
TL/EE/8388

In
te

rfa
c
in

g
th

e
N

S
3
2
0
8
1

a
s

a
F
lo

a
tin

g
-P

o
in

t
P
e
rip

h
e
ra

l
A

N
-3

8
3

National Semiconductor
Application Note 383
Microprocessor Applications

Engineering
July 1986

Interfacing the NS32081 as
a Floating-Point Peripheral

This note is a guide for users who wish to interface the

NS32081 Floating-Point Unit (FPU) as a peripheral unit to

CPUs other than those of the Series 32000 family. This is

not a particularly expensive procedure, but it requires some

in-depth information not all of which is available in the

NS32081 data sheet. Four basic topics will be covered here:

An overview of the architecture of the NS32081 as seen

in a stand-alone environment.

The protocol used to sequence it through the execution

of an instruction.

Special guidelines for connecting and programming the

NS32081 as a peripheral component.

A sample application of these guidelines in the form of a

circuit interfacing the NS32081 to the Motorola 68000

microprocessor.

References are made here to the NS32081 data sheet and

the Series 32000 Instruction Set Reference Manual (Publi-

cation Ý420010099-001). The reader should have both

these documents on hand.

1.0 Architecture Overview
1.1 REGISTER SET

The register set internal to the NS32081 FPU is shown in

Figure 1. It consists of nine registers, each 32 bits in length:

FSR The Floating-Point Status Register. As given in the

data sheet, this register holds status and mode in-

formation for the FPU. It is loaded by executing the

LFSR instruction and examined using the SFSR in-

struction.

F0–F7 The Floating-Point Registers. Each can hold a sin-

gle 32-bit single-precision floating-point value. To

hold double-precision values, a register pair is refer-

enced using the even-numbered register of the pair.

32w x
32 F0w x

Floating Pt. Status FSR F1

F2

F3

F4

F5

F6

F7

FIGURE 1. FPU Registers

Floating-point operands need not be held in registers; they

may be supplied externally as part of the instruction se-

quence. Integer operands (appearing in conversion instruc-

tions) and values being transferred to or from the FSR must

be supplied externally; they cannot be held in Floating-Point

registers F0–F7.

1.2 INSTRUCTION SET AND ENCODING

The encodings used for NS32081 instructions are shown in

Figure 2. They fall within two formats, labeled from Series

32000 tradition ‘‘Format 9’’ and ‘‘Format 11’’. These for-

mats are distinguished by their least-significant byte (the ‘‘ID

Byte’’). Execution of an FPU instruction starts by passing

first the ID Byte and then the rest of the instruction (the

‘‘Operation Word’’) to the FPU.

Fields within an instruction are interpreted by the FPU in the

same manner as documented in Chapter 4 of the Series

32000 Instruction Set Reference Manual, with the exception

of the 5-bit General Addressing Mode fields (gen1, gen2).

Since the FPU does not itself perform memory accesses, it

does not need to use these fields for addressing calcula-

tions. The only use it makes of these fields is to determine

for each operand whether the value is to be found internal

to the FPU (that is, within a register F0–F7, or whether it is

to be transferred to and/or from the FPU. See Figure 3. A

value of 0–7 in a gen field specifies one of the Floating-

Point registers F0–F7, respectively, as the location of the

corresponding operand. Any greater value specifies that the

operand’s location is external to the FPU and that its value

will be transferred as part of the protocol. Any non-floating

operand is always handled by the FPU as external, regard-

less of the addressing mode specified in its gen field. It is

illegal to reference an odd-numbered register for a double-

precision operand. If an odd register is referenced, the re-

sults are unpredictable.

1.3 PINOUT

The FPU is packaged in a 24-pin DIP (seeFigure 4). The pin

functions can be split into two groups: those that participate

in the communication protocol between the FPU and the

host system, and those that reflect the familiar requirements

of LSI components.

The protocol uses the following pins of the FPU:

D0–D15 The 16-bit data bus. The D0 pin holds the

least-significant bit of data transferred on the

bus.

SPC A dual-purpose pin, low active. SPC is pulsed

low from the host system as the data strobe

for bus transfers. SPC is pulsed low by the

FPU to signal that it has completed the inter-

nal execution phase of an instruction.

C1995 National Semiconductor Corporation RRD-B30M105/Printed in U. S. A.



1.0 Architecture Overview (Continued)

ST0, ST1 The status code. This 2-bit value is sampled

by the FPU on the falling edge of SPC, and

informs it of the current protocol phase. ST0

is the least-significant bit of the value. The

need filled by the status code is most rele-

vant to Series 32000-based systems, where it

serves to allow retry of aborted instructions

and to disambiguate the protocol when the

SPC signal is bussed among multiple slave

processors. In microprocessor-based periph-

eral applications, the status code can gener-

ally be provided from the CPU’s address

lines.

23 16 15 8 7 0

gen1 gen2 op f i 0 0 1 1 1 1 1 0

X ä YX ä Y
ID BYTEOPERATION WORD

Format 9: LFSR/SFSR/Conversions

23 16 15 8 7 0

gen1 gen2 op 0 f 1 0 1 1 1 1 1 0

X ä YX ä Y
ID BYTEOPERATION WORD

Format 11: Movement/Calculation

FIGURE 2. FPU Instruction Formats

The pins providing for standard requirements are:

CLK The clock input. This is a TTL-level square

wave which the FPU uses to sequence its in-

ternal calculations.

RST The reset input. This signal is used to reset

the FPU’s internal logic.

VCC The 5-volt positive supply.

GNDB, GNDL The grounding pins. GNDB serves as ground

for the FPU’s output buffers, and GNDL is

used for the rest of the on-chip logic.

0 0 n

FPU Internal Register: Fn, ne0 . . . 7

Long FloatingeEven Register Only

0 1 X X X

1 X X X X

External to FPU

Note: All non-floating operands are always external.

FIGURE 3. FPU Addressing Modes

TL/EE/8388–1

TL/EE/8388–2
Top View

FIGURE 4. NS32081 FPU Connections

2



2.0 Protocol
The FPU requires a fixed sequence of transfers (‘‘protocol’’)

in its communication with the outside world. Each step of

the protocol is identified by a status code (asserted to the

FPU on pins ST0 and ST1) and by its position in the se-

quence, as shown in Figure 5.

Status Combinations:

11: Write ID Byte

01: Transfer Operation/Operand

10: Read Status Word

Step Status Action

1 11 CPU sends ID Byte on least-significant

byte of bus.

2 01 CPU sends Operation Word, bytes

swapped on bus.

3 01 CPU sends required operands, gen1
first, least-significant word first.

4 xx FPU starts internal execution.

5 xx FPU pulses SPC low.

6 10 CPU reads Status Word (Error/Com-

parison Result).

7 01 CPU reads result (if any), least-signifi-

cant word first.

FIGURE 5. FPU Instruction Protocol

Steps 1 and 2 transfer the instruction to the FPU. Step 1

transfers the first byte of the instruction (the ID Byte) and

Step 2 transfers the rest of the instruction (the Operation

Word). In Step 2, the two bytes of the Operation Word must

be swapped on the bus; i.e. the most-significant byte of the

Operation Word must be presented on the least-significant

byte of the bus.

Step 3 is optional and repeatable depending on the instruc-

tion. It is used to transfer to the FPU any external operands

that are required by the instruction. The operand specified

by gen1 is sent first, least-significant word first, followed by

the operand specified by gen2. If an operand is only one

byte in length, it is transferred on the least-significant half of

the bus.

The FPU initiates Step 4 of the protocol, internal computa-

tion, upon receiving the last external operand word or, if

there are no external operands, upon receiving the Opera-

tion Word of the instruction. During this time, the data bus

may be used for any purpose by the rest of the system, as

long as the SPC pin is kept pulled up by a resistor and is not

actively driven.

Step 5 occurs when the FPU completes the instruction. The

FPU pulses the SPC pin low to acknowledge that it is ready

to continue the protocol. This pulse is called the ‘‘Done

pulse’’. The bus is not used during this step, and remains

floating.

In Step 6, the FPU is polled by reading a Status Word. This

word indicates whether an exception has been detected by

the FPU. In the Compare instruction (CMPf), it also displays

the relationship between the operands and serves as the

result. This transfer is mandatory, regardless of whether the

information presented by the FPU is intended to be used.

See Figure 3-6 of the data sheet.

Step 7 is, like Step 3, optional and repeatable depending on

the instruction. Any external result of an instruction is read

from the FPU in this step, least-significant word first. If the

result is a 1-byte value, it is presented by the FPU on the

least-significant half of the bus (D0–D7).

Note: If in Step 6 the FPU indicates that an error has oc-

curred, it is permissible, though not necessary, to con-

tinue the protocol through Step 7. No guarantee is

made regarding the validity of the value read, but con-

tinuing through Step 7 will not cause any protocol

problems.

If at any time within the protocol another ID byte is sent

(ST e 11), the FPU will prepare itself internally to execute

another instruction, throwing away the instruction that was

in progress. This is done to support the Abort with Retry

feature of the Series 32000 family.

Because of this feature, however, there is an important con-

sideration when using the FPU in systems that support mul-

titasking: the operating system must not allow a task using

the FPU to be interrupted in the middle of an instruction

protocol and then transfer control to another task that is

also using the FPU. The partially-executed instruction would

be thrown away, leaving the first task with a garbage result

when it continues. This situation can be avoided easily in

software but, depending on the system, some cooperation

may be required from the user program. Other solutions in-

volving some additional hardware are also possible.

3.0 Interfacing Guidelines
There are some special interfacing considerations that are

required (see Figure 6):

1. The edges of the SPC pulse must have a fixed relation-

ship to the clock signal (CLK) presented to the FPU.

When writing information to the FPU, the pulse must start

shortly after a rising edge of CLK and end shortly after

the next rising edge of CLK. Failing to do so can cause

the FPU to fail, often by causing it to freeze and not gen-

erate the Done pulse. This synchronous generation of

SPC is also important when reading information from the

FPU, but the SPC pulse is allowed to be two clocks in

width. These requirements will be expressed in future

NS32081 data sheets as a minimum setup time require-

ment between each edge of the SPC pulse and the next

rising edge of CLK, currently set at 40 nanoseconds on

the basis of preliminary characterization. The propagation

delay in generating SPC through a Schottky flip-flop (e.g.

74S74) and a low-power Schottky buffer (e.g. 74LS125A)

is therefore acceptable at 10 MHz. LS technology is rec-

ommended for the buffer to minimize undershoot when

driving SPC.

2. After the FPU generates the Done pulse, it is necessary

to leave the SPC pin high for an additional two cycles of

CLK before performing the Read Status Word transfer.

3. After performing the Read Status Word transfer, it is nec-

essary to wait for an additional three cycles of CLK be-

fore reading a result from the FPU.

3



4.0 An Interface to the MC68000
Microprocessor
4.1 HARDWARE

A block diagram of the circuitry required to interface the

MC68000 MPU to the NS32081 is shown in Figure 7.

First the easy part. Direct connections are possible on the

data bus, which is numbered compatibly (D0–D15 on both

parts), the status pins ST0–ST1 (connected to address

lines A4–A5 from the 68000), and the clock (CLK on both).

The system reset signal (RESET to and/or from the

MC68000) should be synchronized with the clock before

presenting it as RST to the FPU.

All that remains to be done is to generate SPC pulses that

are within specifications whenever the 68000 accesses the

FPU, and to detect the Done pulse from the FPU in a man-

ner that will allow the 68000 to poll for it.

The approach selected for generating SPC pulses uses an

address decoder that recognizes two separate address

spaces; one to transfer information to or from the FPU

(XFER), and one to poll for the Done pulse (POLL).

The 68000 signals AS (Address Strobe) and R/W (Read /

not Write) are used to generate SPC timing.

Figure 8 shows the timing generated when the 68000 is

writing to the FPU. The SPC pin is kept floating (held high by

a pullup resistor) until bus state S4, at which point it is pulled

low. On the next rising edge of CLK, SPC is actively pulled

high, and is set floating afterward. It is not simply allowed to

float high, as the resulting rise time can be unacceptable at

speeds above about 4 MHz. A timing chain, required due to

the 10-MHz 68000’s treatment of its AS strobe, generates

the signals TA, TB and TC, from which the SPC signal’s

state and enable are controlled.

Figure 9 shows the SPC timing for reading from the FPU.

The basic difference is that SPC remains active for two

clocks, so that the FPU holds data on the bus until it is

sampled by the 68000. Again, SPC is actively driven high

before being released.

Note: Although SPC must be driven high before being re-

leased, it must not be actively driven for more than

two clocks after the trailing edge of SPC. This is be-

cause the FPU can respond as quickly as three

clocks after that edge with a Done pulse.

A simpler scheme in which the SPC pulse is identical for

both reading and writing (1-clock wide always, but starting

(/2 clock later with CLK into the FPU inverted) was consid-

ered, but was rejected because the data hold time present-

ed by the 68000 on a Write cycle would be inadequate

at 10 MHz.

Any SPC pulse appearing while the XFER Select signal is

inactive is interpreted as a Done pulse, which is latched in a

flip-flop within the Done Detector block. When the 68000

performs a Read cycle from the address that generates the

POLL select signal, the contents of the flip-flop are placed

on data bus bit D15. Since this is the sign bit of a 16-bit

value, the 68000 can perform a fast test of the bit using a

MOVE.W instruction and a conditional branch (BPL) to wait

for the FPU.

The schematic for the SPC generator and the Done pulse

detector is given in Figures 10a and 10b. The flip-flop la-

beled SPC generates the edges of the SPC pulse (on the

signal SPCT). The timing chain (TA, TB) provides the enable

control to the buffer driving SPC to the FPU, as well as the

signal to terminate the SPC pulse (either TB or TC, depend-

ing on the direction of the data transfer). Note that the tim-

ing chain assumes a full-speed memory cycle of four clocks

in accessing the FPU, and will fail otherwise. The circuit

generating the Data Acknowledge signal to the 68000

(DTACK, not shown) must guarantee this. In any system

that must use a longer access, some modification to the

timing chain will be necessary.

The flip-flop labeled DONE (Figure 10b) is the Done pulse

detector. It is cleared by performing a data transfer into the

FPU and is set by a Done pulse on SPC. A buffer, enabled

by the POLL select signal, connects its output to data bus

bit 15.

4.2 SOFTWARE

Some notes on programming the FPU in a 68000 environ-

ment:

1. The byte addressing convention in the 68000 differs from

that of the Series 32000 family. In particular, a byte with

an even address is transferred on the most-significant

half of the bus by the 68000, but the FPU expects to see

it on the least-significant byte. When transferring a single

byte to or from the FPU, either do so with an odd address

specified, or transfer the byte as the least-significant half

of a 16-bit value at an even address.

2. The 68000 transfers 32-bit operands by sending the

most-significant 16 bits first. The FPU expects values to

be transferred in the opposite order. Make certain that

operands are transferred in the correct order (the 68000

SWAP instruction can be helpful for this).

A sample program that sequences the FPU through the exe-

cution of an ADDF instruction is listed in Figure 11. As this

example is intended for clarity rather than efficiency, im-

provements are possible. The XFER select is assumed to

be generated by addresses of the form 06xxxx (hex) and the

POLL select is assumed to be generated by addresses of

the form 07xxxx.

4



TL/EE/8388–3

FIGURE 6. Interfacing to FPU: Cautions

TL/EE/8388–4

FIGURE 7. 68000-32081 Interface Block Diagram

5



TL/EE/8388–5

FIGURE 8. 68000 Write to FPU

TL/EE/8388–6

FIGURE 9. 68000 Read from FPU

6



TL/EE/8388–7

FIGURE 10a. Schematic: SPC Timing Generator

TL/EE/8388–8

FIGURE 10b. Schematic: DONE Detector and RESET Synchronizer

7



A
N

-3
8
3

In
te

rf
a
c
in

g
th

e
N

S
3
2
0
8
1

a
s

a
F
lo

a
ti
n
g
-P

o
in

t
P
e
ri
p
h
e
ra

l
* Register Contents:

*
* A0 4 00070000 Address of DONE flip-flop.

* A1 4 00060010 Address for ST41 transfer (Transfer Operand).

* A2 4 00060020 Address for ST42 transfer (Read Status Word).

* A3 4 00060030 Address for ST43 transfer (Broadcast ID).

*
* D0 4 000000BE ID byte for ADDF instruction.

* D1 4 00000184 Operation Word for ADDF. (Note bytes swapped.)

* D2 4 3F800000 First operand 4 1.0.

* D3 4 3F800000 Second operand 4 1.0.

* D4 Receives Status Word from FPU.

* D5 Receives result from FPU.

* D7 Scratch register (for DONE bit test).

*
START MOVE.W D0,(A3) Send ID byte.

MOVE.W D1,(A1) Send Operation Word.

SWAP D2 Send operands. The swapping

MOVE.L D2,(A1) is included because the

SWAP D2 FPU expects the least-

SWAP D3 significant word first.

MOVE.L D3,(A1) (Can be avoided, with care.)

SWAP D3

*
POLL MOVE.W (A0),D7 Check the DONE flip-flop,

BPL POLL loop until FPU is finished.

* (DONE bit is sign bit, tested

* by the MOVE instruction.)

*
MOVE.W (A2),D4 Read Status Word.

MOVE.L (A1),D5 Read result.

SWAP D5 Swap halves of result.

FIGURE 11. Single-Precision Addition (Demo Routine)

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: (a49) 0-180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2309
Arlington, TX 76017 Email: cnjwge@ tevm2.nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: (a49) 0-180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: (a49) 0-180-532 78 32 Hong Kong

Fran3ais Tel: (a49) 0-180-532 93 58 Tel: (852) 2737-1600
Italiano Tel: (a49) 0-180-534 16 80 Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.


