multiply-and-Add Instructions

Instruction Cycles

VAIMAD 6 * leng a 2

VRMAD 4 * leng a 3

VARMAD 4 * leng a 4

VCMAD 4 * leng a 6

Clipping and Min/Max Instructions

Instruction Cycles

VARABS 2 * leng a 5

VARMIN 7 * leng a 2

VARMAX 7 * leng a 2

VRFMAX 4 * leng a 6

EFMAX 17

Special Instructions

Instruction Cycles

ESHL 1 * leng a 5

VCPOLY 4 * leng a 15

VESIIR 16 * leng a 6

If leng e 0 in ESHL instruction, then the timing is 4 cycles.
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Physical Dimensions inches (millimeters)

68-Pin Plastic Leaded Chip Carrier (V)

Order Number NS32AM162V-20 or NS32AM163V-20

NS Package Number V68A
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