
TL/EE/9102

E
ffe

c
ts

o
f
N

S
3
2
0
8
2

M
e
m

o
ry

M
a
n
a
g
e
m

e
n
t
U

n
it

o
n

P
ro

c
e
s
s
o
r
T
h
ro

u
g
h

P
u
t

A
N

-4
6
4

National Semiconductor
Application Note 464
Chris Siegl
August 1986

Effects of NS32082 Memory
Management Unit on
Processor Through Put

INTRODUCTION

The purpose of this application note is to give a satisfactory

answer to the question, ‘‘How great is the performance pen-

alty for using the NS32082 memory management unit?’’ To

arrive at a satisfactory answer a number of benchmarks

have been run on the DB32000 board using the NS32032

with and without the NS32082 as well as the NS32016 with

and without the NS32082. The benchmarks were compiled

on two different compilers to show the differing effects of

the MMU based on the degree of code optimization. The

results are tabulated in a table along with the percent per-

formance penalty.

The results show that the percentages vary over the wide

range of 6% to 18.5% with generally a greater MMU impact

with higher levels of code optimization in the compiler. The

Whetstone benchmark has also been included to show the

effects of the MMU on floating-point instructions. As can be

seen in the tables the effects are much smaller with longer

instructions such as the floating-point instructions. The last

section of this ap-note rationalizes the differences in per-

formance under varying conditions and gives some rules of

thumb to use in applying this data to a specific case.

THE TEST SET-UP

To run this set of tests the DB32000 board was used. This

board is a complete microprocessor system specifically de-

signed to assist the user in evaluating and developing hard-

ware and software for the NS32032 CPU, related slave

processors (NS32081 FPU and NS32082 MMU) and sup-

port devices. Through the use of on board multiplexers the

NS32016 and NS32008 CPU’s can also be run on this

board. The configuration of this board used for these tests

consist of the NS32081 FPU (floating point unit), the

NS32202 ICU (interrupt control unit), 256K of dynamic RAM,

extensive ROM/EPROM capability, and two serial RS-232

ports as well as a parallel I/O port. See the DB32000 data

sheet for more detailed information.

The TDS monitor (shipped installed on the DB32000 board)

was then removed and replaced with MON32. This monitor

is compatible with National’s DBG16 debugger and allows

downloading of code from a host computer through the de-

bugger using an RS-232 link therefore allowing the host ma-

chine to be remote from the development environment. This

can even be done over a modem line to the host.

A timing routine using the counters in the ICU was linked to

the compiled benchmark programs before they were down-

loaded to the DB32000. A command to the debugger then

started the timing program executing which in turn called

the compiled benchmark after starting the ICU counters. Af-

ter the benchmark completes, it returns to the timing routine

where the counters are stopped and the execution time is

read from the registers. This set-up and the timing program

used are covered in detail in another application note titled

‘‘Using the DB32000 Evaluation Board for Benchmarking’’.

The SYS-32 Multi-User development system was used as

the host. This system is based on the Series 32000 family,

runs GENIXTM (National’s version of Berkley 4.1 UNIXTM)

operating system in a demand paged virtual memory envi-

ronment. The system supports up to eight simultaneous us-

ers, C and Pascal high level language compilers, a Series

32000 assembler, symbolic debugger and supports in-sys-

tem emulation for the 32000 family. The minimum system

configuration consists of 1.25 megabytes of RAM (expand-

able to 3.25 megabytes) 70 megabytes of hard disk (ex-

pandable to 490 megabytes) and a streamer tape drive for

backup. For more detailed information on the SYS-32,

please refer to the SYS-32 data sheet. The details of the

DBG16 symbolic debugger’s usage for down loading and

execution of the benchmaks is covered in the ap-note ‘‘Us-

ing the DB32000 Evaluation Board for Benchmarks’’.

RESULTS

TABLES I, II and III show the results of running the bench-

marks under the four different part combinations. As can be

seen in tables the MMU penalty varies considerably from

benchmark to benchmark and especially from one compiler

to another. To set an understanding of why the variations

are so big, we must look at how the 32000 family of CPU’s

operate in memory.

TABLE I

Benchmarks Executed on DB32000ÐAll Processors Running

at 10 MHz with no Wait States using Genix 4.1 C Compiler

Benchmark
NS32032 NS32032 MMU NS32016 NS32016 MMU

W MMU W/O MMU Penalty W MMU W/O MMU Penalty

Ackerman. c 4.72 4.32 9.3% 6.03 5.27 14.4%

BenchE. c 8.89 8.12 9.5% 11.97 10.50 14.0%

Puzzle. c 20.59 19.10 7.8% 26.96 23.65 14.0%

Sieve. c 19.42 18.09 7.4% 22.15 19.62 12.9%

Fibonacci. c 22.13 20.28 9.1% 26.31 23.61 11.4%

Longsearch. c 7.36 6.71 9.7% 10.31 8.70 18.5%

C1995 National Semiconductor Corporation RRD-B30M105/Printed in U. S. A.



TABLE II

Benchmarks Executed on DB32000ÐAll Processors Running at 10 MHz

with no Wait States using Greenhill’s C-32000 1.6.8 Compiler

Benchmark
NS32032 NS32032 MMU NS32016 NS32016 MMU

W MMU W/O MMU Penalty W MMU W/O MMU Penalty

Ackerman. c 3.75 3.30 13.6% 5.06 4.37 15.8%

BenchE. c 4.44 4.00 11.0% 4.76 4.48 6.3%

Puzzle. c 7.82 7.09 10.3% 9.61 8.57 12.1%

Sieve. c 17.71 16.41 7.9% 19.65 17.89 9.9%

Fibonacci. c 18.34 16.47 11.4% 24.87 21.17 17.5%

Longsearch. c 6.77 5.97 13.4% 8.75 7.48 17.0%

TABLE III

Benchmarks Executed on DB32000ÐAll Processors Running at 10 MHz

with no Wait States using Genix 4.1 Pascal Compiler

Benchmark
NS32032 NS32032 MMU NS32016 NS32016 MMU

W MMU W/O MMU Penalty W MMU W/O MMU Penalty

Whetstone. P 5.08 4.83 5.2% 6.17 5.63 9.6%

Both the NS32032 and the NS32016 have an eight byte

queue for instruction prefetching. As a result of this queue

having an MMU in the system has little effect on instruction

fetching. An interesting test that helps in understanding this

is to add wait states only to the code segment while using

no waitstate RAM for the stacks and static data segments.

These tests show a performance degradation of only 2 or

3% per waitstate. Another approach to demonstrating the

same effect which is not dependent on a special hardware

setup (controlling the number of wait states on different ar-

eas of memory space is done in hardware) is to generate a

software loop which only uses the registers and immediate

data for holding operands. A short example of such a pro-

gram is shown in listing 1. Table IV shows the results ob-

tained from timing this program both with and without the

MMU. As can be seen from the times the penalty is very

small, much less than 1%. This example clearly demon-

strates that the queue is doing a good job of minimizing the

effects of the MMU or waitstates on intruction fetching.

This is why, even though the MMU lengthens each memory

cycle by 25% (memory cycle goes from 4 t-states to 5) the

net effect on performance is typically less than 10%. The

penalty comes primarily from the lengthening of operand

fetches. The NS32032 takes a much smaller penalty if the

operands are primarily 32 bits or more in length. In that case

the NS32032 is only doing half as many operand fetches as

the NS32016, which has to do two accesses to get 32 bit

operands. Another thing to note is that the performance

times between NS32032 and the NS32016 is less than 1%

in our software program loop test (see Table IV). This is

because both processors are internally identical except in

the queue and bus interface. If the queue keeps up and

there are no stack or memory reference operations the exe-

cution time would be identical. The difference in time in this

test is due to the queue not quite keeping up and the branch

which purges the queue which the NS32032 reloads twice

as fast.

2



TABLE IV

Benchmarks Executed on DB32000ÐAll Processors Running at 10 MHz with No Wait States

(times are in microseconds)

Benchmark
NS32032 NS32032 MMU NS32016 NS32016 MMU

W MMU W/O MMU Penalty W MMU W/O MMU Penalty

Progloop.b.s 12622 12559 0.50% 12750 12668 0.65%

Progloop.w.s 13344 13291 0.40% 13432 13350 0.61%

Progloop.d.s 14988 14939 0.33% 15075 14992 0.55%

Tables I and II are the results of two different compilers

using the same source files for input but generating code at

different levels of optimization. The compiler in Table II opti-

mizes to a much greater degree resulting in a much smaller

ratio of instruction fetches to operand fetches while the ta-

ble one compiler generates more code to do the same work.

The number of operands does not decrease through opti-

mization but extraneous code is eliminated, driving down the

code to operand fetch ratio. As a result the penalty rises but

is still in the neighborhood of 10%. The greater the com-

plexity of the instruction the smaller the MMU penalty be-

cause the queue is more likely to keep up and a larger ratio

of execution time to operands fetched especially with the

NS32032. Table III gives the results of the Whetstone

benchmark which illustrates this. The Whetstone bench-

mark is primarily floating point, the big NS32032 advantage

comes from the operands being 32 or 64 bits in length. The

NS32016 is making two times as many operand memory

references as the NS32032 and therefore gets two times

the MMU penalty.

CONCLUSIONS

After studying the above tests we can see the major factor

effecting the performance penalty due to the MMU is the

number of operand references and stack operations per unit

of time. If operands are typically longer than 16 bits or the

stack is heavily used, the NS32032 will show a much lower

MMU penalty than the NS32016. However, even for the

NS32016 the MMU penalty is seldom greater than 15% and

typically half that for the NS32032. This penalty being so

small makes a strong case for using the MMU even in sys-

tems not using a bulk memory device and benefiting from

the page replacement aspects. The MMU can be useful in

these non bulk memory applications for protection at the

page level as well as for system debugging and program

maintenance. If portions of the ROM based code require

changes only the ROM holding the effected page table

needs to be replaced with the new code being addable in

any available ROM socket. The MMU with the on board

breakpoint resistors and counter can often greatly simplify

isolating bugs in the field where system disassembly on an

ISE (In System Emulator) would be out of the question or

inconvenient.

In bulk memory based systems there is no question that the

performance improvements due to the MMU far outweigh

the performance lost due to a longer memory cycle. For

more details in this area see the technical note entitled ‘‘Se-

ries 32000 The Benefits of Demand Paged Virtual Memory’’.

LISTING 1

;########################################################################

; INLINE CODE LOOP

; 12-10-85 by Chris Siegl

; all operands in registers

;########################################################################

; progloop.b.s 4 i’s replaced by b at end of instructions 1 operands

; are bytes (8 bits)

; progloop.w.s 4 i’s replaced by w at end of instructions 1 operands

; are words (16 bits)

; progloop.d.s 4 i’s replaced by d at end of instructions 1 operands

; are double-words (32 bits)

.program

1main::

movi 0,r0 ;set loop counter to 0 for 256 loops

movi 9,r3 ;put bcd values in r3 & r4

movi 9,r4

movi r3,r1

movi r3,r2

movi r3,r5

movi r3,r6

3



A
N

-4
6
4

E
ff

e
c
ts

o
f
N

S
3
2
0
8
2

M
e
m

o
ry

M
a
n
a
g
e
m

e
n
t
U

n
it

o
n

P
ro

c
e
s
s
o
r
T
h
ro

u
g
h

P
u
t

loop:

absi r1,r2

addi r1,r2

addci r1,r2

addpi r3,r4

subpi r3,r4

addqi 4,r1

ashi 4,r1

lshi 5,r1

roti 6,r1

andi r2,r5

comi r2,r1

ori r2,r1

xori r2,r1

nop

muli r5,r6

absi r1,r2

addi r1,r2

addci r1,r2

addpi r3,r4

subpi r3,r4

addqi 4,r1

ashi 4,r1

lshi 5,r1

roti 6,r1

andi r2,r5

comi r2,r1

ori r2,r1

xori r2,r1

nop

muli r5,r6

acbb 1,r0,loop

rxp 0

.endseg

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: (a49) 0-180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2309
Arlington, TX 76017 Email: cnjwge@ tevm2.nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: (a49) 0-180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: (a49) 0-180-532 78 32 Hong Kong

Fran3ais Tel: (a49) 0-180-532 93 58 Tel: (852) 2737-1600
Italiano Tel: (a49) 0-180-534 16 80 Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.


