
TL/DD10348

C
in

E
m

b
e
d
d
e
d

S
y
s
te

m
s

a
n
d

th
e

M
ic

ro
c
o
n
tro

lle
r
W

o
rld

A
N

-5
8
7

National Semiconductor
Application Note 587
David LaVerne
March 1989

C in Embedded Systems
and the Microcontroller
World

ABSTRACT

C is becoming the higher-level language of choice for micro-

controller programming. Traditional usage of C depends on

assembly language for the intimate interface to the hard-

ware. A few extensions to ANSI C allow embedded systems

to connect directly and simply, using a single language and

avoiding detailed knowledge of the compiler and hardware

connections.

HIGHER-LEVEL LANGUAGE USAGE

The desires leading to the greater use of higher-level lan-

guages in microcontrollers include increased programmer

productivity, more reliable programs, and portability across

hardware. Few such languages have served well when re-

quired to manipulate hardware intimately because most

have been for mathematical computation. The C language

has always been close to machine level. Indeed Kernighan

and Ritchie[1] refer to it as not really a higher-level lan-

guage; one view of C is as a higher-level syntax expressing

PDP-11 assembly language.

C has gained a great deal of its reputation and popularity

associated with its use for operating systems, specifically

UNIXÉ[2] and similar systems. Many languages will do well

enough for the application and utility programs of such a

system, but being appropriate for the kernel indicates C can

probably do the job of hardware control in an effective man-

ner.

The needs of an embedded system, however, are not identi-

cal to the environment from which C has come. This war-

rants looking at C as it is and comparing it to the needs of C

for the microcontroller world.

Operating Systems vs Embedded Systems

In most non-embedded programs, it is the processing which

is important, and the Input/Output is only to get the data

and report the results. In embedded or realtime applica-

tions, it is the Input/Output which is vital, and the processing

serves only to connect inputs with outputs.

Operating systems are actually not as closely tied to the

hardware as they might appear initially, and those portions

which are close are not very portable. Operating systems

manipulate hardware registers primarily for memory man-

agement (to map tasks), task process switching (to activate

tasks), interrupt response (to field requests), and device

drivers (to service requests). Because memory manage-

ment hardware is so different between systems; because

task process changing is so contingent on processor opera-

tions and compiler implementations; because interrupt sys-

tem behavior is so varied; and because device control is so

dependent on architecture and busses, these particular as-

pects of the operating system are not concerned with porta-

bility. As a result, they are generally kept separate, use a

less convenient form of C depending on constants, and fre-

quently are implemented in assembly language. This is not

a major problem, since they comprise only a small portion of

the total system, and have to change anyway each time the

system is ported.

Embedded systems, by their very nature, are closely tied to

the hardware throughout the system. The system consists

of manipulating the hardware registers, with varying

amounts of calculation and data transformations inter-

spersed with the manipulations. As the system gets larger,

the calculations may get more complex and may become a

larger share of the program, but it is still the hardware oper-

ations which are the purpose of the system. Because the

system in which these hardware pieces reside consists

mostly of these hardware pieces, it is reasonable to hope

for portability across processors or controllers for an appli-

cation or product. Attempting to isolate all of the hardware

operations is often impractical; using inconvenient forms of

C is troublesome throughout the system and throughout its

life-cycle; and implementing them in assembly language de-

feats the advantages of higher-level language usage and

eliminates portability for those (and related) portions. For

embedded systems, conveniently accessing hardware reg-

isters while doing calculations is essential.

Computer Systems vs Embedded Systems

Computational systems generally can be down the cable,

and thus down the hall, from where they are used and can

be whatever size is necessary to get the performance; pro-

duction quantities are measured in hundreds and thou-

sands, so price is a price/performance issue. Embedded

systems end up tucked away in some of the strangest and

tiniest places, so size can be a success or failure issue;

quantities are often tens of thousands to millions of units, so

additional chips or costs are multiplied ferociously and be-

come a bottom-line issue.

The computer systems for which C was originally developed

were relatively small and not especially sophisticated. How-

ever, as systems have grown, C and its implementation has

grown right along with them. Most computer systems for

which C is used now involve high-speed processors with

large memory caches to huge memory spaces, backed by

virtual memory. Many have large register sets. Such linear

memory with heuristic accelerators allow for very large pro-

grams and fast execution. A major effort in optimization is in

the allocation and usage of the registers, which tend to be

general purpose and orthogonally accessible. Such sys-

tems, processor chips, and compilers compete almost ex-

clusively in the field of speed.

Embedded systems, and most especially microcontrollers,

have a different nature. While some applications may add

external devices and memories to the controller, many are

meant to be fully self-contained on one chip or have at most

a few I/O chips. Microcontroller systems are small, are of-

ten required to fit in a physically small space, and are usual-

ly fed small amounts of power. Even when the system is

externally expanded, the memories provided on-chip are

significantly faster than the external memories because of

buss driving. The total addressing space is usually very limit-

ed (32k, 64k) with expansion not linear. The registers in

microcontrollers are usually a limited number of special pur-

HPCTM is a trademark of National Semiconductor Corporation.

C1995 National Semiconductor Corporation RRD-B30M75/Printed in U. S. A.

pose registers, thus eliminating orthogonal usage. Speed is

only one of many considerations in the microcontroller com-

petition. Cost, package size, power consumption, memory

size, number of timers, and I/O count are very important

considerations.

Embedded Systems

Higher-level languages will achieve the goals of program-

mer productivity, program reliability, and application portabil-

ity only if they fit the target environment well. If not, produc-

tivity will disappear into work-arounds and maintenance, reli-

ability will be lost to kludges, and portability will not exist.

DESIRED TRAITS IN C FOR MICROCONTROLLERS

The environment in which C has developed is not the same

as the embedded microcontroller world. What changes or

extensions or implementations of C will provide the means

to adapt the language? National Semiconductor Microcon-

troller Division has a compiler[3] developed for the 16-bit

High Performance Controller (HPCTM [4]) which has led to

some exploration of these issues. The needs can be sum-

marized as:

Compatibility

Direct Access to Hardware Addresses

Direct Connection to Interrupts

Optimization Considerations

Development Environment

Re-Entrancy

Compatibility

The first consideration for any such adaptation MUST be

compatibility. Any attempt to create a different language, or

another dialect of C, will create more problems than using C

will solve. Dialects create problems in portability, mainte-

nance, productivity, and possibly reliability. A programmer

used to working in C will be tripped up by every little gotcha

in a dialect; everyone will be tripped up by a different lan-

guage.

Providing extensions to the language, while maintaining

compatibility and not creating a new dialect, is accom-

plished by using the C Pre-Processor. By carefully choosing

the extensions and their syntax, the use of the preproces-

sor’s macro capability allows them to be discarded for nor-

mal C operation with non-extended compilers. By carefully

choosing their semantics, the elimination of the extensions

does not render the program invalid, just less effective.

Within these considerations there should be no unneces-

sary additions. An extension should not be made to avoid

the optimizer’s having to work hard. An extension should be

made only to give the user an ability he would not have

without it, or to tell the compiler something it cannot figure

out by itself.

Direct Access to Hardware Addresses

Access to hardware addresses is improper in computation

programs, is unusual in utility programs, is infrequent in op-

erating systems, and is the raison d’etre of microcontrollers.

The normal means of accessing hardware addresses in C is

via constant pointers. This is adequate, if not great, when

the accesses are minimal. For example

struct HDLC registers
À

....
Ó;

#define HDLC 1(*(struct HDLC registers*)

0x01a0)

allows reference to a structure of HDLC device registers at

address 0x01a0, but never actually creates the entity of

such a structure. If a debugger were asked about HDLCÐ1,

it would not recognize the reference. If many registers and

devices are involved, it becomes a problem to be handled

by the programmer, not his tools. If the debugger tries to

read the source for preprocessor statements, it adds signifi-

cant complexity.

Another way of doing it is

struct HDLC registers
À

....
Ó;

extern struct HDLC registers HDLC 1;

and providing an external file defining the address of

HDLCÐ1, written in assembly language. This is clean, and

does create the actual entity of a structure at the address,

but has required an escape to assembly language for the

system (although only at the system definition level). This

was the first choice at National, and retains merit because

the use of macros in the definition file allows the simple

creation of a table exactly like the table in the hardware

manual.

What is desirable, so that the user can do his own defini-

tions without resorting to two languages, is a means to cre-

ate the entities and define the addresses of those entities, a

simple means of saying that this variable (or constant) is at

a specific absolute address. The syntax

struct HDLC registers HDLC 1 @ 0x01a0;

would be excellent as an official enhancement to the lan-

guage, since the @ parses like the e for an initialization

(and the program shouldn’t initialize a hardware register this

way like a variable). However, this violates the compatibility

rule for an extension, since the preprocessor cannot throw

away the address following the @ character. Therefore,

struct HDLC registers HDLC 1 At (0x01a0);

is a much more practical form as an extensionÐand can be

made to expand to the previous (or any other) form if it is

ever added as an enhancement to the language. The result-

ing forms

volatile struct HDLC registers HDLC 1 At

(0x01a0);

volatile struct HDLC registers HDLC 2 At

(0x01b0);

volatile const int Input Capture 3 At

(0x0182);

are straightforward, simple, readable, and intuitively under-

standable, and provide the data item definitions as desired.

Direct Connection to Interrupts

Operating systems attach to interrupts in one centralized,

controlled location and manage them all in that module. Em-

bedded systems attach to varied interrupts for a variety of

purposes, and frequently the different interrupt routines are

in different modules with associated routines for each pur-

pose. It is possible to do this with another escape to assem-

bly language, but this requires that the system be main-

tained and enhanced in two languages.

The solution chosen for the National compiler is to provide

an identifier for functions which are to service interrupts.

2

These functions obviously take no arguments and return no

values, so they are worth considering as special. The syntax

chosen was simply

INTERRUPT2 timer interrupt()

although a more desirable form as an official enhancement

would be

INTERRUPT(type)

interrupt service routine()

because the chosen syntax can be preprocessed into what-

ever might be the final form. The semantics of the interrupt

function were more difficult to guarantee for the futureÐ

should an interrupt function be callable by the other func-

tions? Prohibiting it allows eventually permitting it if neces-

sary; for improved efficiency, the National compiler does not

allow an interrupt function to serve as anything other than

an interrupt service routine, although one function can be

attached to several interrupts.

Because the functions are special purpose, the function en-

try and exit code can be dedicated to interrupt entry and

exit, rather than having to hide it in a separate library mod-

ule. The National compiler actually generates the interrupt

vector to point directly to the interrupt function; the function

saves and restores the registers which it may destroy. La-

tency is minimized.

Interrupt response speed (latency) and interrupt system per-

formance are important characteristics of a microcontroller.

It is one thing (inconvenient or embarrassing) for a multi-

MIPS machine to choke on long 9600 baud transmissions

and drop a character or two because of inefficient interrupt

response. It is another thing entirelyÐlethal, a total failureÐ

for an embedded system’s interrupt response to be so poor

as to miss even one critical interrupt.

Optimization Considerations

Computer systems compete on speed (or at least MIPS rat-

ings); compilers for them must be speed demons. Microcon-

trollers compete on size and costs; compilers for them must

be frugal. Embedded systems are limited in their memory

and different memories frequently have significantly differ-

ent behavior.

The major concern of optimization comes down to code

size. In most controller systems, as generated code size

decreases speed usually increases. The effort in the code

generation and optimization should be directed towards re-

ducing code size. Claims for exactly how close the generat-

ed code gets to hand-written assembly code depend on

specific benchmarks and coding techniques. An acceptance

criterion for the National HPC compiler was code size com-

parison on a set of test programs. A level slightly below 1.4

times larger than assembly was reached.

In addition to the implementation of the optimization, other

concerns of microcontrollers affect the way code can be

generated. An example is the different forms of memory.

Many controllers have memories which can be accessed by

faster or shorter code. Certain variables should be placed in

these memories without all the variables of a module going

there (which is a linker process). There is no possible way

for the optimizer to guess which variables should go there,

especially in a multiple module program, so it must be told.

The syntax used is

static BASEPAGE int important variable;

because the special memory in National’s HPC is the first

page of RAM memory. Several other possibilities offer

themselves, including using for an official enhancement

static register int important variable;

because currently static register variables are specifically

prohibited. This cannot be an extension, because the regis-

ter word could not be redefined to the preprocessor. If some

variables need to be accessed by fast code, and some need

to be accessed by short code, and if the two were mutually

exclusive, it would be desirable to have two separate exten-

sion words. Since such hardware is unlikely, the single word

BASEPAGE is probably sufficient.

Additional savings can be achieved by reconsidering string

literals. The ANSI C requires that each string literal is a sep-

arate variable, but in actual usage they are usually con-

stants and therefore need not be separate nor variables.

The National compiler provides an invocation line switch to

indicate that all string literals (but not string variables) can

be kept in ROM rather than being copied to RAM on system

start-up. Such strings can be merged in the ROM space to

eliminate duplication of strings.

An extension to the language to identify functions which will

not be used recursively is

NOLOCAL straight forward function();

which causes all local variables to be converted to static

variables, which are easier and faster to access and use. If

the function has no arguments, the compiler can even elimi-

nate the use and creation of the Frame Pointer for the func-

tion, saving additional code and time.

The particular processor, the HPC, has a special form of

subroutine call. Since the optimizer cannot guess across

modules which functions should be called with the special

form, the extension

ACTIVE specially called function(arg);

was added. This may or may not be appropriate for other

processors, but is a good example of why the language

needs careful extensions to take advantage of different

processors.

One command extension was added to the language be-

cause it allows the programmer to guarantee something the

optimizer cannot usually determine. The form

switchf(value) À...Ó

provides for a switch/case statement without a default

case. When speed and size become critical, the extra code

required to validate the control value and process the de-

fault is highly undesirable when the user’s code has already

guaranteed a good value.

The National compiler has one extension which violates the

issues stated under compatibility. It remains for historical

reasons. It is a command

loop(number) À...Ó;

3

which produces a shortened form of the for loop, without an

accessible index. This does not provide the user with any

new ability, it merely allows the compiler optimizer to know,

without figuring out, that the index is not used inside nor

outside the loop, and can therefore be a special counted

form. The preprocessor cannot produce an exact semantic

equivalent for the statement. This is a perfect example of a

poor extension and will eventually be eliminated.

Development Environment

Languages developed for large or expensive systems can

usually depend on large systems for development support,

either self-hosted or with a large system host providing

cross-development tools. Microcontrollers are often price

sensitive, are frequently in the laboratory or the field, and

are not always supported by a large system as a develop-

ment host. Personal computers provide an excellent plat-

form for the entire suite of development tools.

National Semiconductor currently provides its compiler and

associated cross-development programs on the IBM PC

and clone type of computer. The software is all very porta-

ble, and can be run under VAX/VMS, VAX/Ultrix, or VAX/

BSD4.2, and on the NSC 32000-based Opus add-in board

for the PC running UNIX V.3, and some other versions of

UNIX. The demand has been for the PC version; the PC is a

very good workstation environment for microcontrollers.

Other environments may be desirable, but the PC is first.

Re-Entrancy

Even with all these other considerations handled, there is a

time bomb lurking in C on microcontrollers. C is a single

thread, synchronous language as it is usually implemented.

Since most utilities are strictly single-thread and the UNIX

kernel forces itself into a single-thread, this is not a big prob-

lem for them. Embedded systems involving controllers are

inherently asynchronous; the language in which they are im-

plemented must be multi-thread without special rules and

exception cases.

The passing of arguments on the stack and the returning of

values in registers allow for complete re-entrancy and thus

asynchronous multi-threading, but this breaks down when

structures are returned. Most implementations of C use a

static structure to contain the returned value and actually

return a pointer to it; the compiler generates the code to

access the returned structure value as required. This cannot

be used in a microcontroller environment, because if an in-

terrupt occurs during the time the static structure is being

used, it cannot re-enter the function. On an operating sys-

tem level such conflicts can be managed with gates, sema-

phores, flags, or the like, but that solution is completely in-

appropriate on the language level. Turning the interrupts off

is similarly not a language level concept, and is impossible

on a system with a NonMaskable Interrupt. Telling users not

to get themselves into that situation is crippling at best, im-

possible to enforce, and extremely difficult to track down

and correct.

The solution should be at the language level, and should

allow the return of a structure without hindering re-entrancy.

The author’s solution, developed with National, has been to

have the code calling the function provide the address of a

structure in which to build the return value. Since this is

frequently on the caller’s stack, and is never invisibly static,

the program has no hidden re-entrancy flaws.

The HPC C Compiler

The HPC C Compiler (CCHPC) is a full and complete imple-

mentation of ANSI Draft Standard C (Feb 1986) for free-

standing environment. Certain additions take advantage of

special features of the HPC (for the specific needs of micro-

controllers). The extensions include the support of two non-

standard statement types (loop and switchf), non-standard

storage class modifiers and the ability to include assembly

code in-line. The compiler supports enumerated types,

passing of structures by value, functions returning struc-

tures, function prototyping and argument checking.

Symbol Names, both internal and external, are 32 charac-

ters. Numerics are 16-bit for short or int, 32-bit for long,

and 8-bit for char, all as either signed or unsigned; floating

point are offered as float of double, both using 32-bit IEEE

format.

All data types, storage classes and modifiers are supported.

All operators are supported, and anachronisms have been

eliminated (as per the standard). Structure assignment,

structure arguments, and structure functions are supported.

Forward reference functions and argument type checking

are supported.

Assembly code may be embedded within C programs be-

tween special delimiters.

See Table I.

4

CCHPC SPECIFICATIONS

TABLE I

Note: Extensions are boldface

Name length 32 letters, 2 cases

Numbers

Integer, Signed and Unsigned 16–32 Bits

Short and Long 16 bits and 32 bits

Floating, Single and Double 32 bits and 32 bits

Data Types

Arrays

Strings

Pointers

Structures

Preprocessor
Ýinclude
Ýdefine Ýdefine() Ýundef
Ýif Ýifdef Ýifndef Ýif defined Ýelse Ýelif Ýendif

Declarations

auto register const volatile BASEPAGE

static static global static function NOLOCAL INTERRUPTn ACTIVE

extern extern global extern function

char short int long signed unsigned float double void

struct union bit field enum

pointer to array of function returning

type cast typedef initialization

Statments

;À...Ó expression; assignment; structure assignments;

while ()...; do...while (); for(;;;)...; loop()...;

if ()...else...; switch ()...; case:...; default:...; switchf ()...;

return; break; continue; goto...; ...:

Operators

primary: function() array[] struct union. struct pointer -l

unary * & 0 1 ! E 00 Ð sizeof (typecast)

arithmetic: * / % 0 1 kk ll

relational: k l k4 l4 44 !4
boolean: & > l && ll
assignment: 4 04 14 *4 /4 %4 ll4 kk4 &4 >4 l4
misc.: ?: ,

Functions

arguments: Numbers, Pointers, Structures

return values: Numbers, Pointers, Structures

forward reference (argument checking)

Library Definition Limited-Freestanding environment

Embedded Assembly Code

5

A
N

-5
8
7

C
in

E
m

b
e
d
d
e
d

S
y
s
te

m
s

a
n
d

th
e

M
ic

ro
c
o
n
tr

o
ll
e
r
W

o
rl
d

CONCLUSIONS

With the right extensions, the right implementations, and the

right development environment, National is providing its

customers with a C compiler tool which allows effective

higher-level language work within the restrictive require-

ments of embedded microcontrollers. Productivity increases

do not have to come at the expense of larger programs and

more memory chips. No strangeness has been added to the

language to cause reliability problems. Portability has been

retained. Assembly language code has been eliminated as

the chewing gum and baling wire trying to hold it all togeth-

er, further increasing reliability and portability.

FOOTNOTES

1. Kernighan, Brian W. and Ritchie, Dennis M., ‘‘The C Pro-
gramming Language’’, Prentice-Hall 1978, Pages ix and 1.

2. UNIXÉ is a registered trademark of AT&T.

3. Produced by Bit Slice Software, Waterloo, Ontario, Cana-

da.

ADDITIONAL INFORMATION

Datasheet

HPC Software Support Package

User’s Manual

HPC C Compiler Users Manual Ý424410883-001

Lit. Ý100587

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor National Semiconductores National Semiconductor
Corporation GmbH Japan Ltd. Hong Kong Ltd. Do Brazil Ltda. (Australia) Pty, Ltd.
2900 Semiconductor Drive Livry-Gargan-Str. 10 Sumitomo Chemical 13th Floor, Straight Block, Rue Deputado Lacorda Franco Building 16
P.O. Box 58090 D-82256 F 4urstenfeldbruck Engineering Center Ocean Centre, 5 Canton Rd. 120-3A Business Park Drive
Santa Clara, CA 95052-8090 Germany Bldg. 7F Tsimshatsui, Kowloon Sao Paulo-SP Monash Business Park
Tel: 1(800) 272-9959 Tel: (81-41) 35-0 1-7-1, Nakase, Mihama-Ku Hong Kong Brazil 05418-000 Nottinghill, Melbourne
TWX: (910) 339-9240 Telex: 527649 Chiba-City, Tel: (852) 2737-1600 Tel: (55-11) 212-5066 Victoria 3168 Australia

Fax: (81-41) 35-1 Ciba Prefecture 261 Fax: (852) 2736-9960 Telex: 391-1131931 NSBR BR Tel: (3) 558-9999
Tel: (043) 299-2300 Fax: (55-11) 212-1181 Fax: (3) 558-9998
Fax: (043) 299-2500

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

