Customer Order Number 4246102895-002
NSC Publication Number 424610289-002A
August 1986

PRELIMINARY

ICM-3216

ROM Monitor User’s Guide

®1986 National Sexiconductor Corporation
2900 Semiconductor Drive
P.0. Box 58050

Santa Clara, California 95052-8050

"~

REVISION RELEASE DATE SUMMARY OF CHANGES
-001A 01/86 First Release.
ICM-3216 ROM Monitor User's
Guide

NSC Publication Number
424610289-001A.

-002A 08/86 Second Release.
ICM-3216 ROM Monitor User's
Guide
NSC Publication Number
424610289-002A.

This document describes the operation of the
stand-alone ICM-3216 ROM Monitor.

The purpose of this document is to provide users
of the ICM-3216 system with a basis to begin using
the features of the ROM Monitor.

Reference Documents. The following documents
support use of the ICM-3216 system and the Series
32000 family of microprocessors and software
development tools.

National Semiconductor 1985 Series 32000 Databook

The information contained in this manual is for

reference only and is subject to change without
notice.

No part of this document may be reproduced in any
form or by any means without the prior written
consent of National Semiconductor Corporation.

Genix, NSX, ISE, ISE16, ISE32, SY¥S32, and TDS are trademarks
of National Semiconductor Corporation.

Series 32000 is a registered trademark of National Semiconductor
Corporation.

UNIX is a trademark of AT&T Bell Laboratories.

@M

ICM-3216 Related Documentation

MANUAL

PUBLICATION
NUMBER

UNIX System V Release 2.0, National Semiconductor Corporation

Programming Guide
Support Tools Guide
User Guide
Administrator Reference Manual
Product Overview
Programmer Reference Manual
User Reference Manual
ICM-3216
Error Message Reference Manual
ICM-3216 Replacement Pages
Administrator Guide
ROM Monitor User's Guide
ICM-3216 System Hardware Reference Manual
Series 32000
Instruction Set Reference Manual

The C Programming Language
by Kernighan and Ritchie

420010361-610
420010361-620
420010361-630
420010361-710
420010361-720
420010361-730
420010361-750

420610287-530
420610287-700
424610287-001
424610289-002
420610289-001

420010099-001
419308225-001

J

CONTENTS
Chapter 1 INTRODUCTION 1-1
1.1 INTRODUCTION 1-1
1.2 PRODUCT OVERVIEW 1-1
1.2.1 The ICM-3216 System Hardware 1-1
1.3 MANUAL ORGANIZATION 1-2
1.4 DOCUMENTATION CONVENTIONS 1-3
1.4.1 General Conventions 1-3
1.4.2 Conventions in Syntax Descriptions 1-3
1.4.3 Example Conventions 1-4
Chapter 2 GETTING S8TARTED 2-1
2.1 INTRODUCTION 2-1
2.2 CONNECTING THE ICM-3216 TO A CONSOLE TERMINAL 2-1
2.3 CONNECTING DISK AND TAPE DRIVES 2=-2
Chapter 3 ROM MONITOR COMMANDS 3-1
3.1 INTRODUCTION 3-1
3.2 GENERAL OPERATION 3-1
3.3 MONITOR MEMORY ORGANIZATION 3-2
3.4 MEMORY AND REGISTER MANIPULATION COMMANDS 3-?ﬁﬂ
3.4.1 Examine Physical Memory 3-3
3.4.2 Modify 3-5
3.4.3 Print Register 3-7
3.4.4 Change Register 3-9
3.4.5 Write Pattern 3-10
3.4.6 Set Breakpoint 3-11
3.4.7 Test Memory 3-12
3.4.8 Display Memory Size 3-13
3.5 PROGRAM EXECUTION COMMANDS 3-14
3.5.1 Step - 3-14
3.5. Go - 3-15
3.6 DISK COMMANDS 3-16
3.6.1 Format Disk 3-16
3.7 DISK PARTITIONING AND LAYOUT RULES 3-18
3.8 SMALL COMPUTER SYSTEM INTERFACE (SCSI)DEVICE
SPECIFICATION 3-20
3.9 SMALL COMPUTER SYSTEM INTERFACE COMMANDS 3-21
3.9.1 Initialize SCSI 3=-21
3.9.2 Load Block 3-22
3.9.3 Write Block 3-23
3.9.4 Perform SCSI I/O 3-24
3.9.5 Copy 3-25
3.9.7 Execute 3-27
3.9.8 Execute With Load Parameters 3-28

-

3.10

3.9.9 Boot System V/Series32000
3.9.10 SCSI Error Messages
SPECIAL SYSTEM COMMANDS

3.10.1 Download Data

3.10.2 Toggle Memory Management

Chapter 4 EXECUTE PROGRAMS

0
1l

oh bbb bdbbdbbbdbbLbL

HE OVONOANLWNE

EXECUTE PROGRAMS

SUMMARY OF OPERATION

PROGRAM CONTENT

INFORMATION GIVEN TO THE STANDALONE PROGRAM
SAMPLE STANDALONE PROGRAM
CHECKSUMMING

POSITIONING ON THE SOURCE DEVICE
FILE FORMAT ON THE SOURCE DEVICE
LOADING PROGRAMS INTO MEMORY WITH
A STANDALONE PROGRAM

SECONDARY STACK

MEMORY MAP

Chapter S DOWNLOADING AND DEBUGGING FEATURES

5.1
5.2
5.3

DOWNLOADING PROGRAMS
HARDWARE CONNECTION
MIRROR DEBUGGING

Chapter 6 BYSTEM INITIALIZATION AND POWER-ON CONFIDENCE CHECKS

oW

Appendix

WN =

PP P OGO

Figure
Figure
Figure
Figure

INTRODUCTION
LED DISPLAYS
COLD STARTS

WARM RESTARTS

ICM=-3216 COMMANDS QUICK REFERENCE

MEMORY & REGISTER COMMANDS
I/O & SCSI COMMANDS
SPECIAL SYSTEM COMMANDS

1-1. The ICM-3216 System Hardware Configuration
S5-1. Host tty to ICM-3216 Connection

6-1. Power-up Status Register

6-2. LED Display - Power-up

TABLE 3-1. DISK PARTITIONIONING RULES
TABLE 3-2 PARTITIONING EXAMPLE
TABLE 5-1. XMODEM PROTOCOL

t:'l L X hh?bhbhh >
B 0MON NI WRRE VB

(0
|
=

um
U
WN

6-1

6-1
6-3
6-4

A-1

A-1
A=2
A-3

1-2
5-3
6-2
6-3

3-18
3-19
5-1

1. Chapter 1 - INTRODUCTION
1.1 INTRODUCTION

This manual serves as a user's guide to the stand-alone
ICM-3216 ROM Monitor software. It includes a brief
description of the ICM-3216, a discussion of the functions
of the monitor, a complete description of commands, and a
section on the special debugging features available with the
ROM monitor. A command quick-reference guide is added to
assist the experienced user.

1.2 PRODUCT OVERVIEW

The ICM-3216 ROM Monitor is a stand-alone debugger with
features available to execute programs written for the
Series 32000(r) processor. It is designed as a development
tool to aid hardware and software designers test and debug
the ICM-3216. The monitor may be used to conduct cyclic
tests of the system memory, print or change the contents of
system registers or memory locations, and £ill contiguous
locations of memory with specific data. Other commands allow
the user to dump portions of system memory, download program
instructions or data from a host or target system, execute
the instructions of a program in a single step manner, or
simply run a program that was previously downloaded.
Further, there are commands that allow the user to access
Small Computer System Interface (SCSI) hardware.

1.2.1 The ICM-3216 System Hardware The ICM-3216 systenm

hardware organization is illustrated in Figure 1-1. The

;gstem can be configured from 1 Mbyte to a maximum of 8
ytes.

For architectural descriptions of the€ various National
Semiconductor parts, refer to the 1985 Series 32000
Databook. For a more detailed description of the ICM-3216
system hardware, refer to the ICM-3216 Hardware Reference
Manual, Customer Order Number 420610289-001.

1.3 MANUAL ORGANIZATION

Chapter 2 provides the information needed in order to
configure the ICM-3216 system with a console and a disk or
tape drive. The disk and tape are not necessary to the
operation of the monitor, however, most systems will include
then.

Chapter 3 lists all available monitor commands, explaining
in detail what each command accomplishes, along with examples.

Page 1-1

LEDs

NS§32016 CPU
b Signetics 2681
MM }mn UART
— NNS32082 1 b Signetics 2681 ..
— NS32202 ICU — PAL Parallel /O Pont
— NS32081 FPU b Clock NS58274
— NS32201 TPU e (Z30/ROM)
b 2 NS27256 ROMs | MiniBus

Memory Boards(s)

Figure 1-1. The ICM-3216 System Hardware Configuration

Special features available in the monitor are also

hapter 4 describes how to construct standalone programs.
explained.

Chapter 5 describes the capability of downloading, remote
debugging and mirrored debugging.

The power-on confidence checks and initialization seguence
performed by the system is described in Chapter 6.

Appendix A presents a quick-reference guide for the
commands.

Page 1-2

1.4 DOCUMENTATION CONVENTIONS

The following documentation conventions are used in text,
syntax descriptions, and examples in describing commands and
parameters.

1.4.1 General Conventions Nonprinting characters are
indicated by enclosing a name for the character in angle
brackets <>. For example, <CR> indicates the RETURN key,
<ctrl/[> indicates the character input by simultaneously
pressing the control key and the [key.

1.4.2 cConventions in Syntax Descriptions Except where
otherwise indicated, any combination of upper- and lower-
case letters may actually be used when entering commands.

Italics are used for items supplied by the user.
The italicized word is a generic term for the
actual operand that the user enters.

Spaces or blanks, when present, are significant;
they must be entered as shown. Multiple blanks or
hgriiontal tabs may be used in place of a single
blank.

{) Large braces enclose two or more items of
which one, and only one, must be used. The
items are separated from each other by a
logical OR sign ''|.'"

[] Large brackets enclose optional item(s).

| logical OR sign separates items of which
one, and only one, may be used.

coe Three consecutive periods indicate optional
repetition of the preceding item(s). If a
group of items can be repeated, the group
s enclosed in large parentheses ''()."'"

000 Three consecutive commas indicate optional
repetition of the preceding item. 1Items
must be separated by commas. If a group of
items can be repeated, the group is
enclosed in large parentheses ''().'"

Q) Large parentheses enclose items which need
to be grouped together for optional
repetition. If three consecutive commas or
periods follow an item, only that item may
be repeated. The parentheses indicate that

Page 1-3

the group may be repeated.

L3 Indicates a space. W is only used to indicate
a specific number of required spaces.

All other characters or symbols appearing in the
syntax must be entered as shown. Brackets,"
parentheses, or braces which must be entered, are
smaller than the symbols used to describe the
syntax. (Compare user-entered [], with []Jwhich
show optional items.)

1.4.3 Example Conventions In interactive examples where
both user input and system responses are shown, the machine
output is in regular type. User-entered input is in

boldface type. Output from the machine which may vary
(e.g., the date) is indicated with italic type.

[}

Page 1-4

2. Chapter 2 = GETTING BTARTED
2.1 INTRODUCTION

This chapter presents the information needed to begin using
the stand-alone ICM-3216 ROM Monitor. It includes
instructions for connecting the ICM-3216 system to a console
terminal and for connecting and formatting a disk. For
detailed information regarding pin assignments and other
hardware specifications, refer to the ICM-3216 Hardware
Reference Manual.

2.2 CONNECTING THE ICM-3216 BYSTEM TO A CONSOLE TERMINAL

This section describes the procedures necessary to connect a
DTE device to the ICM-3216 system. The ICM-3216 ROM
Monitor assumes that the console is connected to port P2.

The ICM-3216 requires a set of RS232 hoods and cables for
connecting a terminal as console. The console connection
(P2) responds to I-may-send and asserts with U-may-send.
Soft XON/XOFF flow control is supported.

1. Connect the telephone cable to port P2.

2. Connect the other end of the telephone cable to
the appropriate hood.

3. Plug the hood into the terminal.
4. Powver up the terminal.
5. Power up the ICM-3216 systen.

The various powerup tests and initialization will run
transparently (see Chapter 6). The length of time required
is dependent upon the size of the memory. About 20 secs
will be required for 8 Mbyte memories. When they are done,
a bell will ring. After a pause the autoboot procedure will
begin. The following message will appear:

"loading ..."
If you wish to remain in the monitor, depress any key within
2 seconds after the bell and the autoboot procedure will be
aborted. Two lines similar to the following should display
on the terminal:

ICM-3216 ROM Monitor Vn.nn
%

Page 2-1

The last item (n.nn) on the first line will vary according
to the version of software installed on the ICM-3216 system.
If nothing displays check that the RS232 connections are
solidly in place, and that both ICM-3216 and the terminal
have power. The percent sign (%) is the monitor prompt
indica;ing that the ICM-3216 ROM Monitor is now waiting for
commands.

Ports P3 through PS5 are available for connecting additional
‘DCE or DTE devices. Port P2 is reserved for use as a console
port.

2.3 CONNECTING DISK AND TAPE DRIVES

Disk and tape drives connect to the ICM system through the
8CSI interface port (connector J5). Up to seven other SCSI
devices can be connected to the bus simultaneously. Disk
and tape drives can be connected directly to the SCSI bus if
they have a SCSI interface, or they can be connected to a
disk or tape controller which in turn is connected to the
SCSI bus. Each device (controller or peripheral) connected
to the SCSI bus has an address on the bus between 0 and 7.
Many SCSI disk controller boards have the capability of
controlling 2 or 4 disk drives, although the controller
board only uses one address on the SCSI bus.

A 50-pin cable should be connected to the ICM on one end and
to each of the other SCSI devices. The last device at the
other end of the SCSI bus should be terminated. You should
consult the manual for the last device on the bus for
termination details, but termination is commonly
accgmplished by placing resistor packs into sockets on the
device.

Each device on the SCSI bus must have a unique SCSI address.
As shipped, the ICM board is configured to be SCSI address
0. It is recommended that the first disk drive or
controller be assigned SCSI address 1. Additional disk
drives should be assigned SCSI addresses 2, 3, etc. The
first tape drive or controller should be assigned SCSI
address 7. Additional tape drives should be assigned SCSI
addresses 6, 5, etc.

Controller boards connected to the SCSI bus and to disk and
tape drives commonly have switches or jumpers on the board
to configure certain characteristics about the drive(s) that
are attached. Refer to the documentation for the
controllers to make sure you are configured properly before

Page 2-2

beginning to use these devices with the ICM.

Before using a disk drive, it must be formatted. This can
be done with the monitor 'F' command (see Chapter 3 for
details). Even if the drive has been formatted at the
factory, it will probably need to be reformatted.

Page 2-3

3. Chapter 3 - ROM MONITOR COMMANDS
3.1 INTRODUCTION

This chapter describes the general operation of the stand-
alone ICM-3216 ROM Monitor. The commands are explained in
detail.

3.2 GENERAL OPERATION

The monitor operates in either of two modes: user mode
(default), or system mode. To toggle between the two modes,
use the toggle mode command:

a <switch> where switch is either 0 (user) or 1
(systenm).

For example, to toggle from user mode to system mode type:
$a 1<CR>

To toggle from system mode to user mode type:
$a O<Line Feed>

When in user mode, the monitor provides a prompt (%) and
readable output where appropriate. System mode results in
less readable output terminated by a <CR>, and a
nonprintable prompt (<ctrl/P>). In user mode, the monitor
reads each command input at a terminal until a carriage
return (<CR>) is encountered. A <CR> prompts the monitor to
execute the command entered. The backspace key (<BS>) may be
used to delete previously typed input.

In system mode, the command input may come from a terminal
keyboard, or from a program generating command strings.
System mode is intended for use by programs sending commands
to the monitor without user intervention.

At initialization or reset, the monitor is in user mode.
Typing at any time during the operation of the monitor
causes a software reset. The current command is aborted and
software reinitialization occurs.

Numeric quantities must be entered in hexadecimal formats,
except where specifically noted in the command descriptions.
Leading blanks are not allowed on the command line. Most
commands must be entered in lower case. The exception
occurs with commands related to input/output. The
appropriate format for specific commands is shown in the
command description.

Page 3-1

The monitor's output responses may be suspended by entering
a <ctrl/S>. They may be resumed by typing any character.

3.3 MONITOR MEMORY ORGANIZATION

Specific high and low memory addresses must not be changed
by the user, these addresses must be available for the
monitor. In particular, the monitor uses the low 32 Kbytes
of the first Mbyte of memory for stack and data space. The
stack starts one word (16 bits) below 32 Kbyte; the data
starts at 0x00.

Locations 0x00 through 0x88 are reserved for interrupt
vectors.

The system protects low memory by effecting a warm restart
(refer Chapter 6) if a user program modifies the ROM's
memory space. The top of physical memory is used to pass

information to and from programs executed using the
X command.

Page 3-2

3.4 MEMORY AND REGISTER MANIPULATION COMMANDS

The following sections provide the syntax, description and
examples for memory and register manipulations.

3.4.1 Examine Physical Memory The examine physical memory
command allows the user to view the contents of memory
locations. 1In user mode, output is given in both
hexadecimal and ASCII format. Only the hexadecimal values
are printed in system mode. The byte ordering of the
hexadecimal display is dependent on the form of the command
as shown in the following command syntaxes. The ASCII
display is always in byte order. The three forms of this
command are:

e <addrl> [addr2] Examine bytes starting at addril,
displayed in byte order.

ew <addrl> [addr2] Examine words starting at addril,
displayed in word order.

el <addrl> [addr2] Examine long words starting at
addrl, displayed in word order. Use
<CR> for user mode, and <Line Feed>
for system mode.

addrl is the starting address, and addr2 is either 1.) the
ending address, if addr2 is greater than or equal to addrl:
or 2.) a count, if addr2 is less than addrl. In the Iatter
case, addr2 bytes, words, or long words will be displayed.
This usage for addr2 is a general convention.

If addr2 is not specified, a 16 (0x10) byte count is assumed.

The first command examines 16 bytes beginning at address
0x00. The dots printed at the end of the output line
represent nonprintable ASCII characters. The second command
examines 21 words of memory starting with address 0x24. The
third example illustrates that odd addresses are rounded
down to the nearest addressable byte, word or long word, as
appropriate. Notice that the output is aligned according to
the value of the beginning address.

Page 3-3

$e O0<CR>

00000000: 00 00 00 00 OO OO OO 00 00 OO 00 OO OO0 00 OO OO
tew 24 15<CR>
00000024: 0000 0000 0000 0000 0000 O0OOO
00000030: 0000 0000 0OOO 0000 0000 0000 0000 0000
00000040: 0000 0000 00OOO0 0000 0000 0000 0000
$el 5 7<CR>
00000004: 0000 0000 ceee
%

The same examples are displayed for system mode.
e O<LF>
00 00 00 00 00 00 00 OO 00 OO OO OO OO OO0 0O OO
ew 24 15<LF>
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 000O
0000 0000 0000 0000 000O

el 5 7<LF>
00000000

For further examples of the examine command, see the modify
command (refer to Section 3.4.2).

Page 3-4

3.4.2 Modify The modify command changes the contents of
specific memory locations. There are three forms for the
command to accommodate byte, word and long word
nomenclature.

m <addrl> [bl ... bn) Modify memory starting at address
addrl with data bytes bl, b2, etc.

mw <addrl> [wl ... wn] Modify memory starting at
address addrl with data words wi,
w2, etc.

ml <addrl> [lwl ... lwn] Modify memory starting at
address addrl with long data words
lwl, lw2, etc.

The data arguments are separated by blanks. If the optional
data arguments are not present, modify behaves
interactively, prompting for data by printing the current
contents of the location in question. The user can either
enter new data followed by a carriage return, skip that
location by pressing <CR>, or quit by entering q <CR>.

These examples illustrate the modify command in user mode
only. The system mode is not exemplified because the
interactive system mode modify behaves identically to the
user mode modify, and the system mode non-interactive modify
produces no output. The following command line causes
locations 0 and 1 to contain the values 0x21 and 0x22,
respectively. The results are verified by using the examine
command (see Section 3.4.1).

tm 0 21 22<CR>

e 0 1<CR>

00000000: 21 22 tn
%

The next set of commands further illustrate the examine
command (Section 3.4.1).

$ew 0 O<CR>

00000000: 2221 in
tel 0 O<CR>
00000000: 0000 2221 1w,

Notice that the ASCII display always prints in byte order,
regardless of the order of the hex display. The interactive
modify is exemplified below:

Page 3-5

$£ml O<CR>

00000000: 0000 2221 =-> <CR>
00000004: 0000 0000 => fff£f024c<CR>
00000008: 0000 0000 =-> g <CR>

%

This session results in the contents of the long word at
address 4 to be modified. The values of addresses 00 and 08
remain unchanged.

The next set of examples illustrates the differences in
results from the byte, word and long word forms of the
examine and the modify commands.

$m 1000 12 34 56 78<CR>
%e 1000<CR>

00001000 12 34 56 78 00 00 00 OO OO OO OO OO OO OO0 OO OO0 .4Vx.
$ew 1000<CR>
00001000 3412 7856 0000 0000 OOOO O0OOOO OOOO oOOOO «4Vx.
%el 1000<CR>
00001000: 7856 3412 0000 0000 OOOO 0000 0000 oOOOO «4Vx.

$tmw 1000 1234 5678<CR>

%e 1000<CR>

00001000: 34 12 78 56 00 00 00 OO0 OO0 OO0 OO OO OO OO OO OO 4.
few 1000<CR> /
00001000 1234 5678 0000 0000 0000 0000 0000 O0OOO 4.xV.
%el 1000<CR>

00001000: 5678 1234 0000 0000 0000 0000 0000 OOOO 4.xV.

fml 1000 12345678<CR>

$e 1000<CR>

00001000: 78 56 34 12 00 00 00 00 OO0 OO0 OO0 00 00 OO0 00 OO0 xV4..
few 1000<CR>

00001000: 5678 1234 0000 0000 0OOO 0000 0000 O0OOO xXV4..
$el 1000<CR> -

00001000: 1234 5678 0000 0000 0OOOO 00OOO O0OOO O0O0OOO xXV4..
%

Page 3-6

3.4.3

Print Register The print register commands display

the contents of the various sets of registers. The values

printed reflect the value saved on the last breakpoint or
step interrupt.

r
rg
rd
rm
rf

$r<CR>

ro
00000000
pc
00001000
fo
00000000
msr
00000000
pfl
00000000

$rg<CR>
ro
00000000
$£rd<CR>
pc
00001000
$rf<CR>
fo
00000000
$£rm<CR>
msr
00000000
pfl
00000000
%

Print
Print
Print
Print

Print

rl
00000000
sb
00000000
f1
00000000
ptbo
00000000
sC
00000000

rl
00000000

sb
00000000

f1
00000000

ptbo

00000000
sC
00000000

values of all

values of
values of
values of

values of

r2
00000000
fp
000e0000
f2
00000000
ptbl

00000000

r2
00000000

fp
000e0000

f2
00000000

ptbl
00000000

the
the
the
the

r3
00000000
spl
00040000
£3
00000000
eia
00000000

r3
00000000

spl
00040000

£3
00000000
eia
00000000

Page 3-7

registers.
general registers.
dedicated registers.

memory registers.

r4
00000000
spo0
000e0000
f4
00000000
bpro
00000000

r4
00000000

spo
000e0000

£4
00000000

bpro
00000000

floating point registers.

rS5
00000000
intbase
00000000
£5
00000000
bprl
00000000

r5
00000000

intbase
00000000

£5
00000000

bpril
00000000

ré
0000
mod
0000
feé
0000
bent
0000

0000

modp
0000

fe6
0000

bent
0000

In system mode, the session would look like this:

r<LF>

00000000
00001000
00000000
00000000
00000000

rg<LF>
00000000

rd<LF>
00001000

rf<LF>
00000000

rm<LF>
00000000
00000000

00000000
00000000
00000000
00000000
00000000

00000000

00000000

00000000

00000000
00000000

00000000
000e0000
00000000
00000000

00000000

000e0000

00000000

00000000

00000000
00040000
00000000
00000000

00000000

00040000

00000000

00000000

Page 3-8

00000000
000e0000
00000000
00000000

00000000
000e0000
00000000

00000000

00000000
00000000
00000000
00000000

00000000

00000000

00000000

00000000

0000
0000
0000
0000

0000

0000

0000

0000

3.4.4 Change Register The change register command changes

the current register value to the value specified. In user
mode, the monitor confirms the change by displaying the new

value.

¢ <rname> <data> rname is a valid register name and data
1s an appropriate hex value. Data is 1in
long word format for all registers
except psr and mod, which are 2 bytes
each. Register names are lower case.

The following session changes the contents of registers r4
and psr.

$c r4 1a2£223c<CR>

r4: la2f223c

$c psr Lffff<CR>
psr: ffff
%

In system mode:
c r4 1a2f£223c<LF>
Cc psr ffff<LF>

Page 3-9

3.4.5 Write Pattern The write pattern command is used to
fill a sequence of bytes with a fixed value.

p <addrl> <addr2> <pattern> A one byte pattern is written
into memory starting at byte
address addrl. If addr2 is
greater than or equal to addrl,
then addr2 is the last location
to be written. Otherwise, it is
taken as a count indicating the
number of bytes to be written.

The following command lines will clear locations 0x1000 to

0x2000, inclusive, and then fill locations 0x2000 to Ox2fff,
inclusive, with hex aa.

%p 1000 2000 O <CR>
$p 2000 1000 aa<CR>
%

A\

Page 3-10

3.4.6 Set Breakpoint) e

b r <addrl>[<mode> [<count>]] where r is either 0 or 1,
corresponding to ptbo or ptbl,
addrl is the address to be
loaded into the register; mode
is a hex constant loaded into
the AS, VP, BR, and BW bits; and
count is a count loaded into the
bent register.

Set Breakpoint enables breakpoint mode in the memory
management unit (MMU). With this command, the user sets
breakpoints in any of the ways allowed by the MMU hardware.

If mode is not specified, the mode defaults to execution of
a physical address. If count is not specified, the count
register bent is disabled. Bit bn in the MMU is set to r,
and the appropriate breakpoint register is loaded.

Breakpoints cause the MMU to pull the processor NMI line,
and cause a non-maskable interrupt. This forces execution
back to the monitor and, in user mode, a message indicating
the event is printed. In system mode, a praompt is printed to
indicate the event. The set breakpoint command assumes that
low memory (O0x00 - O0x88) is available to it. To set a
breakpoint at address 1000, using ptb0 and breaking on the
l16th (0x10) read of the address, type:

%b 0 1000 10 10<CR>
%

Page 3-11

3.4.7 Test Memory The test memory command writes a cyclic
byte pattern through a specified range of memory and then
reads back those locations, testing for that pattern.

t <addrl> <addr2> Test memory ranging from address addrl
to address addr2. If addr2 is less than
addrl, a2 is taken as a count indicating
the size of the block to be tested.

This test does long word (4 byte) writes, incrementing the
pattern by one for each long word. The test loops
infinitely, writing, then reading. A message indicating the
completion of each pass is printed to the console. If an
error is detected, the message

Memory test error: address addr is errvalue should be
expected

is printed on the console and the test aborts. Typing <CR>
aborts the test at any time.

Page 3-12

3.4.8 Display Memory Size

$ Display the memory size and system
diagnostics.

This command reports the current top RAM location, in both
decimal and hexadecimal. The messages

Memory size: mdecsize (mhexsize) bytes
ROM uses: rdecsize (rhexsize) bytes
powverup test results =-> xx XX XX XX

are printed, where mdecsize and mhexsize are the decimal and
hexadecimal equivalents of the current top RAM location;
rdecsize and rhexsize are the decimal and hexadecimal

equivalents of the space used by the ICM-3216 system
software. The powerup test results are the contents of the

powerup status register (R7), generated during cold starts
of the system. The meaning of these hexadecimal values is

explained in Chapter 6.

Page 3-13

3.5 PROGRAM EXECUTION COMMANDS

The following sections provide the syntax, definitions and
examples for program execution.

3.5.1 tep The step command causes single-step program
executlon.

8 [addrl) The trace bit in psr is set, the environment
is restored, and program execution begins at
the address currently stored in pe. If
address addrl is spec;fled it is loaded into
pc before the environment is restored.

One program instruction executes and then control returns to
the monitor. 1In user mode, the system prints one of the
following messages indicating that the trap was encountered:

NMI: pc = X (A non-maskable interrupt occurred.)
Break: pc = x (A breakpoint was encountered.)
Trace: pc = X (Execution proceeded normally.)

Trap: type = t, pc = x

where x is a hex number indicating the contents of the
program counter, and t is the trap type. Trap types are
listed in the Series 32000 Databook.

In system mode, a prompt is returned.

Page 3-14

3

3.5.2 Go
g [addrl) Load pec with addrl, and continue execution.

The go command causes execution to continue, using the
current environment. If addrl is specified, then register
pc is loaded with addrl and execution begins at that
address. Otherwise, execution continues at the address
currently specified in pe. Tracing is turned off.

Page 3-15

3.6 DISK COMMANDS

The commands described in this section are used to download
and manipulate data on a disk connected to the ICM-3216
system via the SCSI bus.

3.6.1 Format Disk

F

This command is used to prepare a disk for use with the ICM.
The format command asks you for information about your disk,
uses this information to perform a SCSI Mode Select command
to your controller to inform the controller about your
desired configuration of the disk, performs the actual
formatting of the disk, and writes a default partition table
onto the disk.

To execute this command, enter 'F' at the command line.
There are no arguments. All values supplied to questions
asked by this command should be decimal values unless
otherwise specified.

After entering the command, you will be presented with a
menu of choices depending on which type of disk controller
you have. The choices are:

A) Adaptec ACB4000

B) Emulex MDO1l

C) Common Command Set
D) Other

You should select choice A if you have an Adaptec controller
board (model 4000, 4070, or 5500), choice B if you have an
Emulex controller board (model MDOl1l), choice C if you have a
controller or disk drive that uses the Common Command Set,
and choice D if you are using any other disk controller.

You will then be presented with prompts for the SCSI device
address. Normally, the device address for the main system
disk will be SCSI channel 1, logical unit number 0. Disks
other than the main system disk will naturally have
different addresses.

If you have selected choice A or B (Emulex or Adaptec) in
the first menu, you will then be asked a series of questions
about various disk parameters. Answers to these questions
can be found in the literature supplied by your disk drive
manufacturer.

Page 3-16

If you have selected choice C (Common Command Set) in the
first menu, you will be asked if you wish to perform a SCSI
Mode Select command. Normally, for stand alone controller
boards you should answer yes ('y') and for controllers
embedded into disk drives you should answer no ('n').
Answering no will use the controller's default parameters.
A yes answer will produce a series of questions about
various disk parameters.

If you have selected choice D (Other) in the first menu, you
have the ability to format your disk, but you will have to
supply various parameters about the disk by hand. You are
first asked the number of Mode Select bytes followed by that
number of prompts for the byte values. You must enter the
data, one hex byte at a time, required by the Mode Select
command in your controller. You must consult your
controller's manual section for the Mode Select command to
properly determine the format of this data.

After you have answered all of the questions about the
configuration of your disk, a SCSI Mode Select command will
be performed (except in one case for the Common Command Set
as described above). If the controller accepts this data,
you will be asked to verify that you wish to format the
drive.

The actual formatting of the disk is then performed.
Formatting a typical disk will take between 3 and 15
minutes. If an error is detected during formatting, it will
be reported on the screen and the format operation will be
aborted.

If the formatting completes successfully, the size of the
-disk will be displayed on the screen. A default partition
table will be written on the first block of the disk. The
disk is now ready to use with the ICM.

Page 3-17

3.7 Disk Partitioning and Layout Rules

Default disk partitions are set by the ROM-based "F"
(format) command as part of the disk formatting operation.

The monitor command "P" (Partition) can be used to change
the partition tables from the monitor without reformatting
the disk. Partition 4 is used for the boot loader, with a
default of 32 Kbytes of space for the loader's text and data
sections.

The following table shows the default size and use of
partitions for System V/Series 32000.

TABLE 2. Disk Partitioning Rules
(terms defined following table)

partition first last+1 size

po P P+R R

pl P+R P+R+U U

p2 P+R+U P+R+U+s (p2) T- (P+R+U+s (p5) +B)
p3 P+R P+R+U+s(p2) U+s(p2)

p4 T-B T B

p5 T-B-s(p5) T-B m(S,T- (P+R+U+B))
pé (o} P P

p7 P T T-P

Terms used:
Disk-dependent

T = total size of disk
Independent of disk used:

size of root partition (16384 blocks)

size of user partition (38912 blocks)

size of boot loader partition (64 blocks)

size of partition table partition (2 blocks)
maximum swap/dump partition size (16384 blocks)

howcX
nmonnnn

s(partition) = size of partition
m(sizel, size2) = least of sizel and size2

Partitioning Example

The following provides an example of these parfitioning
rules on a 40 Mb disk drive. Note that the block size is
512 bytes, and that the total disk space is 73680 blocks.

Page 3-18

@“

TABLE 4.

partition first block

~ oMW O

Diagram of the same thing

0|
1|

o WN

~ 1

OA

2

16386
55298
16386
73616
57232
0

2

A

2

last

16385
55297
57295
57295
73679
73615
1

73679

Partitioning Example

block # of blocks

16384 (8 Mb)
38912 (19 Mb)
1998 (0 Mb)
40910 (19 Mb)
64 (0 Mb)
16384 (8 Mb)
2 (0 Mb)

73678 (35 Mb)

(partition/block #):

use

root file system
usr file systenm
undesignated
undesignated
boot loader
dump/swap area
HW parameters/
partition table
entire disk -
partition 6

___________ Y R ———— W o N - -an e @ AA oo
16386 ~A57232 ~73680
55298 73616
Page 3-19

3.8 SMALL COMPUTER S8YSTEM INTERFACE (SCSI) DEVICE
SPECIFICATION

The following conventions are used to designate SCSI devices
within the ROM monitor:

If the device is a disk (RANDOM)
<channel>[:<logical_unit>[:<partition>]]
or
[<channel>]:[<logical_unit>]:[<partition>]
Disk Defaults
<channel> = 1

<logical_unit> = 0
<partition> = 0 (4 for 'X' and 'B' command)

<channel>[:logical_unit>])
°r [<channel>]:[<logical_unit>]
Tape Defaults:
<channel> = 7
<logical_unit> = 0
Valid ranges for the above values (tape or disk):
<channel> = [0-7]

<logical_unit> = [0-7]
<partition> = [0-7]

These designations are valid wherever a <SCSI> device
address is called for.

Page 3-20

3.9 S8MALL COMPUTER SYSTEM INTERFACE (S8CSI) COMMANDS

This sectiuon describes commands used to control devices
attached to the SCSI bus. For further information regarding
the main CPU and SCSI control hardware, refer to ICM-3216
System Hardware Reference Manual. :

3.9.1 1Initialize SCSI

8 Initialize the SCSI hardwaré.

This command performs a SCSI bus reset, to reset the SCSI
hardware.

Page 3-21

3.9.2 Load Block

1 <SCSI> <address> [<block count> [<block offset>]]

Load <block count> 512-byte blocks from device <SCSI>
beglnnlng <block offset> blocks from the beginning of the
device into memory starting at address <address>.

This command allows the user to load a contiguous set of
blocks from a SCSI device into physical memory.

If SCSI refers to a tape device <block offset> is not used.
The read begins at the current tape position. If not used
<block_offset> defaults to 0.

The values <address> <block count> and <block offset> are
represented as hexadecimal values. The value <block count>
defaults to 1 unless otherwise specified.

Examples: To load one block from disk device at channel 1,
logical unit 0, partition 0, and block 5 into memory
starting at address 3e8, enter:

%1 1:0:0 3e8 1 5 <cr>
To load a 6 block program that resides on disk device
channel 1, logical unit 1, partition 4, starting at
block 8 into memory starting at address 0x400, enter:
%1 1:1:4 400 6 8 <cr>

To load a 6 block program that resides on tape device
channel 7, logical unit 0 into memory starting at
address 0x400, enter:

%1 7 400 6 <cr>

Page 3-22

/“\%

3.9.3 Write Block

W <SCSI> <address> [<block count> [<block offset>]]

Write <block_count> 512 byte blocks from memory beglnnlng
at address <address> to device <SCSI> beginning
<block_offset> blocks from the beginning of the device.

This command allows the user to write a contiguous set of
blocks from physical memory onto a SCSI device.

If SCSI refers to a tape device <block offset> is not used
and the write begins at the current location of the tape.
If not used <block_offset> defaults to 0.

The values <address>, <block count>, and <block offset> must

be represented as hexadecimal values. The value <block_count>
defaults to 1 unless otherwise specified.

Examples: To write one block to disk device at channel 1,
logical unit 0, partition 0, and block 5 from memory
starting at address 3e8, enter:

%1 1:0:0 3e8 1 5 <cr>
To write a 6 block program to disk device channel 1,
logical unit 1, partition 4, starting at block 8,
from memory address 0x400, enter:

£1 1:1:4 400 6 8 <cr>

To write a 6 block program to tape device channel 7,
logical unit 0 from memory address 0x400, enter:

&1 7 400 6 <cr>

Page 3-23

3.9.4 Perform SCSI 1/0

i <SCSI> <cdb addr> <data addr> <length>

This command allows the user to perform any SCSI I/O
command. A SCSI command descriptor block at address cdbaddr
is sent to the device specified by <SCSI>. Data address
(data addr) and length of data (length) are used in the
operation.

When the command is successfully completed, the system
prompt is displayed:

%

If the command procedure is not successfully completed, an
error message will be displayed.

Page 3-24

3.9.5 Copy

C <chan>[:<lun>[:<partition>]] <chan>[:<lun>[:<partition>]]
This command copies data from one SCSI device to another.

Any data checking is done by the controllers. The user
should refer to the appropriate controller manual for
further information.

For example, to copy the first file on a tape at SCSI
address 7 to the first partition (0) on a disk at SCSI
address 1:

%$C 7:0 1:0:0<CR>

Copy xxxxx blocks

from SCSI address 7, unit 0, device type tape

to SCSI address 1, unit 0, partition 0, device type disk
Are you sure (y/n)?y<CR>

Copying ...

copy complete (error message appears here if any)
Rewind tape (y/n)? y<CR>

rewinding...

There are several possible fatal errors that may occur prior
to starting the actual copy. Any one of the following
messages may print prior to aborting the command:

Cannot open source device
Cannot open destination device

If an unrecoverable error occurs during the copy, one of the
following will print:

Copy aborted: error on source device ()
Copy aborted: error on destination device ()

Following the copy, if the device is a sequential device,
the user will be asked if the device should rewind. After
rewinding, the command quits.

Page 3-25

3.9.6 Tape The tape command allows the user to perform
various tape operations.

T <SCSI> r|f|s|w [<arg>]

The options have the following meanings:

r - rewind

f - forward space to file mark
8 - space record

w - write file mark

Only one option may be specified per T command. Arg
represents the number of records or file marks to process,
and if not specified defaults to 1. Arg is ignored if the r
option is given.

Page 3-26

3.9.7 Execute

X [<arg> ...]

Load and execute a standalone program from SCSI device
1:0:4, with arguments [<arg> ...].

(CAUTION) Avoid striking the "z" key by mistake; it will
require resetting the systenm.

The execute command is intended to load a program into
memory and execute the program.

The precise syntax of this function depends on the

standalone program used. For more detailed information see
ch.4.

Page 3-27

3.9.8 Execute with load parameters

X <SCSI> [<arg> ...]

CAUTION) Avoid striking the "z" key by mistake; it will
result in requiring a system reset.

Load and execute a standalone program from device <SCSI>
with arguments [<arg> ...].

This execute command is intended to load a program into
memory from a user-specified device and execute that
program.

The precise syntax of this function depends on the
standalone program used. For more detailed information see
chl4.

Page 3-28

3.9.9 Boot System V/Series 32000

B : Execute the System V/Series 32000
operating system.

This command effects an X unix command. The command looks
for the file unix in the file system on /dev/dsk/0s0.

Page 3-29

3.10 8CBI Error Messages

If an error occurs during the execution of a command that
uses the SCSI interface, detailed status of that error is
reported in parentheses following a general statement from
the command.

(channel status = xx)

The two hex digit value displayed is the channel status
returned by the SCSI hardware on the ICM board. Receipt of
this error is an indication that the ICM and controller
boards are not properly communicating on the SCSI bus. The
most likely causes of this error are improper cabling on the
SCSI bus, and a controller board that is not responding at
all.

The ICM-3216 System Hardware Reference Manual lists the
channel status values.

(SCSI status = xx)

The two hex digit value displayed is the status byte returned
from the target device. The most common values returned are

08 = device busy
18 = reservation conflict

The monitor will not return a value of 02 (check condition).
For this condition, a REQUEST SENSE command will be issued
and detailed status will be reported in one of the error
reports below.

-

The following messages display errors as reported by the
SCSI REQUEST SENSE command. Different controllers may
display different messages. For a list and explanation of
the values displayed below, you must consult the manual for
your SCSI controller.

Page 3-30

(sense value = xXx)

For devices that do not support extended sense (such as
Adaptec disk controllers), this 8-bit value is the error
class and error code.

(sense key = x)

For devices that support extended sense, but do not conform
to SCSI standards for the extended sense value, the 4-bit
sense key is displayed.

(sense key = x, sense value = xx)

For most devices that support extended sense, both the 4-bit
sense key and 8-bit detailed sense status value are
displayed.

Note: The Adaptec ACB3530 tape controller does not return
an additional sense status, so the sense value displayed for
this controller will always be zero. The error must be
determined solely from the sense key.

EXAMPLES

Error in accessing tape device (sense key = 2, sense value = 09)
Sense key 2 is "not ready." Sense value 9 is "media not loaded."
Message was diplayed as the result of a "T 7 R" command
to an unloaded tape drive attatched to an Emulex controller.

Copy aborted: error on destination device
(sense key = 7, sense value = 0)

Sense key 7 is "data protect." An attempt was made to write

onto a write protected device. This was an Adaptec tape
controller, so the sense value is always zero.

Page 3-31

3.11 BS8PECIAL BYSTEM COMMANDS

These commands are available to aid the user when setting
the system up for System V/Series 32000.

3.11.1 Download Data

d addrl Download data from host to memory address
addrl. This command is used in conjunction
with the xm(1) command (System V/Series
32000 User Reference Manual). See Chapter 5
for details on 1its use.

The ICM-3216 System Hardware Reference Manual lists the
channel status values.

3.11.2 Toggle Memory Management

U [0]1] This command allows the user to turn memory
management off or on, as needed. 2Zero as an
option turns memory management off, one turns
it on. If no value is given, the command

reports whether memory management is turned
on or off.

Page 3-32

4. Chapter 4 LOAD AND EXECUTE PROGRAMS
4.1 EXECUTE PROGRAMS

The ROM monitor has an execute function which loads standalone
programs from SCSI secondary storage devices and executes
them. After it is executed, the program may return to the
ROM monitor, but it is not required.

Three similar commands , "X", "x", and "B" are used to
execute standalone programs. Since "X", "x", and "B" are
nearly identical, the rest of the chapter will apply to all
of them unless explicitly stated otherwise. For more
information on the use of these monitor commands see Chapter
3.

Standalone programs are loaded from tape files or disk
partitions on SCSI secondary storage devices. Constraints
on the form of standalone programs and appropriate location
on the device are described in sections 7 and 8.

A standalone program which is used to load another program
into memory is called a secondary loader. Specialized
features of the execute function can be used to set up a
stack for the newly loaded program, and execute it. This
simplifies the task of the secondary loader. All the loader
must do is find the program on disk or tape, load it into
memory, and return to the ROM monitor.

These features can also be used to implement a two stage
bootstrap process. A second stage is often used to isolate
file system and operating system specific tasks needed to
perform the boot process. This is the mechanism used to
.boot System V/Series 32000 on the ICM-3216.

4.2 sBummary of Operation

The execute function loads the entire contents of a tape
file or disk partition into memory starting at physical
address 0x8000, reads a checksum from 0x800c and byte count
from 0x8008, and compares them to a checksum it calculates
on the data read. If the loaded data checks out, the ROM
does a "jsr" to 0x8010.

Program execution begins at physical address 0x8010 so a
valid entry point must exist there. Six arguments are
supplied by the ROM via the local stack. Additional command
line arguments are made available to the standalone program
on a variable length argument list 0x400 bytes below the top
of physical memory. Up to 32 command line arguments may be

Page 4-1

passed in this way. These are summarized in section 4, and’
access to them is illustrated in section 5. Since no part of
memory is protected or checked, the standalone program can
do just about anything. See section 3, Program Content, for
more information on this. If return to the ROM is required
the program should do a "ret O" as shown in section 5. If
the standalone program is not being used as a secondary
loader, be sure to put a -1 in "ro" before the return. See
example in section 5.

After the program has returned, the ROM checks r0. If a -1
is found in r0, the execution is complete and the program
falls into the monitor loop. If a positive integer is found,
the monitor assumes it to be a valid entry point of a
program loaded by a standalone program (secondary loader),
and prepares to execute the program.

If the standalone program is used as a secondary loader and

the ROM monitor is used to execute what it loads, the

following stack is set up 1K below the top of memory and

used. This stack is constructed after the secondary loader

is loaded into memory and before it is run. Thus, the secondary
loader can use and modify the stack if necessary.

TOP is the top of physical memory found at power up.

Address Designation Points of Interest

TOP - 0x414 ROM return address

TOP - 0x410 0x12345678

TOP - 0x40c number of arguments

TOP - 0x408 address of argument list

TOP - 0x404 mem-size

TOP - 0x400 beginning of argument list
argument list

TOP .

Before executing a program loaded by a secondary loader,
the ROM checksums the ROM data area, saves registers, sets
up registers and starts execution at the entry point
specified in r0. Also, if "biased" and "biaslen" were
adjusted by the secondary loader, the ROM will relocate
the program in memory before running it.

If the bootstrapped program modifies the ROM data area a
warm restart will be attempted when the program returns to
the monitor. Otherwise, a return will continue in the ROM
monitor.

Page 4-2

4.3 Program Content

If return to the ROM is not required there are no
restrictions on program content. If, on the other hand,
return to the ROM is desired, a few rules need to be
observed. Since the standalone program is free to write
anywhere in memory, and since no checking is done to insure
the integrity of the ROM data area upon return from a stand-
alone program, take care not to let the standalone program
write above or below the the bounds of available memory
referred to on the stack. Also, if the program is not a
secondary loader, it is important to put a -1 in r0 before
returning to the ROM. If a positive integer is found in ro
the ROM assumes it is the entry point of a program bootstrapped
into memory by a secondary loader and will attempt to run it.
See section 5 for example of stack access and correct return

procedure.

Page 4-3

4.4 Information Given to the S8tandalone Program

These are the locations and meanings of values made available
to the standalone program.

8 (fp) beginning of available memory

This is a 32 bit pointer to the first byte of memory
available to the standalone program.

12(£fp)

This is a 32 bit pointer to the second argument to

the "X" command. This argument is a character string
terminated by a null character. If the argument is omitted,
or the "x" command is used, the string is empty.

16(£fp)

This is a 32 bit pointer to the second argument to the

"x" command or the third argument to "X" command. This
argument is a character string terminated by a null character.
If the argument is omitted, the string is empty. (This is

a copy of the the first argument in the variable length
argument list located near the top of memory.)

20(fp) end of available memory

This is a 32 bit address pointing to the last byte available

to a standalone program. This is just before the area
reserved for the secondary stack.

24 (fp) address of "biased"

This is the address of a 32 bit integer in the ROM data area.
This value is set by the standalone program when secondary load
biasing is done (see 4.9).

28 (fp) address of "biaslen"

This is the address of a 32 bit integer ‘in the ROM data area.
This value is set by the standalone program when secondary load
biasing is done (see 4.9).

20 (fp)+0x400 beginning of the variable length argument list

Page 4-4

4.5 S8ample Standalone Program

This example successively accesses each element of the
stack, then returns to the ROM.

_entry:
enter [1, o

beginning of available memory
argument <arg2>

argument <argl>

end of available memory

movd 8(fp), ro

movd 12(fp), ro
movd 16 (fp), roO
movd 20(fp), ro

= A==

movd 0(24(fp)), xo "biased"
movd 0(28(fp)), ro "biaslen"
movqgd -1, xO return -1
exit []

ret 0

Note: If a positive integer is moved into r0 before the exit
the ROM will construct a stack 1K before the end of memory
and start execution at the physical address identified by
the positive integer.

Page 4-5

4.6 Checksumming o)

The following is the calculation done to determine the
checksum on the standalone program. The result of this
calculation is compared with the checksum at address 0x800c
read from the SCSI device. The standalone program will not
be executed if these numbers don't match. .

#define LOAD 0x8000 /* address of loader load point */
#define BYTECOUNT 0x8008 /* address of loader byte count */
#define CHECKSUM 0x800c /* address of loader checksum #*/

#$define ENTRY 0x8010 /* address of loader entry point */

char *address; /* address used in calculation #*/
int sum; /* checksum should match value at CHECKSUM #*/

bytecount = *((unsigned *)BYTECOUNT) ; /* value of bytecount */

{
address = (char *) (ENTRY):
sum = 0;
while (address < (char *) (ENTRY + bytecount)) (
if (sum&o01)
sum = (sum >> 1) + 0x8000;
else
sum >>= 1;
sum += *address:;
sum &= Oxffff; -~
address++;

)
4.7 Positioning on the Bource Device

This section describes where and how to locate the standalone
program on the SCSI source device.

The "x" and "B" versions of execute use SCSI device 1:0:4 as
the source of the load. To specify some other device use
the "X" command.

If the load device is a disk, position the standalone
program as follows: the program must start at the beginning
of a valid partition. (Use ROM monitor "P" command to

list and modify disk partitioning information.).

If the load device is a tape drive, position the standalone
program as follows: Locate the program at a position that
can be found with the ROM monitor "T" command. Before attempting

Page 4-6

to execute a standalone program from tape be sure to position
the tape at the beginning of the file containing the program.

The program is an~image of the instruction and data sections
of the program as they appear in memory, preceded by size
and checksum information.

4.8 PFile Format on the S8ource Device

The file should consist of the program's checksum and size
in bytes (as described in section 6), followed by the
instruction and data sections. A valid entry point must
exist at the beginning of the instruction section.

4.9 Loading Programs into Memory with a sStandalone Program

If the standalone program is used as a secondary loader,
special care must be taken to ensure that the ROM data area
and secondary loader itself are preserved in memory. These
reside in memory from physical address 0x0 to 0x14000.

There are two ways to avoid such a conflict. The simplest,
but least versatile approach is to restrict standalone
programs to memory above physical address 0x14000. Since
this restriction is often not possible, a second alternative
is to load the program into a free area of memory and move
the program into position immediately before it is executed.
If the ROM monitor is used to execute the bootstrapped
program after it has been loaded into a temporary location
by the standalone program, the values "biased" and "biaslen"
referenced through the stack must be adjusted by the
standalone program. The meaning of these values is as
follows: -

"Biased" is the beginning of the temporary region where the
program was loaded by the standalone program. It must be
equal to the physical address of the beginning of the
bootstrapped program as read from it's header by the
standalone program plus 0x14000.

"Biaslen" is the length of the bootstrapped program. This

is the difference between the highest and the lowest
physical address used by the program.

Page 4-7

4.10 8econdary 8tack

If the standalone program is a secondary loader and the ROM
monitor is used to execute the program it loads, then the
ROM monitor will use the following stack 1K below the top of
memory. This stack is constructed immediately before the
secondary loader is run so that the secondary loader can
modify it if necessary. This stack contains the variable
length argument list containing command line arguments from
"x" or "X" command.

the

TOP is the top of physical memory found at power up.:

Address Designation

Points of Interest

TOP - 0x414 ROM return address

TOP - 0x410 0x12345678

TOP - 0x40c number of arguments

TOP - 0x408 address of argument list

TOP - 0x404 mem size

TOP - 0x400 beginning of argument list
argument list

TOP

4.11 Memory Map

This summarizes physical memory as seen by the standalone
program. TOP is the top of physical memory found at power

up.

Address Designation

Points of Interest

standalone program load point

contains the standalone program byte count
contains the standalone program checksum
standalone program entry point

-
-

end of loaded part of standalone program

0x0
ROM data area
0x8000
0x8008
0x800c
0x8010
standalone program
0x10000
zeroed data area reserved
for running standalone program
0x14000

TOP - Ox40a

secondary stack

bottom of available memory
top of available memory

Page 4-8

5. Chapter 5 - DOWNLOADING AND DEBUGGING FEATURES

5.1 DOWNLOADING PROGRAMS

The download memory command works only in conjunction with
commands given on a host computer. The command (4 al)
provides the user with a means to load data from a host
computer into the ICM-3216 system memory.

4 al Download data from a host to memory address

al.

This command is used in conjunction with the xm(1) command
on the host. The xm command is issued on the host after the
download command iIs issued on the ICM-3216 system. A
version of the xmodem protocol is used to assure that data
received by the ICM-3216 system is correct. Table 5-1

illustrates this protocol.

TABLE 5-1. XMODEM PROTOCOL

RECEIVER (the ICM-3216 system)

S8ENDER (HOST-8ystem V/8eries 32000)

c ——

<ACK>/<NAK> =->
<ACK> =->

-= <SOH><BN>(cnt) (checksum)
(128 data bytes) (2 bytes CRC)

-=- Retransmit or <EOT>

The checksum is the sum of the block number BN and the count

cnt of bytes to be transferred.

The two bytes of CRC are

calculated according to the CCITT CRC polynomial, X*16 +

X~12 + X*5 + 1.

An example of typical usage of the d and System

V/Series 32000 xm commands follows. It is assumed that the
configuration is such that an the ICM-3216 system is
connected via a tty line to the host. For the sake of
example, we will refer to that line as /dev/icm.

1. On the remote end (the ICM-3216 system), the

command

$¥d 2000<CR>

Page 5-1

is given. This sets up the ICM-3216 system for
receiving data from a host, starting at memory
location 0x2000. When the command is issued, the
ICM-3216 system puts out the xmodem initiation
character (C if CRC checksums are used, or NAK if
standard checksums are used.)

2. At the host end, the command
xm -th -1 /dev/icm < datafile<CR>

is entered. The optlon t indicates that the
program should transmit data read from standard
input (here, datafile). The h option indicates
that local headers includlng checksums will be
used. The 1 optlon indicates that the comm line
will be spec1f1ed by the next argument, in this

case /dev/icm.

3. Upon receiving the xmodem initiation character
from the remote end, the host starts up by sending
a packet as described in Table 5-1.

4. Upon receipt of the block, the remote machine
computes the checksum. If the block is good the
remote machine acknowledges with an ACK, and
prints a period on the user's terminal to indicate
the acknowledgement. If the block is not good, an
N is prlnted on the user's terminal, and the block
is retried. Ten retries are allowed before an
error is given and the transmission is halted.

5. If an ACK is received from the remote system and
there is more data to send, the host sends another
packet. If there is no more data, the host sends
an <EOT>. If no <ACK> is received after 30
seconds, the host assumes no response from the
remote system, and aborts.

For further details regarding this protocol and other
options of the xm command, see xm(1),
System V User Reference Manual.

5.2 HARDWARE CONNECTION
Connect host tty to ICM-3216 tty2 (P3). See Figure 5-1.

Page 5-2

TERMINAL
¢ 2
——e{ p3 ICM
| d p, 3216
DEBUG 13
HOST

Figure 5-1 Host tty to ICM-3216 Connection

One ICM-3216 may connected to another (P3 to P3) using
standard 6 wire Telco style cable.

The debug connection allows a console on P2 and a debugging
host connection on P3. Control signal (IMAYSEND) must be
asserted during the ICM-3216 system reset to recognize P3 as
a debug connection.

5.3 MIRROR DEBUGGING

This feature is useful if two users at separate locations
are collaboratively debugging a program. If a second
terminal is connected to P3, the monitor will take input
from either keyboard while printing output to both
terminals. Both terminals run at 9600 baud. If more than 3
framing errors occur on P3 (the second terminal), the

baud rate of the second terminal is dropped to 1200.

Both users may enter commands and view the output. The
users must coordinate command input. If both users attempt
to type commands at the same time, the results are
unpredictable.

Page 5-3

6. Chapter 6 - BYSTEM INITIALIZATION AND POWER-ON
CONFIDENCE CHECKS

6.1 INTRODUCTION

The power-up self-test components in the ICM-3216 system
boot ROMs provide a low level mechanism to verify the system
hardware during the power-up sequence. The tests are
primarily targeted at the board memory system, but a test of
the board console UART is provided as well. The power-up
code also provides a mechanism to display the results of the
hardware checks using the on-board LEDs.

The system power-up sequence does not require that any RAM
be functional. This allows the power-up procedure to be
useful when a memory problem does not allow running the
system monitor.

The firmware distinguishes between warm restarts and cold
starts (reboot) by varying the set of functions performed in
each case. During a cold start a set of basic system
hardware evaluations are performed. The results of this
evaluation are saved in a 32-bit power-up status word.
Figure 6-1 illustrates the mapping of the bits in this word.
Bits 16-30 of the word are unused. Bit 31 is used to
indicate that a cold start has occurred. It is reset to
zero on a warm restart.

After the various tests are run, several system parameters
are initialized.

1. The console channel baud rate is set to 9600 baud.

2. The character structure is set to 1 stop bit and 8
bits, no parity.

3. The MiniBus gate array is initialized by unlocking
the interrupt circuitry so that a power fail or
Bus Conflict NMI can be recognized.

4. The Memory Management Unit, Floating Point Unit,
Interrupt Control Unit, MiniBus Interface
Controller registers, Centronics Parallel Port and
the SCSI hardware are initialized.

6.2 LED DIBPLAYS

Four of the five LEDs on the ICM-3216 system are used during

the power-up sequence to indicate the results of the
evaluation of several aspects of hardware performance.
Figure 6-2 illustrates the meaning of the various LEDs. The

gEDs are viewed from the RS232 edge of the board at the
ottom.

Page 6-1

7 6 S & 3 2 10

X X X X X X X X

') 44 o ROM 0 Qbxksum Error (U34)
ROM 1 Checksum Esyor (L3S)
RAM Related Error

. RAM Ilnitialized Data Oopy Estor

RAM Clear Error
UART 0 Error (U49)
UART 1 Error (L23
RAM Parity Error

1S 34 13 12 31 30 9 8

X X X X X X X

'} BUSBIT - Memory Data Error

BANKBIT - Memory Bank Select Err
BNKOFLT - Memory Error In Bank 0

TMP-Used As A Flag Bit In
Severa) Routines
NOFILL - NO RAM Could Be Init'ed

UNUSED
UNUSED
UNUSED

-
>
p———
.
—
P

06C02-0-U

Figure 6-1. Power-up Sutus Regisier
Page 6-2

— O

> O

resmse——» ©

s O

t—-— DS 0 5 OFF = Not Used

DS 0 4: UART LED ON = UART Deta Laopback Failed

DS 0 X ROM LED ON == ROM Checksum Failed

DS 0 2: INTT LED ON = RAM Initialization Failed

DS 0 1: RAM LED ON = RAM Size Cdeks Failed

GC-030-V

Figure 6-2. LED Display - Power-up

Page 6-3

6.3 COLD BTARTS

Various power-on confidence checks are performed to insure
that certain basic functions of the ICM-3216 system are
working correctlg. Memory and the parity circuits are
tested as described below. .

1. Checksums. Checksums are computed for each of the
two ROMs on the board. If the tests succeed, the
ROM LED is extinguished. 1If either of the tests
fail, an inspection of bits 0-1 of the power-up
status word should determine which ROM failed to
check out. Refer to Figure 6-1 for details.

2. Memory Size Checks. Three separate memory tests
are run. If a data failure occurs below the 8
Mbyte maximum memory limit, the BUSBIT (bit 8) is
set in the power-up status word. BANKBIT (bit 9)
is set in the power-up status if memory size is
limited by bank selection. If low memory (bank 0)
gives an error, bit 10 BNKOFLT is set. The PARERR
(bit 7) is set if a parity error is enountered.

If the actual memory available is determined to be
1 Mbyte, 2 Mbyte, 4 Mbyte or 8 Mbyte, the RAM LED
is extinguished. If not, an inspection of bits 8,
9, and 10 along with bits 2, 3, 4 and 7 (refer to
Figure 6-1) should yield the reason for a lesser
amount of available memory.

3. Data Loopback. A local data loopback check of the
two dual-channel UARTs is tried. Each UART is
considered individually. UBITO (bit 5) in the
power-up status word indicates a failure in UART 0
(U49), UBIT1 (bit 6) indicates a problem with
UART1 (U23). If neither of these bits is set
after completing the UART checks, the UART LED is
extinguished.

4. Memory initialization. Memory is initialized to
00, and then verified. A failure causes the RAM
clear error (bit 4) in the power-up status word to
be set. If no memory could be initialized, the
NOFILL (bit 12) is set. Finally, ROM is copied to
RAM, and the copied data is verified. 1If no
errors are found, the INIT LED is extinguished.

Following the cold start checks, the user may opt to display
the results of the power-up procedure, or to immediately
enter the ROM monitor. While in the monitor, the $ command
can be used to display the results of the power-up procedure.

Page 6-4

6.4 WARM RESTARTS

A warm restart occurs as a result of a system break, the
monitor catching a system trap, or a user program modifying
the ROM's memory space (0-32K). The memory size checks,
clearing memory, and initialization are performed. The LEDs
are not modified during a warm restart, nor is the power-up
status word modified. The $ command will not display the
contents of the power-up status word after a warm restart.

The ROM monitor is entered immediately following a warm
restart.

Page 6-5

1. ICM-3216 COMMANDS QUICK REFERENCE
1.1 MEMORY & REGISTER COMMANDS

a ol Toggle between user mode (1) and system mode

(0).

e <al> [a2] Examine bytes starting at al, displayed in
byte order.

ew <al> [a2] Examine words starting at al, displayed in
word order.

el <al> [a2] Examine long words starting at al, displayed
in word order.

m <al> [bl ... bn] Modify memory starting at address al with
data bytes bl, b2, etc.

mw <al> [(wl ... wn) Modify memory starting at address al with
data words wl, w2, etc.

ml <a>l [1lwl ... lwn] Modify memory starting at address al with
T long data words iwl, lw2, etc.

r Print values of all registers.

rg Print values of the general registers.

rda Print values of the dedicated registers.

rm Print values of the memory registers.

rf Print values 6f the floating point registers.
¢ <rname> <data> Change contents of register rname to data.

p <al> <a2> <pattern> A one byte pattern is written into memory
starting at byte address al. If a2 is
greater than or equal to al, then it is the
last location to be wrltten. Otherwise, it
is taken as a count indicating the number of
bytes to be written.

b 0|1 <al> [<mode> [<count>]] Set breakpoint register bptr.

-7 Address al is loaded into the address portion
of the register; mode is a hex constant
loaded into the AS, VP, BR, and BW bits; and
count is a count loaded into the bent
register.

Page A-1

t <al> <a2>

s [

a1]

Test memory ranging from address al to
address a2. If a2 is less than al, a2 is
taken as a count indicating the size of the
block to be tested.

Step through program instructions. The trace
bit in psr is set, the environment is
restored, and program execution begins at the
address currently stored in pec. If address
al is specified, it is loaded into pc before
the environment is restored.

Load pc with al, and continue execution.

Print current RAM memory size and diagnostic
results.

I/O & 8CSI COMMANDS

<chan>[:<lun>]

<chan>[:<lun>[:

Format disk. The user is prompted for disk
parameters.

Change and/or examine the partition tables
without reformatting the disk. Where <chan>
is the channel and <lun> is the logical unit.

<partition>]] <addr>[<count>[<sector>]]
ad d

Lo ata from disk into memory.

<chan>[:<lun>[:<partition>]] <addr>[<count>[<sector>]]

Write data from memory onto disk.

Reset the SCSI hardware.

<chan>[:<lun>] <cdb addr> <data addr> <length>

Initiate a SCSI command. SCSI command

descriptor block at address cdb addr is sent
down channel chan on logical unit lun. Data
address data addr and length of data length
are used in the operation.

C <chan>[:<lun>[:<partition>]] <chan>[:<lun>[<partition>]]

Copy data from device (SCSI address) to
device (SCSI address).

T <chan>[:<lun>] {r|f|s|w)} [<arg>]

Perform various tape operations on tape
device at <SCSI>. for <arg> number of records
or tape marks. Options are r(ewind),

f (oxrward space to file mark), s(pace record),
w(rite file mark).

Page A-2

X ([<arg> ...]

Load contents of SCSI 1:0:4 into memory and
execute the loaded program. CAUTION Do not
strike the "z" key by mistake: it will
require a system reset. a

X <chan>[:<lun>[:<partition>]] [<arg> ...]

B
1.3 BSPECIAL BYSTEM

4 <addr>

U [0]1)]

Load contents of SCSI <chan>[:<lun>[:<partition>]
and execute as a standalone program. CAUTION

Do not strike a "2" key by mistake; it will
require a system reset.

Boot System V/Series32000
COMMANDS

Download data from host to memory address
<addr>.

Turn memory management off or on.

Page A-3

